

US009062028B2

(12) United States Patent

Robl et al.

(10) Patent No.: US 9,062,028 B2

(45) **Date of Patent:** Jun. 23, 2015

(54) BICYCLIC NITROGEN CONTAINING HETEROARYL TGR5 RECEPTOR MODULATORS

(75) Inventors: Jeffrey A. Robl, Newtown, PA (US);
Jun Li, Princeton, NJ (US); Lawrence J.
Kennedy, Titusville, NJ (US); Steven J.
Walker, Pennington, NJ (US); Haixia
Wang, Columbus, NJ (US); William N.
Washburn, Titusville, NJ (US); Saleem
Ahmad, Wall, NJ (US); Khehyong Ngu,

Pennington, NJ (US)

(73) Assignee: Bristol-Myers Squibb Company,

Princeton, NJ (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/113,593

(22) PCT Filed: Apr. 27, 2012

(86) PCT No.: **PCT/US2012/035327**

§ 371 (c)(1),

(2), (4) Date: Oct. 24, 2013

(87) PCT Pub. No.: WO2012/149236

PCT Pub. Date: Nov. 1, 2012

(65) Prior Publication Data

US 2014/0080788 A1 Mar. 20, 2014

Related U.S. Application Data

- (60) Provisional application No. 61/479,917, filed on Apr. 28, 2011.
- (51) Int. Cl. C07D 401/04 (2006.01)C07D 401/14 (2006.01)(2006.01) C07D 403/04 C07D 413/04 (2006.01)C07D 413/14 (2006.01)A61K 31/47 (2006.01)A61K 31/4709 (2006.01)A61K 31/473 (2006.01)C07D 215/08 (2006.01)C07D 417/04 (2006.01)A61K 31/4747 (2006.01)A61K 31/496 (2006.01)A61K 31/506 (2006.01)(Continued)

(52) U.S. Cl.

 (2013.01); A61K 31/506 (2013.01); A61K 31/5377 (2013.01); A61K 31/5415 (2013.01); A61K 31/555 (2013.01); A61K 31/554 (2013.01); A61K 31/675 (2013.01); A61K 45/06 (2013.01); C07D 221/16 (2013.01); C07D 401/12 (2013.01); C07D 405/14 (2013.01); C07D 409/14 (2013.01); C07F 9/60 (2013.01)

(58) Field of Classification Search

USPC 546/165, 23, 18, 79; 514/314, 311, 82 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,989,461 B2 * 8/2011 De Morin et al. 514/266.2 8,309,734 B2 11/2012 Bissantz et al.

FOREIGN PATENT DOCUMENTS

JP 7-242663 9/1995 WO WO 2010/107768 9/2010 OTHER PUBLICATIONS

Zhao, S.-H. et al., "3,4-Dihydro-2*H*-benzo[1,4]oxazine derivatives as 5-HT₆ receptor antagonists", Bioorganic & Medicinal Chemistry Letters, vol. 17, pp. 3504-3507 (2007).

Primary Examiner — Kahsay Habte (74) Attorney, Agent, or Firm — Terence J. Bogie

(57) ABSTRACT

Novel compounds of Formula I:or an enantiomer, diastereomer, tautomer, prodrug or salt thereof, wherein m, Q, T, U, V, ring A, X, Y, R₃, R₄, R₄, R_{5a}, R_{5b}, R_{5c}, R_{5d}, R_{5e}, R_{6a}, R_{6b}, and R_{6c} are defined herein, are provided which are TGR5 G protein-coupled receptor modulators. TGR5 G protein-coupled receptor modulators are useful in treating, preventing, or slowing the progression of diseases requiring TGR5 G protein-coupled receptor modulator therapy. Thus, the disclosure also concerns compositions comprising these novel compounds and methods of treating diseases or conditions related to the activity of the TGR5 G protein-coupled receptor by using any of these novel compounds or a composition comprising any of such novel compounds.

 $\begin{array}{c} Y \\ X \\ A \\ R_{6a} \\ R_{6b} \\ R_{6c} \\ O \\ \end{array} \begin{array}{c} R_{3} \\ R_{5a} \\ R_{5a} \\ R_{5c} \\ R_{5c} \\ R_{5d} \end{array}$

14 Claims, No Drawings

US 9,062,028 B2 Page 2

(51) In	ıt. Cl.		A61K 45/06	(2006.01)
A	61K 31/5377	(2006.01)	C07D 221/16	(2006.01)
	61K 31/5415	(2006.01)	C07D 401/12	(2006.01)
	61K 31/55	(2006.01)	C07D 405/14	(2006.01)
	61K 31/553 61K 31/554	(2006.01) (2006.01)	C07D 409/14	(2006.01)
	61K 31/534 61K 31/675	(2006.01)	C07F 9/60	(2006.01)

BICYCLIC NITROGEN CONTAINING HETEROARYL TGR5 RECEPTOR MODULATORS

CROSS REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of International Application No. PCT/US2012/035327, filed Apr. 27, 2012, which claims the benefit of U.S. Provisional Application Ser. No. 1061/479,917, filed on Apr. 28, 2011. The entire teachings of the referenced applications are herein incorporated by reference in their entirety.

FIELD OF THE INVENTION

The present invention provides novel bicyclic nitrogen containing heteroaryl compounds, preferably tetrahydro-quinolinyl, tetrahydrocyclopropaquinolinyl, dihydroben-zooxazinyl, tetrahydrobenzoazepinyl and tetrahydroben-zooxazepinyl compounds, and analogues thereof, which are agonists of the TGR5 G protein-coupled receptor, compositions containing them, and methods of using them, for example, for the prevention and/or treatment of diseases or disorders associated with the modulation of the TGR5 G 25 protein-coupled receptor, e.g., diabetes and obesity.

BACKGROUND OF THE INVENTION

Diabetes mellitus is an epidemic disease that is the fourth 30 leading cause of death worldwide, the leading cause of kidney disease in developed countries and the leading cause of blindness in industrialized nations. In 2007, \$174 billion of cost was attributed to the disease from lost productivity and health-care related expense. The most prevalent form, type 2 35 diabetes, targets multiple organs and is a progressive disease, requiring additional treatment and expense as it progresses. Therefore, new and differentiated treatment options represent a major unmet medical need. One major recent therapeutic advance targets the incretin axis, and therapies that either 40 directly provide additional glucagon like peptide-1 (GLP-1) through administration of stable GLP-1 analogs or prevent the degradation of naturally produced GLP-1 via the inhibition of degradative, protelytic enzymes such as dipeptidyl peptidase IV (DPP4). In turn, GLP-1 can modulate insulin 45 secretion resulting in enhanced insulin secretion and glucose uptake.

Bile acids play essential roles in the absorption of dietary lipids and in the regulation of bile acid biosynthesis. While bile acids have long been known to be essential in dietary lipid 50 absorption and cholesterol catabolism, in recent years an important role for bile acids as signaling molecules has emerged. Bile acids are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor a (FXR-a). Through activation of these diverse signaling pathways, bile acids can regulate their own enterohepatic circulation, but also triglyceride, cholesterol, energy, and glucose homeostasis. Thus, bile acid (BA) controlled signaling pathways are promising novel drug targets to treat common metabolic diseases, such as obesity, 60 type II diabetes, hyperlipidemia, and atherosclerosis.

The receptor commonly referred to as TGR5 (also known as GPBAR1, BG37, AXOR109, GPCR19, and GPR131) has been shown to respond to bile acids, and thus is postulated to mediate the recently discovered signaling properties attributed to these molecules. The membrane-bound receptor is highly expressed in the gall bladder, but also throughout the

2

intestinal tract, and has also been reported in myocytes, monocytes/macrophages as well as other tissues and organs. The TGR5 receptor is known to be coupled to the Gs type G protein which activates cAMP biosynthesis, which in turn is thought to mediate some or all of the TGR5-mediated biologic actions.

Glucagon-like peptide-1 (GLP-1) is produced by L-cells in the distal digestive tract and affects multiple metabolic parameters, including enhanced insulin secretion, glucagon suppression, and lowering of blood glucose. Modulation of the TGR5 receptor has been proposed to result in the stimulation of GLP-1 secretion in the gastrointestinal tract, which upon acting on the pancreatic beta cell could then result in additional glucose-stimulated insulin secretion (GSIS). TGR5 receptor signaling has also been suggested to increase oxidative phosphorylation and energy metabolism in muscle and mediate anti-inflammatory actions at other sites of diabetic injury, which together or separately may hold potential benefits for treatment of the disease. Administration of bile acids to mice has also been reported to increase energy expenditure, thereby preventing obesity and insulin resistance. This novel metabolic effect of bile acids is thought to be dependent on induction of type 2 iodothyronine deiodinase (D2) and conversion of T4 to T3, because it is absent in D2-/- mice.

Accordingly, compounds that activate TGR5, alone or in combination with other medicaments, could demonstrate a wide range of utilities in treating inflammatory, allergic, autoimmune, metabolic, cancer and/or cardiovascular diseases, in particular diabetes mellitus. PCT Publication Nos. WO 2010/093845 A1, WO 2011/071565 A1, WO 2010/059859 A1, WO 2010/016846 A1, WO 2009/026241 A1, WO 2008/067222 A1, WO 2008/097976 A1 and WO 2008/067219 A2, disclose compounds that activate TGR5 and methods of treating diseases associated with TGR5. The references also disclose various processes to prepare these compounds.

SUMMARY OF THE INVENTION

In accordance with the present invention, compounds are provided that have the general structure of Formula I:

or an enantiomer, diastereomer, tautomer, prodrug or salt thereof, wherein m, Q, T, U, V, ring A, X, Y, R₃, R₄, R_{4a}, R_{5a}, R_{5a}, R_{5a}, R_{5a}, R_{6a}, R_{6b}, and R_{6c} are defined below.

Compounds of the present invention modulate the activity of G protein-coupled receptors. Preferably, compounds of the present invention modulate the activity of the TGR5 G protein-coupled receptor ("TGR5"). Consequently, the com-

of multiple diseases or disorders associated with TGR5, such

as diabetes and related conditions, microvascular complica-

progression or onset of diseases or disorders associated with the activity of the TGR5 G protein-coupled receptor, such as defined above and hereinafter, wherein a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, is administered to a mammalian, i.e., human, patient in need of treatment.

tions associated with diabetes, the macrovascular complications associated with diabetes, cardiovascular diseases, Metabolic Syndrome and its component conditions, obesity and other maladies. Examples of diseases or disorders associated with the modulation of the TGR5 G protein-coupled receptor that can be prevented, modulated, or treated according to the present invention include, but are not limited to, diabetes, 10 Further, the present invention provides a method for prehyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed wound healing, atherosclerosis and its sequelae, abnormal heart function, myocardial ischemia, stroke, Meta-

The compounds of the invention can be used alone, in combination with other compounds of the present invention, or in combination with one or more other agent(s).

lipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, vascular restenosis, and pancreatitis. In addition, the present invention relates to a formulated

bolic Syndrome, hypertension, obesity, dyslipidemia, hyper-

venting, modulating, or treating the diseases as defined above and hereinafter, wherein a therapeutically effective amount of a combination of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, and another compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, and/or at least one other type of the rapeutic agent, is administered to a mammalian, i.e., human, patient in need of treatment.

product wherein the selected formulation is made by using a 20 compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, as the only active ingredient or by combining (a) a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, (using any of the compound embodiments listed herein) and (b) an additional active ingredient, for example, a 25 dipeptidyl peptidase-IV (DPP4) inhibitor (for example, a member selected from saxagliptin, sitagliptin, vildagliptin and alogliptin).

DETAILED DESCRIPTION

In addition, the present invention relates to a formulated product wherein the selected formulation is made by using a 30 compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, as the only active ingredient or by combining (a) a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, (using any of the compound embodiments listed herein) and (b) a dipeptidyl peptidase-IV (DPP4) inhibitor, 35 wherein the DPP4 inhibitor is saxagliptin.

In one embodiment, the present invention provides a compound of Formula I:

In addition, the present invention relates to a formulated product wherein the selected formulation is made by using a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, as the only active ingredient or by combining (a) a 40 compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, (using any of the compound embodiments listed herein) and (b) an additional active ingredient, for example, an SGLT2 inhibitor (for example, a member selected from 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophe- 45 none-2'-O-(6-O-methoxycarbonyl)-β-d-glucopyranoside, phlorizin, TS-033, dapagliflozin, sergiflozin, AVE 2268 and canagliflozin).

$$R_{6a}$$
 R_{6a}
 R_{6a}
 R_{6a}
 R_{6a}
 R_{5a}
 R_{5a}
 R_{5c}
 R_{5c}
 R_{5c}
 R_{5d}

product wherein the selected formulation is made by using a 50 compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, as the only active ingredient or by combining (a) a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, (using any of the compound embodiments listed herein) and (b) an SGLT2 inhibitor, wherein the SGLT2 55 inhibitor is dapagliflozin.

enantiomer, diastereomer, tautomer, prodrug or salt thereof wherein:

In addition, the present invention relates to a formulated

m is 1 or 2;

Q is
$$CR_{2a}R_2$$
, O, $-CR_{2a}R_2$ -O-, S, SO or SO_2 ;

T is (C_1-C_5) -alkyl, (C_2-C_6) -alkenyl, (C_{5-10}) -aryl or (C₅₋₁₀)-heteroaryl, all of which may be optionally substituted with one or more substituents selected from hydrogen, ²H, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl or halo(C₁-C₆)-alkyl and wherein a carbon atom of the alkyl chain may be replaced with a heteroatom selected from N, O, and S;

U is a bond, S, NR_{7a} , O or a (C_3-C_6) -cycloalkyl; V is a bond, — CH_2 —, O or a (C_3 - C_6)-cycloalkyl; Ring A is a 5- to 6-membered aryl or heteroaryl, wherein

Therefore, in another embodiment of the present invention provides for compounds of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, pharmaceutical compositions containing such compounds, and for methods of using such com- 60 pounds. In particular, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, Ij and the examples, alone or in combination with a

the aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, oxo, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl and halo (C1-C6)-alkyl and the heteroaryl contains 1-4 heteroatoms selected from N, O, and S;

pharmaceutically acceptable carrier. Further, in another embodiment of the present invention provides a method for preventing, modulating, or treating the

X is a bond, (C_1-C_6) -alkyloxy, (C_3-C_6) -cycloalkyl, (C_3-C_6) -cycloa C_6)-cycloalkyl- $(C_1$ - C_6)-alkyl, (C_{5-10}) -aryl, (C_{5-10}) -aryloxy, $(C_{5-10})\text{-aryl-}(C_1\text{-}C_6)\text{-alkyl}, \quad (C_{5-10})\text{-aryl-}\text{oxy-}(C_1\text{-}C_6)\text{-alkyl}, \quad (C_{5-10})\text{-aryl-}(C_1\text{-}C_6)\text{-alkyl}, \quad (C_{5-10})\text{-aryl-}(C_1\text{-}C_6)\text{-aryl-}(C_1\text{-}C_6)\text{-aryl-}(C_1\text{-}C_6)\text{-aryl-}(C_1\text{-}C_6)\text{-aryl-}(C_1\text{-}C_6)\text{-aryl-}(C_1\text{-}C_6)\text{-aryl-}(C_1\text{-}C_6)\text{-aryl-}(C_1\text{-}C_6)\text{-aryl-}(C$ wherein the heteroaryl contains 4- to 10-members and 1-4 heteroatoms selected from N, O, and S and any alkyl, aryl and heteroaryl may be optionally substituted with one or more Y is $-(CR_{22}R_{22a})_n - W$;

W is hydrogen, —OH, cyano, heteroaryl, which may be optionally substituted with one or more R_{20} 's, heterocyclo, which may be optionally substituted with one or more R_{20} 's, — $N(R_{18})R_{19}$,

6 -continued OR₂₉ OR₂₉ OR₂₉ R_{18} - $N(R_{28})R_{29}R_{29}$, R_{18} - $N(R_{28})R_{29}R_{29}$, R₁₈ - N(R₂₈)R₂₉R₂₉, $-N(R_{28})R_{29}R_{29}$,

wherein the amino, hydroxy or acidic moiety may attach at any position of R_{18} ;

 R_2 is hydrogen, —OH, oxo, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl or halo(C₁-C₆)-alkyl;

 R_{2a} is hydrogen, —OH, oxo, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl or halo(C₁-C₆)-alkyl;

or R2 and R2a can optionally be linked to form a linking group containing 1-2 carbon atoms;

R₃ is hydrogen, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl or halo (C_1-C_6) -alkyl;

or R₂ and R₃ can optionally be linked to form a linking group containing 1-5 carbon atoms to form a (C_3-C_7) -cycloalkyl ring, a halo(C₃-C₇)-cycloalkyl ring or an aryl ring;

R₄, at each occurrence, is independently hydrogen, —OH, halogen, halo (C_1-C_6) -alkyl or (C_1-C_8) alkyl;

 R_{4a} , at each occurrence, is independently is hydrogen, -OH, halogen, halo(C_1 - C_6)-alkyl or (C_1 - C_8)alkyl;

or R₃ and R₄ can optionally be linked with the carbons to which they are attached to form a linking group containing 1-5 carbon atoms to form a (C₃-C₇)-cycloalkyl ring, a halo (C_3-C_7) -cycloalkyl ring or an aryl ring;

or R4 and R4a can optionally be linked to form a linking 15 group containing 1-4 carbon atoms;

 R_{5a} is hydrogen, halogen, $\mathrm{C}_1\text{-}\mathrm{C}_6$ alkyl, $\mathrm{C}_1\text{-}\mathrm{C}_6$ alkoxy, CN, $\begin{array}{l} (C_3\text{-}C_6)\text{-cycloalkyl or halo}(C_1\text{-}C_6)\text{-alkyl}; \\ R_{5b} \text{ is hydrogen, halogen, } C_1\text{-}C_6 \text{ alkyl, } C_1\text{-}C_6 \text{ alkoxy, CN,} \end{array}$

 (C_3-C_6) -cycloalkyl or halo (C_1-C_6) -alkyl;

 R_{5c} is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, (C_3-C_6) -cycloalkyl or halo (C_1-C_6) -alkyl;

 R_{5d} is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, (C_3-C_6) -cycloalkyl or halo (C_1-C_6) -alkyl;

 R_{5e} is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, 25 (C_3-C_6) -cycloalkyl or halo (C_1-C_6) -alkyl;

or two of R_{5a} , R_{5b} , R_{5c} , R_{5d} or R_{5e} may be taken together with the atoms to which both are attached form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{6a} is hydrogen, halogen or C_1 - C_6 alkyl; R_{6b} is hydrogen, halogen or C_1 - C_6 alkyl; R_{6c} is hydrogen, halogen or C_1 - C_6 alkyl; R_{7a} is hydrogen, C_1 - C_6 alkyl or — $CO_2(C_1$ - $C_6)$ -alkyl;

n is 0-6;

 R_{16} is H or —CN;

R₁₈, at each occurrence, is independently (C₁-C₈)alkyl, (C₃-C₁₂)-cycloalkyl, a fused (C₃-C₁₈)-cycloalkyl, (C₁-C₈) alkyl- (C_3-C_{12}) -cycloalkyl- (C_1-C_8) alkyl, (C_1-C_8) alkyl- (C_3-C_8) alkyl- $(C_3 C_{12}$)-cycloalkyl, (C_{5-10}) -aryl, $(C_{5}$ - $C_{10})$ -aryl $(C_{1}$ - $C_{8})$ alkyl, a 40 heteroaryl, a heteroaryl(C₁-C₈)alkyl, a heterocyclo(C₁-C₈) alkyl or a heterocyclo, all of which may be optionally substituted with one or more R_{20} 's and wherein the heteroaryl and heterocyclo contain 4- to 10-members and contain 1-4 heteroatoms selected from N, O, and S;

R₁₉, at each occurrence, is independently hydrogen, (C₁- C_6)-alkyl, (C_3-C_{12}) -cycloalkyl, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein 50 the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more R₂₀'s;

or R_{18} and R_{19} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S and be optionally substituted with one or more R_{20} 's:

R₂₀, at each occurrence, is selected from halo, —OH, (C₁- C_6)-alkyl, $(C_2$ - C_6)-alkenyl, $(C_2$ - C_6)-alkynyl, $(C_3$ - C_{12})-cycloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, —COOH, $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_{12})$ -aryl, $-CO_2$ (C_1-C_6) -alkyl, — $CONR_{28}R_{29}$, — $NR_{28}R_{29}$, — $NR_{28}C$ (=O) $(=NR_{28})R_{29}, -S(=OH)R_{29}, -S(=O)R_{29},$ $-NR_{29}CO_2(C_1-C_6)$ -alkyl, $-NR_{28}SO_2R_{19}$ $-O(C=O)-(C_1-C_6)$ -alkyl, $-O(C=O)NR_{28}R_{29}$; $-(C_1-C_6)$ C_6)-alkylCOOH, — (C_1-C_6) -alkylOH, $-(C_1-C_6)$ -alkyl $(NH_2)COOH$, $-(C_1-C_6)$ -alkyl $CONR_{28}R_{29}$, alkyl- $CO_2(C_1-C_6)$ -alkyl, $--O-P(=O)(OH)(OR_{29}),$

 $--O-CR_{28}R_{29}--P(--O)(OH)(OR_{29}),$ —P(=O)(OH) $(OR_{29}), (C_{6-10})$ aryl, (C_{6-10}) aryl (C_1-C_6) -alkyl, (C_{6-10}) aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected 5 from N. O. and S: wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, —CO --CONR₂₈R₂₉, (C_1-C_6) -alkyl, $--CO_2(C_1-C_6)$ -alkyl, $\begin{array}{l} -NR_{28}R_{29}, -N(R_{28})R_{29}R_{29}, -O(C=O)-(C_1-C_6)-\text{alkyl}, \\ -O(C=O)NR_{28}R_{29}; -(C_1-C_6)-\text{alkylCOOH}, -(C_1-C_6)-\text{alkylOH}, -(C_1-C_6)-\text{alkylOH}, -(C_1-C_6)-\text{alkylOH}, -(C_1-C_6)-\text{alkylCOOH}, -(C_1-C_6)-\text{alkylOH}, -(C_1-C_6)$ alkylCONR₂₈R₂₉, $--(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, $-O-P(=O)(OH)(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)$ $(OR_{29}), -P(=O)(OH)(OR_{29}), -S(=O)_2OH, (C_{6-10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered hetero- 20 cyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁-C₆)alkyl, and halo(C₁-C₆)alkyloxy;

 R_{22} , at each occurrence, is independently hydrogen, —OH, $(C_1\text{-}C_6)$ -alkyl, $(C_3\text{-}C_{12})$ -cycloalkyl, $(C_{6\text{-}10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms 25 selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more substituents selected from hydrogen, —OH, halogen, $C_1\text{-}C_6$ 30 alkyl, $C_1\text{-}C_6$ alkoxy, CN, $(C_3\text{-}C_{12})$ -cycloalkyl and halo $(C_1\text{-}C_6)$ -alkyl:

 $R_{22a},\,$ at each occurrence, is independently hydrogen, —OH, $(C_1\text{-}C_6)\text{-alkyl},\,(C_3\text{-}C_{12})\text{-cycloalkyl},\,(C_{6\text{-}10})\text{aryl},\,$ a 4-to 10-membered heteroaryl, which contains 1-4 heteroatoms 35 selected from N, O, and S; or a 4-to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more substituents selected from hydrogen, —OH, halogen, $C_1\text{-}C_6$ 40 alkyl, $C_1\text{-}C_6$ alkoxy, CN, $(C_3\text{-}C_{12})\text{-cycloalkyl}$ and halo($C_1\text{-}C_6)\text{-alkyl}$;

R₂₈ and R₂₉, at each occurrence, are independently hydrogen, (C₃-C₁₂)-cycloalkyl, or (C₁-C₈)alkyl, wherein the cycloalkyl and alkyl may be optionally substituted with one 45 or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, —CO(C₁- $-O(C=O)-(C_1-C_6)-alkyl, -O(C=O)NR_{38}R_{39}; -(C_1-50)$ C_6)-alkylCOOH, — $(C_1$ - C_6)-alkylOH, — $(C_1$ - C_6)-alkyl $(NH_2)COOH$, $-(C_1-C_6)$ -alkylCONR₃₈R₃₉, $-(C_1-C_6)$ alkyl-CO₂(C₁-C₆)-alkyl, $-O-P(=O)(OH)(OR_{39}),$ $-O-CR_{38}R_{39}-P(=O)(OH)(OR_{39}),$ -P(=O)(OH) (OR_{39}) , $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered het- 55 eroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁-C₆)alkyl, and halo(C_1 - C_6)alkyloxy;

or R_{28} and R_{29} are taken together with the nitrogen to which 60 both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or (C_1-C_8) alkyl;

or R_{38} and R_{39} are taken together with the nitrogen to which 65 both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein the compounds are compounds of formula Ia:

$$\begin{array}{c} Y \\ X \\ A \\ R_{6a} \\ R_{6b} \\ R_{6c} \\ O \\ V \\ T \\ U \\ R_{5a} \\ R_{5c} \\ R_{5c} \\ R_{5d} \\ \end{array}$$

In yet another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein the compounds are compounds of formula Ib:

$$R_{6a}$$
 R_{6a}
 R_{6a}
 R_{6a}
 R_{6a}
 R_{6a}
 R_{5a}
 R_{5a}
 R_{5c}
 R_{5d}

In yet another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein the compounds are compounds of formula Ic:

$$R_{6a}$$
 R_{6a}
 R_{6a}
 R_{5a}
 R_{5c}
 R_{5d}
 R_{5d}

In still yet another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein the compounds are compounds of formula Id:

$$R_{6a}$$
 R_{6a}
 R_{6a}
 R_{5b}
 R_{5c}
 R_{5c}
 R_{5c}
 R_{5d}
 R_{5d}
 R_{5d}
 R_{5d}
 R_{5d}
 R_{5d}

In one embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein the compounds are compounds of formula Ie:

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein the compounds are compounds of formula If:

$$R_{6a}$$
 R_{6a}
 R_{6a}
 R_{6a}
 R_{5a}
 R_{5a}

In yet another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein the compounds are compounds of formula Ig:

$$\begin{array}{c} Y \\ X \\ X \\ R_{6a} \\ R_{6c} \\ R_{5c} \\ R_$$

In yet another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein the compounds are compounds of formula Ih:

$$\begin{array}{c} Y \\ X \\ R_{6a} \\ R_{6c} \\ O \end{array}$$

In yet another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein the compounds are compounds of formula Ij:

$$\begin{array}{c} Y \\ X \\ A \\ R_{6a} \\ R_{6c} \\ O \\ V \\ T \\ U \\ R_{5e} \\ R_{5d} \\ R_{5d} \\ \end{array}$$

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, R_{22} and R_{22a} are both hydrogen.

In yet another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein R_{6a}, R_{6b} and R_{6c} are all hydrogen.

In still yet another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein V is a bond, —CH $_2$ —, or O.

In one embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein V is a bond or O.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein V is a bond.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein U is O.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein V is a bond, — CH_2 — or O and U is O.

In one embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein V is a bond or O and U is O.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein V is a bond and U is O.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein $R_{4},\,R_{4a},\,R_{6a},\,R_{6b},\,R_{6c},\,R_{22}$ and $_{35}$ R_{22a} are all hydrogen, V is a bond and U is O.

In one embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

W is heteroaryl, which may be optionally substituted with one or more R_{20} 's,

-continued -ОН,

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

W is heteroaryl, which may be optionally substituted with one or more R_{20} 's,

$$\begin{array}{c} -\text{continued} \\ & \stackrel{\bigcirc}{ - ||} \\ - ||$$

In one embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

W is heteroaryl, which may be optionally substituted with one or more $R_{20}\mbox{'s},$

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

W is heteroaryl, which may be optionally substituted with one or more R_{20} 's,

In one embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

W is

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein A is a 5- to 6-membered aryl.

In another embodiment, the present invention provides $_{40}$ compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein A is a 6-membered aryl.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein A is phenyl.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein A is a 5- to 6-membered heteroaryl, wherein the heteroaryl contains 1-4 heteroatoms selected from N, O, and S.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein A is pyrazolyl, thiazolyl, tetrazolyl, thiophenyl or pyridinyl.

In another embodiment, the present invention provides 55 compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein A is pyrazolyl, tetrazolyl, thiophenyl or pyridinyl.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein A is pyrazolyl or thiazolyl.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein A is pyrazolyl.

In another embodiment, the present invention provides 65 compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

m is 1 or 2;

Q is $CR_{2a}R_2$, O, S, SO or SO_2 ;

T is a (C_1-C_5) -alkyl, which may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, CN, (C_3-C_{12}) -cycloalkyl or halo (C_1-C_6) -alkyl and wherein a carbon atom of the alkyl chain may be replaced with a heteroatom selected from N, O, and S;

U is a bond or O;

V is a bond, $-CH_2$, O, or a (C_3-C_6) -cycloalkyl;

Ring A is a 5- to 6-membered aryl or heteroaryl, wherein the aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, oxo, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl and halo (C₁-C₆)-alkyl and the heteroaryl contains 1-4 heteroatoms selected from N, O, and S;

X is a bond, (C_1-C_6) -alkyloxy, (C_3-C_6) -cycloalkyl, (C_3-C_6) -cycloalkyl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl, (C_{5-10}) -aryloxy, (C_{5-10}) -aryl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl-oxy- (C_1-C_6) -alkyl, (C_{5-10}) -aryl- (C_1-C_6) -alkyloxy or heteroaryl- (C_1-C_6) -alkyl, wherein the heteroaryl contains 4- to 10-members and 1-4 heteroatoms selected from N, O, and S and any alkyl, aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, C_1 , C_3-C_{12} -cycloalkyl, (C_3-C_{12}) -cycloalkyl)

30 Y is
$$-(CR_{22}R_{22a})_n - W;$$

35

50

W is heteroaryl, which may be optionally substituted with one or more R_{20} 's, heterocyclo, which may be optionally substituted with one or more R_{20} 's, $-N(R_{18})R_{19}$,

15

20

 R_2 is hydrogen, (C1-C6)-alkyl, (C3-C12)-cycloalkyl or halo (C_1-C_6) -alkyl;

 R_{2a} is hydrogen, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl or halo(C₁-C₆)-alkyl;

or R2 and R2a can optionally be linked to form a linking group containing 1-2 carbon atoms;

 R_3 is hydrogen, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl or halo (C₁-C₆)-alkyl;

or R₂ and R₃ can optionally be linked to form a linking group containing 1-2 carbon atoms to form a (C₃-C₄)-cycloalkyl ring, a halo(C₃-C₄)-cycloalkyl ring or an aryl ring;

R₄, at each occurrence, is independently hydrogen or (C₁-C₈)alkyl;

 R_{4a} , at each occurrence, is independently is hydrogen or (C1-C8)alkyl;

or R₄ and R_{4a} can optionally be linked to form a linking 45 group containing 1-2 carbon atoms;

 R_{5a} is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $\begin{array}{l} (C_3\text{-}C_6)\text{-cycloalkyl or halo}(C_1\text{-}C_6)\text{-alkyl;} \\ R_{5b} \text{ is hydrogen, halogen, } C_1\text{-}C_6 \text{ alkyl, } C_1\text{-}C_6 \text{ alkoxy, CN,} \\ \end{array}$

 (C_3-C_6) -cycloalkyl or halo (C_1-C_6) -alkyl;

 R_{5c} is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN,

 $\begin{array}{l} (C_3\text{-}C_6)\text{-cycloalkyl or halo}(C_1\text{-}C_6)\text{-alkyl}; \\ R_{5d} \text{ is hydrogen, halogen, } C_1\text{-}C_6 \text{ alkyl, } C_1\text{-}C_6 \text{ alkoxy, CN,} \end{array}$

 $\begin{array}{l} (C_3\text{-}C_6)\text{-cycloalkyl or halo}(C_1\text{-}C_6)\text{-alkyl}; \\ R_{5e} \text{ is hydrogen, halogen, } C_1\text{-}C_6 \text{ alkyl, } C_1\text{-}C_6 \text{ alkoxy, CN,} \end{array}$ 55 (C_3-C_6) -cycloalkyl or halo (C_1-C_6) -alkyl;

or two of R_{5a} , R_{5b} , R_{5c} , R_{5d} or R_{5e} may be taken together with the atoms to which both are attached form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{6a} is hydrogen, halogen or C_1 - C_6 alkyl; R_{6b} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{6c} is hydrogen, halogen or C_1 - C_6 alkyl;

n is 0-4;

 R_{16} is H or —CN;

R₁₈, at each occurrence, is independently (C₁-C₈)alkyl, $(C_3\text{-}C_{12})\text{-cycloalkyl},\ (C_1\text{-}C_8)\text{alkyl-}(C_3\text{-}C_{12})\text{-cycloalkyl-}(C_1\text{-}C_1)\text{-cycloalkyl-}(C_2\text{-}C_2)\text{-cy$ C_8)alkyl, $(C_{5-10}$ -aryl, (C_5-C_{10}) -aryl (C_1-C_8) alkyl, a heteroaryl, a heteroaryl(C_1 - C_8)alkyl or a heterocyclo, all of which may be optionally substituted with one or more R_{20} 's and wherein the heteroaryl and heterocyclo contain 4- to 10-members and contain 1-4 heteroatoms selected from N, O, and S:

 R_{19} , at each occurrence, is independently hydrogen, (C_1 - C_6)-alkyl, (C_3 - C_{12})-cycloalkyl, (C_{6-10})aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more R_{20} 's;

or R_{18} and R_{19} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S and be optionally substituted with one or more $R_{20}\mbox{'s};$

 R_{20} , at each occurrence, is selected from halo, —OH, (C_1 - C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_{12})$ -cycloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, —COOH, 20 $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_{12})$ -aryl, $-CO_5$ (C_1-C_6) -alkyl, $-CONR_{28}R_{29}$, $-NR_{28}R_{29}$, $-NR_{28}C$ (=O) $NR_{28}R_{29}$, $-NR_{28}C(=NR_{29})NR_{28}R_{29}$, $-SR_{28}$, -S(=O) $(=NR_{28})R_{29}, -S(-OH)R_{29}, -S(=O)R_{29}, -NR_{29}CO_2 \\ (C_1-C_6)-alkyl, -O(C=O)-(C_1-C_6)-alkyl, -O(C=O)$ (C_1-C_6) -alkylCOOH, $NR_{28}R_{29}$, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, _O_P(=O)(OH) $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, $(OH)(OR_{29}), (C_{6-10})aryl, (C_{6-10})aryl(C_1-C_6)-alkyl, (C_{6-10})$ aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with 35 one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, —CO (C_1-C_6) -alkyl, $--CO_2(C_1-C_6)$ -alkyl, $--CONR_{28}R_{29}$, $-O(C = O) - (C_1 - C_6)$ -alkyl, -O(C = O) 40 $-NR_{28}R_{29}$, $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, -O-P(=O)(OH) $(OH)(OR_{29})$, $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-mem- 45 bered heteroaryl, which contains 1-4 heteroatoms selected from N. O. and S. a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁- C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

 R_{22} , at each occurrence, is independently hydrogen, (C_1 - C_6)-alkyl, (C_3 - C_{12})-cycloalkyl, (C_{6-10})aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be 55 optionally substituted with one or more substituents selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, (C_3 - C_{12})-cycloalkyl and halo(C_1 - C_6)-alkyl;

 R_{22a} , at each occurrence, is independently hydrogen, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 -alkyl;

 R_{28} and R_{29} , at each occurrence, are independently hydrogen or (C₁-C₈)alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C2-C6)-alkynyl, (C1-C6)-alkyloxy, cyano, nitro, $C_1 = C_0 + C_0$ —СООН, alkylOH, alkylCONR₃₈R₃₉, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, $-O-P(=O)(OH)(OR_{39}), -O-CR_{38}R_{39}-P(=O)(OH)$ $(OR_{39}), -P(=O)(OH)(OR_{39}), -S(=O)_2OH, (C_{6-10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁-C₆)alkyl, and halo(C₁-C₆)alkyloxy;

or R_{28} and R_{29} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 $\rm R_{38}$ and $\rm R_{39},$ at each occurrence, are independently hydrogen or (C $_{1}$ -C $_{8}$)alkyl;

or R_{38} and R_{39} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

m is 1 or 2;

Q is $CR_{2a}R_2$, O, S, SO or SO_2 ;

T is (C_1-C_5) -alkyl or (C_2-C_6) -alkenyl, both of which may be optionally substituted with one or more substituents selected from hydrogen, 2 H, halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, CN, (C_3-C_{12}) -cycloalkyl or halo (C_1-C_6) -alkyl and wherein a carbon atom of the alkyl chain may be replaced with a heteroatom selected from N, O, and S;

U is a bond, NR_{7a} or O;

V is a bond, — CH_2 —, or O;

Ring A is a 5- to 6-membered aryl or heteroaryl, wherein the aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, oxo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 , $(C_3$ - C_{12})-cycloalkyl and halo $(C_1$ - C_6)-alkyl and the heteroaryl contains 1-4 heteroatoms selected from N, O, and S;

X is a bond, (C_1-C_6) -alkyloxy, (C_3-C_6) -cycloalkyl, (C_3-C_6) -cycloalkyl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl, (C_{5-10}) -aryloxy, (C_{5-10}) -aryl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl- (C_1-C_6) -alkyl, wherein the heteroaryl contains 4- to 10-members and 1-4 heteroatym selected from N, O, and S and any alkyl, aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, C_1-C_6 alkoxy, C_1-C_6 alkoxy, C_1-C_6 alkyl, C_1-C_6 alkoxy and halo (C_1-C_6) -alkyl;

Y is
$$-(CR_{22}R_{22a})_n - W$$
;

W is heteroaryl, which may be optionally substituted with $_{60}\,$ one or more R_{20} 's,

 R_{2a} is hydrogen, —OH, $(C_1$ - $C_6)$ -alkyl, $(C_3$ - $C_{12})$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

or R_2 and R_{2a} can optionally be linked to form a linking group containing 1-2 carbon atoms;

 R_3 is hydrogen, $(C_1\text{-}C_6)$ -alkyl or halo $(C_1\text{-}C_6)$ -alkyl;

or R_2 and R_3 can optionally be linked to form a linking group containing 1-5 carbon atoms to form a (C_3-C_7) -cycloalkyl ring, a halo (C_3-C_7) -cycloalkyl ring or an aryl ring;

 R_4 , at each occurrence, is independently hydrogen, —OH, halogen or $(C_1$ - C_8)alkyl;

 R_{4a} , at each occurrence, is independently is hydrogen, —OH, halogen or (C_1-C_8) alkyl;

or R_4 and $R_{4\alpha}$ can optionally be linked to form a linking group containing 1-3 carbon atoms;

 $\rm R_{5\it a}$ is hydrogen, halogen, $\rm C_1\text{-}C_6$ alkyl, CN, (C_3-C_6)-cy- $_{15}$ cloalkyl or halo(C_1-C_6)-alkyl;

 R_{5b} is hydrogen, halogen, C_1 - C_6 alkyl, CN, $(C_3$ - $C_6)$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

 R_{S_c} is hydrogen, halogen, C_1 - C_6 alkyl, CN, $(C_3$ - $C_6)$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

 R_{5d} is hydrogen, halogen, C_1 - C_6 alkyl, CN, $(C_3$ - $C_6)$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

 R_{5e} is hydrogen, halogen, C_1 - C_6 alkyl, CN, $(C_3$ - $C_6)$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

or two of R_{5a} , R_{5b} , R_{5c} , R_{5c} , R_{5c} are attached form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{6a} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{6b} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{6c} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{7a} is hydrogen or C_1 - C_6 alkyl;

n is 0-5;

 R_{16} is H or —CN;

 $R_{18},$ at each occurrence, is independently $(C_1\text{-}C_8)\text{alkyl},\ 35$ $(C_3\text{-}C_{12})\text{-cycloalkyl},\ (C_1\text{-}C_8)\text{alkyl-}(C_3\text{-}C_{12})\text{-cycloalkyl-}(C_1\text{-}C_8)\text{alkyl},\ (C_{5\text{-}10})\text{-aryl},\ (C_5\text{-}C_{10})\text{-aryl}(C_1\text{-}C_8)\text{alkyl},\ a\ \text{heteroaryl},\ a\ \text{heteroaryl},\ a\ \text{heteroaryl},\ a\ \text{heteroaryl},\ \text{all}\ \text{of}\ \text{which}\ \text{may}\ \text{be}\ \text{optionally}\ \text{substituted}\ \text{with}\ \text{one}\ \text{or}\ \text{more}\ R_{20}\text{'s}\ \text{and}\ \text{wherein}\ \text{the}\ \text{heteroaryl}\ \text{and}\ \text{heterocyclo}\ \text{contain}\ \text{4-}\ \text{to}\ \text{40}\ \text{10-members}\ \text{and}\ \text{contain}\ \text{1-4}\ \text{heteroatoms}\ \text{selected}\ \text{from}\ N,O,\ \text{and}\ \text{S}\ \text{:}$

 $R_{19},$ at each occurrence, is independently hydrogen, ($C_1\text{-}C_6)\text{-alkyl},~(C_3\text{-}C_{12})\text{-cycloalkyl},~(C_{6\text{-}10})\text{aryl}$ or a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms 45 selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more R_{20} 's;

or R_{18} and R_{19} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S and be optionally substituted with one or more R_{20} 's;

R₂₀, at each occurrence, is selected from halo, —OH, (C₁- C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_{12})$ -cycloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, —COOH, 55 $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_{12})$ -aryl, $-CO_2$ (C_1-C_6) -alkyl, $--CONR_{28}R_{29}$, $--NR_{28}R_{29}$, $--NR_{28}C$ (=-O) $NR_{28}R_{29}, \ -\!\!-\!\!NR_{28}C(=\!\!-\!\!NR_{29})NR_{28}R_{29}, \ -\!\!\!-\!\!SR_{28}, \ -\!\!\!-\!\!S(=\!\!\!-\!\!O)$ $(=NR_{28})R_{29}, -S(-OH)R_{29}, -S(=O)R_{29}, -S(=O)_2$ --NR₂₉CO₂(C₁-C₆)-alkyl, $-NR_{28}SO_{2}R_{19}$, 60 $-O(C=O)-(C_1-C_6)$ -alkyl, $-O(C=O)NR_{28}R_{29}$; $-(C_1-C_6)$ -alkyl, $-(C_1-C_6)$ -alkyl, -, — $(C_1$ - C_6)-alkylOH, — — $(C_1$ - C_6)-alkylCONR₂₈R₂₉, C₆)-alkylCOOH, $-(C_1-C_6)$ -alkyl (NH₂)COOH, $-O-P(=O)(OH)(OR_{29}),$ alkyl- $CO_2(C_1-C_6)$ -alkyl, —P(=O)(OH) 65 $-O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}),$ $(OR_{29}), \ \ (C_{6\text{-}10}) aryl, \ \ (C_{6\text{-}10}) aryl(C_{1}\text{-}C_{6})\text{-}alkyl, \ \ (C_{6\text{-}10}) ary\text{-}$ loxy, a 4- to 10-membered heteroaryl, which contains 1-4

heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, - (C_1-C_6) -alkyl, $--CO_2(C_1-C_6)$ -alkyl, $--CONR_{28}R_{29}$ $\begin{array}{l} -NR_{28}R_{29}, -N(R_{28})R_{29}R_{29}, -O(C=O)-(C_1-C_6)-alkyl, \\ -O(C=O)NR_{28}R_{29}; -(C_1-C_6)-alkylCOOH, -(C_1-C_6)-alk$ $-(C_1-C_6)$ -alkyl(NH₂)COOH, alkylOH, $-(C_1-C_6)$ alkylCONR₂₈R₂₉, $--(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, $-O-P(=O)(OH)(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)$ $(OR_{29}), -P(=O)(OH)(OR_{29}), -S(=O)_2OH, (C_{6-10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁-C₆)alkyl, and halo(C₁-C₆)alkyloxy;

 $R_{22},$ at each occurrence, is independently hydrogen, —OH, $(C_1\text{-}C_6)$ -alkyl, $(C_3\text{-}C_{12})$ -cycloalkyl, $(C_{6\text{-}10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more substituents selected from hydrogen, halogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, CN, $(C_3\text{-}C_{12})\text{-cycloalkyl}$ and halo $(C_1\text{-}C_6)\text{-alkyl};$

 R_{22a} , at each occurrence, is independently hydrogen, —OH, $(C_1\text{-}C_6)$ -alkyl, $(C_3\text{-}C_{12})$ -cycloalkyl, $(C_{6\text{-}10})$ aryl, a 4-to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more substituents selected from hydrogen, halogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, CN, $(C_3\text{-}C_{12})$ -cycloalkyl and halo $(C_1\text{-}C_6)$ -alkyl;

 R_{28} and R_{29} , at each occurrence, are independently hydrogen or (C₁-C₈)alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, -COOH, $--CO(C_1-C_6)$ -alkyl, $--CO_2(C_1-C_6)$ -alkyl, $-(C_1-C_6)$ -alkyl(NH₂)COOH, alkylOH. –(C₁-C₆)- $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, alkylCONR38R39, $-O-P(=O)(OH)(OR_{39}), -O-CR_{38}R_{39}-P(=O)(OH)$ $(OR_{39}), -P(=O)(OH)(OR_{39}), -S(=O)_2OH, (C_{6-10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

or R_{28} and R_{29} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or (C_1-C_8) alkyl;

or R_{38} and R_{39} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

m is 1 or 2;

Q is $CR_{2a}R_2$, O or S;

T is (C_1-C_5) -alkyl, which may be optionally substituted with one or more substituents selected from hydrogen, 2H , halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - $C_{12})$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl and wherein a carbon atom of the alkyl chain may be replaced with a heteroatom selected from N, O, and S:

U is a bond or O;

V is a bond or O;

Ring A is a 5- to 6-membered aryl or heteroaryl, wherein the aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, oxo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 , $(C_3$ - C_{12})-cycloalkyl and halo $(C_1$ - C_6)-alkyl and the heteroaryl contains 1-4 heteroatoms selected from N, O, and S;

X is a bond, (C₁-C₆)-alkyloxy, (C₃-C₆)-cycloalkyl, (C₃-C₆)-cycloalkyl-(C₁-C₆)-alkyl, (C₅₋₁₀)-aryl, (C₅₋₁₀)-aryloxy, (C₅₋₁₀)-aryl-(C₁-C₆)-alkyl or heteroaryl-(C₁-C₆)-alkyl, wherein the heteroaryl contains 4- to 10-members and 1-4 20 heteroatoms selected from N, O, and S and any alkyl, aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl, (C₃-C₁₂)-cycloalkyloxy and halo(C₁-C₆)-alkyl;

Y is
$$-(CR_{22}R_{22a})_n - W$$
;

W is heteroaryl, which may be optionally substituted with one or more R_{20} 's,

-continued N—R₁₈—OH, - R_{18} -- $N(R_{28})R_{29}R_{29}$, \dot{R}_{19} R₁₆

 $\rm R_2$ is hydrogen, OH, (C1-C6)-alkyl, (C3-C12)-cycloalkyl or halo(C1-C6)-alkyl;

 R_{2a} is hydrogen, —OH, (C_1 - C_6)-alkyl, (C_3 - C_{12})-cycloalkyl or halo(C_1 - C_6)-alkyl;

or R_2 and R_{2a} can optionally be linked to form a linking group containing 1-2 carbon atoms;

 R_3 is hydrogen or (C_1-C_6) -alkyl;

or R_2 and R_3 can optionally be linked to form a linking group containing 1-5 carbon atoms to form a (C_3-C_7) -cycloalkyl ring, a halo (C_3-C_7) -cycloalkyl ring or an aryl ring;

 R_4 , at each occurrence, is independently hydrogen, —OH, or $(C_1$ - $C_8)$ alkyl;

 R_{4a} , at each occurrence, is independently is hydrogen, —OH, or (C_1 - C_8)alkyl;

or R_4 and R_{4a} can optionally be linked to form a linking group containing 1-2 carbon atoms;

 R_{5a} is hydrogen, halogen, $C_1\text{-}C_6$ alkyl, $(C_3\text{-}C_6)\text{-cycloalkyl}$ or halo($C_1\text{-}C_6)\text{-alkyl};$

 $\rm R_{5\it b}$ is hydrogen, halogen, $\rm C_1$ - $\rm C_6$ alkyl, ($\rm C_3$ - $\rm C_6$)-cycloalkyl $\,$ 60 or halo($\rm C_1$ - $\rm C_6$)-alkyl;

 R_{5c} is hydrogen, halogen, C_1 - C_6 alkyl, $(C_3$ - $C_6)$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

 R_{5d} is hydrogen, halogen, C_1 - C_6 alkyl, $(C_3$ - $C_6)$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

 R_{5e} is hydrogen, halogen, $C_1\text{-}C_6$ alkyl, $(C_3\text{-}C_6)\text{-cycloalkyl}$ or halo($C_1\text{-}C_6)\text{-alkyl};$

or two of R_{5a} , R_{5b} , R_{5c} , R_{5c} , R_{5e} or R_{5e} may be taken together with the atoms to which both are attached form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{6a} is hydrogen or C_1 - C_6 alkyl; R_{6b} is hydrogen or C_1 - C_6 alkyl; R_{6c} is hydrogen or C_1 - C_6 alkyl; n is 0-3;

R₁₈, at each occurrence, is independently (C₁-C₈)alkyl, (C₃-C₁₂)-cycloalkyl, (C₅₋₁₀)-aryl, a heteroaryl, a heteroaryl (C₁-C₈)alkyl or a heterocyclo, all of which may be optionally substituted with one or more R₂₀'s and wherein the heteroaryl and heterocyclo contain 4- to 10-members and contain 1-4 heteroatoms selected from N, O, and S;

R₁₉, at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl, (C₆₋₁₀)aryl or a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more R₂₀'s;

or R_{18} and R_{19} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S and be optionally substituted with one or more R_{20} 's;

R₂₀, at each occurrence, is selected from halo, – -OH, (C₁- C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_{12})$ -cycloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, —COOH, $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_{12})$ -aryl, $-CO_2$ 30 (C_1-C_6) -alkyl, $-CONR_{28}R_{29}$, $-NR_{28}R_{29}$, $-NR_{28}C(=O)$ $-SR_{28}$, -S(=O) $NR_{28}R_{29}$, $--NR_{28}C(=NR_{29})NR_{28}R_{29}$, - $(=NR_{28})R_{29}, -S(=OH)R_{29}, -S(=O)R_{29}, -S(=O)R_{29}$ $-NR_{29}CO_2(C_1-C_6)$ -alkyl, --NR₂₈SO₂R₁₉, $\begin{array}{c} -\text{O(C=O)-(C_1-C_6)-alkyl, } -\text{O(C=O)NR}_{28}R_{29}; -\text{(C_1-C_6)-alkylCOOH, } -\text{(C_1-C_6)-alkylOH, } -\text{(C_1-C_6)-alkylCONR}_{28}R_{29}, -\text{(C_1-C_6)-alkylCONR}_{2$ alkyl-CO₂(C₁-C₆)-alkyl, $-O-P(=O)(OH)(OR_{20}).$ $-O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}),$ —P(==O)(OH) (OR_{29}) , (C_{6-10}) aryl, (C_{6-10}) aryl (C_1-C_6) -alkyl, (C_{6-10}) aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, —CO -CONR₂₈R₂₉, $-CO_2(C_1-C_6)$ -alkyl, (C_1-C_6) -alkyl, -NR₂₈R₂₉, $-O(C = O) - (C_1 - C_6)$ -alkyl, –O(C==O) $NR_{28}R_{29};$ —(C₁-C₆)-alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, —O—P(=O)(OH) $-(C_1-C_6)$ -alkyl $-CO_2(C_1-C_6)$ -alkyl, $(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}), -P(=O)$ $(OH)(OR_{29})$, $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁- C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

 R_{22} , at each occurrence, is independently hydrogen, (C_1 - C_6)-alkyl, (C_3 - C_{12})-cycloalkyl, (C_{6-10})aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, (C_3 - C_{12})-cycloalkyl and halo(C_1 - C_6)-alkyl;

 R_{22a} , at each occurrence, is independently hydrogen, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein 5 the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - $C_{12})$ -cycloalkyl and halo $(C_1$ - $C_6)$ -alkyl;

R₂₈ and R₂₉, at each occurrence, are independently hydrogen or (C₁-C₈)alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, 15 $--CO(C_1-C_6)$ -alkyl, $--CO_2(C_1-C_6)$ -alkyl, —COOH, $--(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ alkylCONR₃₈R₃₉, — (C_1-C_6) -alkyl- $CO_2(C_1-C_6)$ -alkyl, ²⁰ $-O-P(=O)(OH)(OR_{39}), -O-CR_{38}R_{39}-P(=O)(OH)$ 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

or R_{28} and R_{29} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S; 30

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or $(C_1 - C_8)$ alkyl;

or R_{38} and R_{39} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

m is 1 or 2;

Q is $CR_{2a}R_2$ or O;

T is (C_1-C_4) -alkyl, which may be optionally substituted with one or more substituents selected from hydrogen, 2H , halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, CN, (C_3-C_{12}) -cycloalkyl or halo (C_1-C_6) -alkyl;

U is a bond or O;

V is a bond or O;

Ring A is a 5- to 6-membered aryl or heteroaryl, wherein the aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, oxo, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, and halo(C₁-C₆)-alkyl and the heteroaryl contains 1-4 heteroatoms selected from N, O, and S:

X is a bond, (C_1-C_6) -alkyloxy, (C_3-C_6) -cycloalkyl, (C_3-C_6) -cycloalkyl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl, (C_{5-10}) -aryloxy or (C_{5-10}) -aryl- (C_1-C_6) -alkyl, wherein any alkyl and aryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, CN, (C_3-C_{12}) -cycloalkyl, (C_3-C_{12}) -cycloalkyloxy and halo (C_1-C_6) -alkyl;

Y is
$$-(CR_{22}R_{22a})_n - W;$$

W is heteroaryl, which may be optionally substituted with one or more R_{20} 's,

 R_2 is hydrogen, $(C_1$ - $C_6)$ -alkyl, $(C_3$ - $C_{12})$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

 $\rm R_{2a}$ is hydrogen, (C1-C6)-alkyl, (C3-C12)-cycloalkyl or halo(C1-C6)-alkyl;

 R_3 is hydrogen or (C_1-C_6) -alkyl;

or R_2 and R_3 can optionally be linked to form a linking group containing 1-5 carbon atoms to form a (C_3-C_7) -cycloalkyl ring, a halo (C_3-C_7) -cycloalkyl ring or an aryl ring;

 R_4 , at each occurrence, is independently hydrogen or (C_1 - C_8)alkyl;

 R_{4a} , at each occurrence, is independently is hydrogen or $(C_1$ - C_8)alkyl;

or R_4 and R_{4a} can optionally be linked to form a linking group containing 1-2 carbon atoms;

 \mathbf{R}_{5a} is hydrogen, halogen, $\mathbf{C}_1\text{-}\mathbf{C}_6$ alkyl or halo(C $_1\text{-}\mathbf{C}_6$)- 30 alkyl;

 \mathbf{R}_{5b} is hydrogen, halogen, $\mathbf{C}_1\text{-}\mathbf{C}_6$ alkyl or halo(C1-C6)-alkyl;

 R_{5c} is hydrogen, halogen, C_1 - C_6 alkyl or halo(C_1 - C_6)-alkyl:

 \mathbf{R}_{5d} is hydrogen, halogen, $\mathbf{C}_1\text{-}\mathbf{C}_6$ alkyl or halo($\mathbf{C}_1\text{-}\mathbf{C}_6$)-alkyl;

 \mathring{R}_{5e} is hydrogen, halogen, C_1 - C_6 alkyl or halo(C_1 - C_6)-alkyl;

or two of R_{Sa} , R_{Sb} , R_{Sc} , R_{Sd} or R_{Se} may be taken together 40 with the atoms to which both are attached form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{6a} is hydrogen or C_1 - C_6 alkyl;

 R_{6b} is hydrogen or C_1 - C_6 alkyl;

 R_{6c} is hydrogen or C_1 - C_6 alkyl;

n is 0-2;

 R_{18} , at each occurrence, is independently $(C_1$ - C_8)alkyl, $(C_3$ - C_{12})-cycloalkyl, (C_{5-10}) -aryl, a heteroaryl or a heteroaryl $(C_1$ - C_8)alkyl, all of which may be optionally substituted with 50 one or more R_{20} 's and wherein the heteroaryl contains 4- to 10-members and contains 1-4 heteroatoms selected from N, O, and S;

 R_{19} , at each occurrence, is independently hydrogen, (C_1 - C_6)-alkyl, (C_3 - C_{12})-cycloalkyl, (C_{6-10})aryl or a 4- to 55 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S;

or R_{18} and R_{19} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S $_{60}$ and be optionally substituted with one or more R_{20} 's;

 $(=NR_{28})R_{29}, -S(-OH)R_{29}, -S(=O)R_{29}, -NR_{29}CO_{29}$ (C_1-C_6) -alkyl, $-NR_{28}SO_2R_{19}$, $-O(C=O)-(C_1-C_6)$ -alkyl, $-O(C=O)NR_{28}R_{29}; -(C_1-C_6)-alkylCOOH, -(C_1-C_6)-alkylCOOH,$ alkylOH. $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6) -(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, alkylCONR₂₈R₂₉, $-O-P(=O)(OH)(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)$ C₆)-alkyl, (C₆₋₁₀)aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, $--CO(C_1-C_6)$ -alkyl, $-CO_2(C_1-C_6)$ -alkyl, $-\text{CONR}_{28}\text{R}_{29}, -\text{NR}_{28}\text{R}_{29}, -\text{O(C=O)}-(\text{C}_1\text{-C}_6)\text{-alkyl},$ $-O(C=O)NR_{28}R_{29}; -(C_1-C_6)-alkylCOOH, -(C_1-C_6)-alkylCOOH,$ 20 alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ alkylCONR₂₈R₂₉, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, $-O-P(=O)(OH)(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)$ $(OR_{29}), -P(=O)(OH)(OR_{29}), -S(=O)_2OH, (C_{6-10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

 $\rm R_{22},$ at each occurrence, is independently hydrogen, (C $_1$ -C $_6$)-alkyl, (C $_3$ -C $_{12}$)-cycloalkyl, (C $_{6-10}$)aryl, or a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; wherein the alkyl, cycloalkyl, aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C $_1$ -C $_6$ -alkyl, C $_1$ -C $_6$ -alkoxy, CN, (C $_3$ -C $_12$)-cycloalkyl and halo(C $_1$ -C $_6$ -alkyl;

 $\rm R_{22a}$, at each occurrence, is independently hydrogen, (C $_1$ -C $_6$)-alkyl, (C $_3$ -C $_{12}$)-cycloalkyl, (C $_{6-10}$)aryl, or a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; wherein the alkyl, cycloalkyl, aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C $_1$ -C $_6$ alkyl, C $_1$ -C $_6$ alkoxy, CN, (C $_3$ -C $_12$)-cycloalkyl and halo(C $_1$ -C $_6$ -alkyl;

R₂₈ and R₂₉, at each occurrence, are independently hydrogen or (C₁-C₈)alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C2-C6)-alkynyl, (C1-C6)-alkyloxy, cyano, nitro, $--CO(C_1-C_6)$ -alkyl, -COOH, $-CO_2(C_1-C_6)$ -alkyl, $-\text{CONR}_{38}\text{R}_{39}$, $-\text{NR}_{38}\text{R}_{39}$, $-\text{O(C=O)}-(\text{C}_1\text{-C}_6)$ -alkyl, $-O(C=O)NR_{38}R_{39}$; $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ - $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ alkylOH, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, alkylCONR₃₈R₃₉, $-O-P(=O)(OH)(OR_{39}), -O-CR_{38}R_{39}-P(=O)(OH)$ $(OR_{39}), -P(=O)(OH)(OR_{39}), -S(=O)_2OH, (C_{6-10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

or R_{28} and R_{29} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or (C_1-C_8) alkyl;

or R_{38} and R_{39} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

m is 1 or 2;

Q is CHR₂ or O;

T is (C₁-C₄)-alkyl, which may be optionally substituted with one or more substituents selected from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, (C₃-C₁₂)-cycloalkyl or halo (C_1-C_6) -alkyl;

U is O;

V is a bond;

Ring A is a 5- to 6-membered aryl or heteroaryl, wherein the aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, oxo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, and halo(C_1 - C_6)-alkyl and the heteroaryl contains 1-4 heteroatoms selected from N, O, and S;

X is a bond, $(C_3\text{-}C_6)\text{-cycloalkyl},$ $(C_{5\text{-}10})\text{-aryl},$ $(C_{5\text{-}10})\text{-aryl-loxy}$ or $(C_{5\text{-}10})\text{-aryl-}(C_1\text{-}C_6)\text{-alkyl},$ wherein any aryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C1-C6 alkyl, C1-C6 alkoxy, CN, (C3- C_{12})-cycloalkyl, (C_3-C_{12}) -cycloalkyloxy and halo (C_1-C_6) -

Y is
$$-(CR_{22}R_{22})_n - W$$
;

W is heteroaryl, which may be optionally substituted with one or more R₂₀'s,

 OR_{29}

 R_2 is hydrogen, (C_1-C_6) -alkyl or halo (C_1-C_6) -alkyl;

 R_3 is hydrogen or (C_1-C_6) -alkyl;

or R₂ and R₃ can optionally be linked to form a linking group containing 1-3 carbon atoms to form a (C₃-C₅)-cycloalkyl ring, a halo(C₃-C₅)-cycloalkyl ring or an aryl ring;

 R_4 and R_{4a} are hydrogen;

 R_{5a} is hydrogen, halogen, C_1 - C_6 alkyl or halo $(C_1$ - $C_6)$ -

 R_{5b} is hydrogen, halogen, C_1 - C_6 alkyl or halo $(C_1$ - $C_6)$ alkyl:

 R_{5c} is hydrogen, halogen, C_1 - C_6 alkyl or halo $(C_1$ - $C_6)$ alkyl;

 \dot{R}_{5d} is hydrogen, halogen, C_1 - C_6 alkyl or halo(C_1 - C_6)alkyl;

 R_{5e} is hydrogen, halogen, C_1 - C_6 alkyl or halo $(C_1$ - $C_6)$ alkyl;

 R_{6a} , R_{6b} and R_{6c} are hydrogen;

n is 0-2;

R₁₈, at each occurrence, is independently (C₁-C₈)alkyl, (C_3-C_{12}) -cycloalkyl, (C_{5-10}) -aryl or a heteroaryl, all of which may be optionally substituted with one or more R₂₀'s and wherein the heteroaryl contains 4- to 10-members and con-55 tains 1-4 heteroatoms selected from N, O, and S;

R₁₉, at each occurrence, is independently hydrogen, (C₁- C_6)-alkyl, (C_3-C_{12}) -cycloalkyl or (C_{6-10}) aryl;

or R_{18} and R_{19} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may 60 optionally contain 1-4 heteroatoms selected from N, O, and S and be optionally substituted with one or more R₂₀'s;

 R_{20} , at each occurrence, is selected from halo, —OH, (C_1 - C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_{12})$ -cycloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, —COOH, $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_{12})$ -aryl, $-CO_2$

 (C_1-C_6) -alkyl, $-CONR_{28}R_{29}$, $-NR_{28}R_{29}$, $-NR_{28}C$ $NR_{28}R_{29}$, $-NR_{28}C(=NR_{29})NR_{28}R_{29}$, $-SR_{28}$, -S(=O) (C_1-C_6) -alkyl, -O(C=O)- (C_1-C_6) -alkyl, -O(C=O) $NR_{28}R_{29}$; — (C_1-C_6) -alkylCOOH, — (C_1-C_6) -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $--(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, -O-P(=O)(OH) $(OH)(OR_{29}), (C_{6-10})aryl, (C_{6-10})aryl(C_1-C_6)-alkyl, (C_{6-10})$ aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, —CO (C_1-C_6) -alkyl, $-CO_2(C_1-C_6)$ -alkyl, $-CONR_{28}R_{29}$ $-NR_{28}R_{29}$, $-O(C=O)-(C_1-C_6)$ -alkyl, -O(C=O) $NR_{28}R_{29}$; $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, 20 $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, -O-P(=O)(OH) $(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}), -P(=O)$ $(OH)(OR_{29})$, $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which 25 contains 1-4 heteroatoms selected from N, O, and S; halo(C₁- C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

 R_{22} , at each occurrence, is independently hydrogen, (C_1 - C_6)-alkyl, (C_3 - C_{12})-cycloalkyl, (C_{6-10})aryl, or a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms 30 selected from N, O, and S;

 R_{22a} , at each occurrence, is independently hydrogen, (C_1 - C_6)-alkyl, (C_3 - C_{12})-cycloalkyl, (C_{6-10})aryl, or a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S;

R₂₈ and R₂₉, at each occurrence, are independently hydrogen or (C₁-C₈)alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, 40 —COOH, $-CO(C_1-C_6)$ -alkyl, $-CO_2(C_1-C_6)$ -alkyl, alkylCONR38R39, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, 45 $-O-P(=O)(OH)(OR_{39}), -O-CR_{38}R_{39}-P(=O)(OH)$ $(OR_{39}), -P(=O)(OH)(OR_{39}), -S(=O)_2OH, (C_{6-10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, 50 and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

or R_{28} and R_{29} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{38} and R_{39} , at each occurrence, are independently hydro- 55 gen or (C_1-C_8) alkyl;

or R_{38} and R_{39} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S.

In another embodiment, the present invention provides 60 compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

m is 1 or 2;

Q is CHR₂;

T is a (C_1-C_4) -alkyl;

U is O;

V is a bond;

Ring A is a 5- to 6-membered aryl or heteroaryl, wherein the heteroaryl contains 1-4 heteroatoms selected from N, O, and S:

X is a bond, (C_3-C_6) -cycloalkyl, (C_{5-10}) -aryl, or (C_{5-10}) -aryl- (C_1-C_6) -alkyl, wherein any aryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, (C_3-C_{12}) -cycloalkyl, (C_3-C_{12}) -cycloalkyl, (C_3-C_{12}) -cycloalkyloxy and halo (C_1-C_6) -alkyl;

Y is $-(CR_{22}R_{22a})_n - W$,

W is

-continued
$$\begin{array}{c} -c \\ O \\ -C \\ -N \\ -R_{18} \\ -N(R_{28})R_{29}R_{29}, \\ R_{19} \\ -C \\ -N \\ -R_{18} \\ -N(R_{28})R_{29}R_{29}, \text{ or } -O \\ -R_{18} \\ -S \\ -OH; \\ O \\ \end{array}$$

R₂ and R₃ are hydrogen;

or R_2 and R_3 can optionally be linked to form a linking group containing 1-3 carbon atoms to form a (C_3-C_5) -cycloalkyl ring, a halo (C_3-C_5) -cycloalkyl ring or an aryl ring; 15

 R_4 and R_{4a} are hydrogen;

 R_{5a} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{5b} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{5c} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{5d} is hydrogen, halogen or C_1 - C_6 alkyl;

R_{5e} is hydrogen, halogen or C₁-C₆ alkyl;

 R_{6a} , R_{6b} and R_{6c} are hydrogen;

n is 0-2;

 R_{18} , at each occurrence, is independently $(C_1$ - $C_8)$ alkyl, $(C_3$ - $C_{12})$ -cycloalkyl or (C_{5-10}) -aryl, all of which may be 25 optionally substituted with one or more R_{20} 's;

 R_{19} , at each occurrence, is independently hydrogen, (C_1 - C_6)-alkyl or (C_3 - C_{12})-cycloalkyl;

R₂₀, at each occurrence, is selected from halo, —OH, (C₁- C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_{12})$ -cy- 30 cloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, —COOH, $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_{12})$ -aryl, $-CO_2$ (C_1-C_6) -alkyl, $-CONR_{28}R_{29}$, $-NR_{28}R_{29}$, $-NR_{28}C(=O)$ $NR_{28}R_{29}$; — (C_1-C_6) -alkylCOOH, — (C_1-C_6) -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $--(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, --O-P(=O)(OH) $(OR_{29}), -O-CR_{28}R_{29}-P(-O)(OH)(OR_{29}), -P(-O)$ 40 $(OH)(OR_{29}), (C_{6-10})$ aryl, (C_{6-10}) aryl (C_1-C_6) -alkyl, (C_{6-10}) aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, het- 45 eroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, —CO (C_1-C_6) -alkyl, $--CO_2(C_1-C_6)$ -alkyl, $-CONR_{28}R_{29}$, 50 $-NR_{28}R_{29}$, $-O(C=O)-(C_1-C_6)$ -alkyl, —O(C<u></u>=O) $NR_{28}R_{29}$; $--(C_1-C_6)$ -alkylCOOH, $--(C_1-C_6)$ -alkylOH, $-(C_1-C_6)-alkyl(NH_2)COOH, --(C_1-C_6)-alkylCONR_{28}R_{29},$ $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, —O—P(=O)(OH) $(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}), -P(=O)$ 55 $(OH)(OR_{29})$, $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁-C₆)alkyl, and halo(C₁-C₆)alkyloxy;

 R_{22} , at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl or (C₆₋₁₀)aryl;

 R_{22a} , at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl or (C₆₋₁₀)aryl;

 R_{28} and R_{29} , at each occurrence, are independently hydrogen or $(C_1$ - C_8)alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the

group consisting of: halo, —OH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, $--CO(C_1-C_6)$ -alkyl, $-CO_2(C_1-C_6)$ -alkyl, $-CONR_{38}R_{39}$, $-NR_{38}R_{39}$, $-O(C=O)-(C_1-C_6)$ -alkyl, $-O(C=O)NR_{38}R_{39}$; $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ alkyl $CONR_{38}R_{39}$, $--(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy; and

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or $(C_1\text{-}C_8)$ alkyl.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

m is 1 or 2;

20

Q is CHR₂;

T is a (C_1-C_4) -alkyl;

U is O;

V is a bond;

A is a 5- to 6-membered aryl or heteroaryl, wherein the heteroaryl contains 1-4 heteroatoms selected from N, O, and S:

X is a bond, (C₅₋₁₀)-aryl, or (C₅₋₁₀)-aryl-(C₁-C₆)-alkyl, wherein any aryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl, (C₃-C₁₂)-cycloalkyloxy and halo(C₁-C₆)-alkyl;

Y is
$$-(CR_{22}R_{22a})_n - W;$$

W is

R₂ and R₃ are hydrogen;

or R_2 and R_3 can optionally be linked to form a linking ²⁵ group containing 1-3 carbon atoms to form a (C_3-C_5) -cycloalkyl ring, a halo (C_3-C_5) -cycloalkyl ring or an aryl ring;

R₄ and R_{4a} are hydrogen;

R_{5a} is hydrogen, halogen or C₁-C₆ alkyl;

 R_{5h} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{5c} is hydrogen, halogen or C_1 - C_6 alkyl;

R_{5d} is hydrogen, halogen or C₁-C₆ alkyl;

 R_{5e} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{6a} , R_{6b} and R_{6c} are hydrogen;

n is 0-2

 R_{18} , at each occurrence, is independently (C_1 - C_8)alkyl or (C_3 - C_{12})-cycloalkyl, both of which may be optionally substituted with one or more R_{20} 's;

 R_{19} , at each occurrence, is independently hydrogen or (C_1 - $_{40}$ pyridinyl; C_6)-alkyl; X is a be

R₂₀, at each occurrence, is selected from halo, —OH, (C₁- C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_{12})$ -cycloalkyl, (C1-C6)-alkyloxy, cyano, oxo, nitro, —COOH, $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_{12})$ -aryl, $-CO_2$ 45 (C_1-C_6) -alkyl, $-CONR_{28}R_{29}$, $-NR_{28}R_{29}$, $-NR_{28}C$ $NR_{28}R_{29}$, $-NR_{28}C(=NR_{29})NR_{28}R_{29}$, $-SR_{28}$, -S(=O) $(=NR_{28})R_{29}, -S(-OH)R_{29}, -S(=O)R_{29}, -NR_{29}CO_2$ (C_1-C_6) -alkyl, -O(C=O)- (C_1-C_6) -alkyl, -O(C=O) $NR_{28}R_{29}$; $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, 50 $-(C_1-C_6)$ -alkyl $(NH_2)COOH$, $--(C_1-C_6)$ -alkyl $CONR_{28}R_{29}$, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, -O-P(=O)(OH) $(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}), -P(=O)$ $(OH)(OR_{29}), (C_{6-10})aryl, (C_{6-10})aryl(C_1-C_6)-alkyl, (C_{6-10})$ aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 55 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting 60 of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, $-\text{CO}_2(\text{C}_1\text{-C}_6)\text{-alkyl}, \quad -\text{CONR}_{28}\text{R}_{29}, \\ -\text{O(C=O)}-(\text{C}_1\text{-C}_6)\text{-alkyl}, \quad -\text{O(C=O)}$ (C_1-C_6) -alkyl, $-NR_{28}R_{29}$, $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, 65 $NR_{28}R_{29};$ $-(C_1-C_6)-alkyl(NH_2)COOH, --(C_1-C_6)-alkylCONR_{28}R_{29},$ $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, --O--P(=-O)(OH)

(OR $_{29}$), —O—CR $_{28}$ R $_{29}$ —P(—O)(OH)(OR $_{29}$), —P(—O) (OH)(OR $_{29}$), —S(—O) $_2$ OH, (C $_{6-10}$)aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C $_1$ -C $_6$)alkyl, and halo(C $_1$ -C $_6$)alkyloxy;

 $\rm R_{22},$ at each occurrence, is independently hydrogen, (C1-C6)-alkyl or (C6-10)aryl;

 $R_{22a},$ at each occurrence, is independently hydrogen, (C $_1$ - 10 $\,$ C $_6)$ -alkyl or (C $_{6\text{-}10})$ aryl;

R₂₈ and R₂₉, at each occurrence, are independently hydrogen or (C₁-C₈)alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, $-CO(C_1-C_6)$ -alkyl, -COOH, $-CO_2(C_1-C_6)$ -alkyl, $-\text{CONR}_{38}\text{R}_{39}, -\text{NR}_{38}\text{R}_{39}, -\text{O}(\text{C=O})-(\text{C}_1\text{-C}_6)\text{-alkyl}, \\ -\text{O}(\text{C=O})\text{NR}_{38}\text{R}_{39}; -(\text{C}_1\text{-C}_6)\text{-alkylCOOH}, -(\text{C}_1\text{-C}_6)\text{-alkylCOOH},$ $-(C_1-C_6)$ -alkyl(NH₂)COOH, 20 alkylCONR₃₈R₃₉, $--(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, $-O-P(=O)(OH)(OR_{39}), -O-CR_{38}R_{39}-P(=O)(OH)$ $(OR_{39}), -P(=O)(OH)(OR_{39}), -S(=O)_2OH, (C_{6-10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy; and

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or $(C_1\text{-}C_8)$ alkyl.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

m is 1 or 2;

Q is CHR₂;

T is a (C_1-C_4) -alkyl;

U is O;

V is a bond;

Ring A is phenyl, pyrazolyl, tetrazolyl, thiophenyl or pyridinyl;

X is a bond or (C_{5-10}) -aryl- $(C_1$ - $C_6)$ -alkyl, wherein the aryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - $C_{12})$ -cycloalkyl, $(C_3$ - $C_{12})$ -cycloalkyloxy and halo $(C_1$ - $C_6)$ -alkyl;

Y is
$$-(CR_{22}R_{22a})_n$$
—W;
W is

 R_2 , R_3 , R_4 and R_{4a} are hydrogen; R_{5a} is hydrogen, Cl, F or methyl; R_{5b} is hydrogen, Cl, F or methyl; R_{5c} is hydrogen, Cl, F or methyl; R_{5d} is hydrogen, Cl, F or methyl; R_{5e} is hydrogen, Cl, F or methyl; R_{6a} , R_{6b} and R_{6c} are hydrogen; R_{6a} is 0-2;

 R_{18} , at each occurrence, is independently (C_1 - C_8)alkyl, 45 which may be optionally substituted with one or more R_{20} 's; R_{19} , at each occurrence, is independently hydrogen or (C_1 - C_6)-alkyl;

 R_{20} , at each occurrence, is selected from halo, —OH, (C_1 - C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_{12})$ -cy- 50 cloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, —COOH, $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_{12})$ -aryl, $-CO_2$ $\begin{array}{l} (C_1\text{-}C_6)\text{-alkyl}, -\text{CONR}_{28}R_{29}, -\text{NR}_{28}R_{29}, -\text{NR}_{28}C(=0) \\ \text{NR}_{28}R_{29}, -\text{NR}_{28}C(=NR_{29})\text{NR}_{28}R_{29}, -\text{SR}_{28}, -\text{S}(=0) \\ (=\text{NR}_{28})R_{29}, -\text{S}(-\text{OH})R_{29}, -\text{S}(=\text{O})R_{29}, -\text{NR}_{29}CO_2 \\ (C_1\text{-}C_6)\text{-alkyl}, -\text{O}(C=\text{O}) - (C_1\text{-}C_6)\text{-alkyl}, -\text{O}(C=\text{O}) \\ \end{array}$ $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, -O-P(=O)(OH) $(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}), -P(O)(OH)$ 60 $(OR_{29}), (C_{6-10})$ aryl, (C_{6-10}) aryl (C_1-C_6) -alkyl, (C_{6-10}) aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, het- 65 eroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting

of: halo, —OH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, —CO (C_1-C_6) -alkyl, $--CO_2(C_1-C_6)$ -alkyl, $--CONR_{28}R_{29}$, $-NR_{28}R_{29},$ $-O(C=O)-(C_1-C_6)$ -alkyl, -O(C=O) $NR_{28}R_{29}$; $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $-(C_1-C_6)$ -alkyl $-CO_2(C_1-C_6)$ -alkyl, -O-P(=O)(OH) $(OH)(OR_{29})$, $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁- C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

 $_{5}$ R_{22} , at each occurrence, is independently hydrogen or (C₁-C₆)-alkyl;

 R_{22a} , at each occurrence, is independently hydrogen or $(C_1\text{-}C_6)$ -alkyl;

R₂₈ and R₂₉, at each occurrence, are independently hydrogen or (C₁-C₈)alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, $--CO(C_1-C_6)$ -alkyl, $--CO_2(C_1-C_6)$ -alkyl, -COOH, $-\text{CONR}_{38}\text{R}_{39}$, $-\text{NR}_{38}\text{R}_{39}$, -O(C=O) $-\text{(C}_1$ -C₆)-alkyl, $-\text{O(C=O)NR}_{38}\text{R}_{39}$; $-\text{(C}_1$ -C₆)-alkylCOOH, $-\text{(C}_1$ -C₆) $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ alkylOH, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, alkylCONR₃₈R₃₉, $-\dot{O}-P(=O)(OH)(OR_{39}), -O-CR_{38}R_{39}-P(=O)(OH)$ $(OR_{39}), -P(=O)(OH)(OR_{39}), -S(=O)_2OH, (C_{6-10})$ aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy; and

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or $(C_1 - C_8)$ alkyl.

In another embodiment, the present invention provides compounds, enantiomers, diastereomers, tautomers, prodrugs or salts thereof, wherein:

m is 1; Q is CHR_2 ; T is a (C_1-C_4) -alkyl; U is O; V is a bond;

Ring A is phenyl, pyrazolyl, tetrazolyl, thiophenyl or pyridinyl:

X is a bond or phenyl- $(C_1$ - C_6)-alkyl, wherein the phenyl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN and halo(C_1 - C_6)-alkyl;

Y is $-(CR_{22}R_{22a})_n$ —W; W is

 R_2 , R_3 , R_4 and R_{4a} are hydrogen; R_{5a} is hydrogen, Cl, F or methyl; R_{5b} is hydrogen, Cl, F or methyl; R_{5c} is hydrogen, Cl, F or methyl; R_{5d} is hydrogen, Cl, F or methyl; R_{5e} is hydrogen, Cl, F or methyl; R_{5e} is hydrogen, Cl, F or methyl; R_{6a} , R_{6b} and R_{6c} are hydrogen; n is 0 or 1;

 R_{18} , at each occurrence, is independently (C_1 - C_6)alkyl, 45 which may be optionally substituted with one or more R_{20} 's; R_{19} , at each occurrence, is independently hydrogen or (C_1 - C_6)-alkyl;

 R_{20} , at each occurrence, is selected from halo, —OH, (C_1 - C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_{12})$ -cy- 50 cloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, —COOH, $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_{12})$ -aryl, $-CO_2$ $\begin{array}{l} (C_1\text{-}C_6)\text{-alkyl}, -\text{CONR}_{28}R_{29}, -\text{NR}_{28}R_{29}, -\text{NR}_{28}C(=0) \\ \text{NR}_{28}R_{29}, -\text{NR}_{28}C(=NR_{29})\text{NR}_{28}R_{29}, -\text{SR}_{28}, -\text{S}(=0) \\ (=\text{NR}_{28})R_{29}, -\text{S}(-\text{OH})R_{29}, -\text{S}(=\text{O})R_{29}, -\text{NR}_{29}CO_2 \\ (C_1\text{-}C_6)\text{-alkyl}, -\text{O}(C=\text{O}) - (C_1\text{-}C_6)\text{-alkyl}, -\text{O}(C=\text{O}) \\ \end{array}$ $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, —O—P(==O)(OH) $(OR_{29}), -O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}), -P(=O)$ 60 $(OH)(OR_{29}), (C_{6-10})$ aryl, (C_{6-10}) aryl (C_1-C_6) -alkyl, (C_{6-10}) aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting

of: halo, —OH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)alkynyl, (C_1 - C_6)-alkyloxy, cyano, nitro, —COOH, —CO (C_1-C_6) -alkyl, $--CO_2(C_1-C_6)$ -alkyl, -CONR₂₈R₂₉, $-NR_{28}R_{29}$ $-O(C=O)-(C_1-C_6)$ -alkyl, -O(C=O) $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $-(C_1-C_6)$ -alkyl $-CO_2(C_1-C_6)$ -alkyl, -O-P(=O)(OH) $\begin{array}{lll} (OR_{29}), & -O-CR_{28}R_{29}-P(=\!\!=\!\!O)(OH)(OR_{29}), & -P(=\!\!=\!\!O) \\ (OH)(OR_{29}), & -S(=\!\!=\!\!O)_2OH, \ (C_{6\text{-}10})aryl, \ a \ 4\text{- to } 10\text{-mem-} \end{array}$ bered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁- C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

 R_{22} and R_{22a} are hydrogen; and

 $\rm R_{28}$ and $\rm R_{29},$ at each occurrence, are independently hydrogen or (C $_{\rm 1}\text{-}\rm C_{\rm 6})$ alkyl.

The terms "Formula I", "Formula Ia", "Formula Ib", "Formula Ic", "Formula Id", "Formula Ie", "Formula If", "Formula Ig", "Formula Ij" and all embodiments thereof shall include enantiomers, diastereomers, prodrugs, solvates and salts thereof (particularly enantiomers, diastereomers and pharmaceutically acceptable salts thereof).

In another embodiment, the present invention provides a compound of Formula I, or an enantiomer, a diastereomer, or 25 a pharmaceutically acceptable salt thereof, wherein the compound is selected from one of the examples, preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 40 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B.

In another embodiment, the present invention provides a pharmaceutical composition comprised of a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, or an enantiomer, a diastereomer, or a pharmaceutically acceptable salt thereof, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, $177,\, 179,\, 182,\, 222,\, 231,\, 238,\, 240,\, 242,\, 244,\, 248,\, 249,\, 250,\,$ 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916. 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B, and a pharmaceutically acceptable carrier.

In another embodiment, the present invention provides a pharmaceutical composition comprised of a therapeutically

effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, or an enantiomer, a diastereomer, or a pharmaceutically acceptable salt thereof, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 5 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 10 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916. 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B, and 20 one or more other therapeutically active agents.

In another embodiment, the present invention relates to a pharmaceutical composition, wherein the selected composition is made by combining (a) a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected 25 from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 30 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more 35 preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most 40 preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B (using any of the compound embodiments listed above), and (b) a dipeptidyl peptidase-IV (DPP4) inhibitor (for example, a member selected from saxagliptin, sitagliptin, vildagliptin and 45 alogliptin).

In another embodiment, the present invention relates to a pharmaceutical composition, wherein the selected composition is made by combining (a) a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected 50 from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more 60 preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most 65 preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B (using any of

the compound embodiments listed above), and (b) a dipeptidyl peptidase-IV (DPP4) inhibitor, wherein the DPP4 inhibitor is saxagliptin.

In another embodiment, the present invention relates to a pharmaceutical composition, wherein the selected composition is made by combining (a) a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B (using any of the compound embodiments listed above), and (b) an SGLT2 inhibitor (for example, a member selected from 3-(benzo[b] furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone-2'-O-(6-O-methoxycarbonyl)-β-d-glucopyranoside, phlorizin, TS-033, dapagliflozin, sergiflozin, AVE 2268, and canagli-

In another embodiment, the present invention relates to a pharmaceutical composition, wherein the selected composition is made by combining (a) a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most $preferably, Examples \, 83, 138A, 250, 350, 566, 574, 577, 581,\\$ 592, 662, 698, 891, 914, 916, 924A and 924B (using any of the compound embodiments listed above), and (b) an SGLT2 inhibitor wherein the SGLT2 inhibitor is dapagliflozin.

In one embodiment, the present invention relates to meth-273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 55 ods of modulating the activity of the TGR5 G protein-coupled receptor comprising administering to a mammalian patient, for example, a human patient, in need thereof a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702,

703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 5 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B, alone, or optionally, in combination with another compound of the present invention 10 and/or at least one other type of therapeutic agent.

In one embodiment, the present invention relates to a method for preventing, modulating, or treating the progression or onset of diseases or disorders associated with the modulation of the TGR5 G protein-coupled receptor com- 15 prising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, more prefer- 20 ably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 25 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 30 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

Examples of diseases or disorders associated with the 40 modulation of the TGR5 G protein-coupled receptor that can be prevented, modulated, or treated according to the present invention include, but are not limited to, diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed 45 wound healing, atherosclerosis and its sequelae, abnormal heart function, myocardial ischemia, stroke, Metabolic Syndrome, hypertension, obesity, dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, infection, cancer, vascular rest- 50 enosis and pancreatitis.

In another embodiment, the present invention relates to a method for preventing, modulating, or treating the progression or onset of diabetes, hyperglycemia, obesity, dyslipidemia, and hypertension comprising administering to a mam- 55 malian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 60 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 65 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703,

719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

In another embodiment, the present invention relates to a method for preventing, modulating, or treating the progression or onset of diabetes, comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, and 924B, most preferably, Examples 83, 138A, 250, 350, 35 698, 891, 914, 916, 924A and 924B, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

In yet another embodiment, the present invention relates to a method for preventing, modulating, or treating the progression or onset of hyperglycemia comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

In still yet another embodiment, the present invention relates to a method for preventing, modulating, or treating the progression or onset of obesity comprising administering to a mammalian patient, for example, a human patient, in need of

prevention, modulation, or treatment a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 5 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 10 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 15 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B, alone, or, optionally, in 20 combination with another compound of the present invention and/or at least one other type of therapeutic agent.

In one embodiment, the present invention relates to a method for preventing, modulating, or treating the progression or onset of dyslipidemia comprising administering to a 25 mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, more preferably, Examples 29, 32, 32G, 43, 69B, 30 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 35 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916. 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 40 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 45 698, 891, 914, 916, 924A and 924B, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

In another embodiment, the present invention relates to a method for preventing, modulating, or treating the progres- 50 sion or onset of hypertension comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the 55 If, Ig, Ih, Ij and salts thereof, may exist in their tautomeric examples, more preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 60 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, 65 Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250,

350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably. Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

56

For each of the embodiments described in this application, further and more particular values of the terms used in each of the embodiments may be selected from the following definitions; these values may be used individually in any of the embodiments or in any combination. It is noted that for any occurrences of "=O", these may be used with suitable accommodation in the bond structure at that site as will be appreciated by those skilled in the art.

The invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. This invention also encompasses all combinations of alternative aspects of the invention noted herein. It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment to describe additional embodiments of the present invention. Furthermore, any elements of an embodiment may be combined with any and all other elements from any of the embodiments to describe additional embodiments.

DEFINITIONS

The compounds herein described may have asymmetric centers. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated.

One enantiomer of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij may display superior activity compared with the other. Thus, all of the stereochemistries are considered to be a part of the present invention. When required, separation of the racemic material can be achieved by high performance liquid chromatography (HPLC) using a chiral column or by a resolution using a resolving agent such as camphonic chloride as in Young, S. D. et al., Antimicrobial Agents and Chemotherapy, 2602-2605 (1995).

To the extent that compounds of Formula I, Ia, Ib, Ic, Id, Ie, form, all such tautomeric forms are contemplated herein as part of the present invention.

The term "substituted," as used herein, means that any one or more hydrogens on the designated atom or ring is replaced with a selection from the indicated group, provided that the designated atom's or ring atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =O), then 2 hydrogens on the atom are replaced.

When any variable (e.g., R₂₀) occurs more than one time in any constituent or formula for a compound, its definition at each occurrence is independent of its definition at every other

occurrence. Thus, for example, if a group is shown to be substituted with one or more R₂₀, then said group may optionally be substituted with more than on R₂₀ groups and R₂₀ at each occurrence is selected independently from the definition of R₂₀. Also, combinations of substituents and/or variables 5 are permissible only if such combinations result in stable compounds.

When a bond to a substituent is shown to cross a bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a substituent is listed 10 without indicating the atom via which such substituent is bonded to the rest of the compound of a given formula, then such substituent may be bonded via any atom in such substituent. Combinations of substituents and/or variables are permissible only if such combinations result in stable com- 15 pounds.

Unless otherwise indicated, the term "alkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups containing 1 to 20 carbons, preferably 1 chain, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethyl-pentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like as well as such groups may optionally include 1 to 4 substituents 25 such as halo, for example F, Br, Cl, or I, or CF₃, alkyl, alkoxy, aryl, aryloxy, aryl(aryl) or diaryl, arylalkyl, arylalkyloxy, alkenyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyloxy, amino, hydroxy, hydroxyalkyl, acyl, heteroaryl, heteroaryloxy, heteroarylalkyl, heteroarylalkoxy, aryloxyalkyl, alkylthio, ary- 30 lalkylthio, aryloxyaryl, alkylamido, alkanoylamino, arylcarbonylamino, nitro, cyano, thiol, haloalkyl, trihaloalkyl, and/ or alkylthio.

Unless otherwise indicated, the term "alkenyl" as used herein by itself or as part of another group refers to straight or 35 branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons, and more preferably 2 to 8 carbons in the normal chain, which include one to six double bonds in the normal chain, such as vinyl, 2-propenyl, 3-butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-heptenyl, 3-hepte-40 nyl, 4-heptenyl, 3-octenyl, 3-nonenyl, 4-decenyl, 3-undecenyl, 4-dodecenyl, 4,8,12-tetradecatrienyl, and the like, and which may be optionally substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, amino, hydroxy, heteroaryl, cyclo-45 heteroalkyl, alkanoylamino, alkylamido, arylcarbonylamino, nitro, cyano, thiol, alkylthio, and/or any of the alkyl substituents set out herein.

Unless otherwise indicated, the term "alkynyl" as used herein by itself or as part of another group refers to straight or 50 branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons and more preferably 2 to 8 carbons in the normal chain, which include one triple bond in the normal chain, such as 2-propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 55 3-octynyl, 3-nonynyl, 4-decynyl, 3-undecynyl, 4-dodecynyl, and the like, and which may be optionally substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, amino, heteroaryl, cycloheteroalkyl, hydroxy, alkanoylamino, alkyla- 60 mido, arylearbonylamino, nitro, cyano, thiol, and/or alkylthio, and/or any of the alkyl substituents set out herein.

Unless otherwise indicated, the term "cycloalkyl" as employed herein alone or as part of another group includes saturated or partially unsaturated (containing 1 or 2 double 65 bonds) cyclic hydrocarbon groups containing 1 to 10 rings, preferably 1 to 3 rings, including monocyclic alkyl, bicyclic

alkyl (or bicycloalkyl) and tricyclic alkyl, containing a total of 3 to 20 carbons forming the ring, preferably 3 to 15 carbons, more preferably 3 to 10 carbons, forming the ring and which may be fused to 1 or 2 aromatic rings as described for aryl, which includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclododecyl, cyclohexenyl,

to 10 carbons, more preferably 1 to 8 carbons, in the normal 20 any of which groups may be optionally substituted with 1 to 4 substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol, and/ or alkylthio, and/or any of the substituents for alkyl.

> Where alkyl groups as defined above have single bonds for attachment to other groups at two different carbon atoms, they are termed "alkylene" groups and may optionally be substituted as defined above for "alkyl".

Where alkenyl groups as defined above and alkynyl groups as defined above, respectively, have single bonds for attachment at two different carbon atoms, they are termed "alkenylene groups" and "alkynylene groups", respectively, and may optionally be substituted as defined above for "alkenyl" and "alkynyl"

"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo; and "haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups, for example CF₃, having the specified number of carbon atoms, substituted with 1 or more halogen (for example $-C_v F_w$ where v=1 to 3 and w=1 to (2v+1)).

Unless otherwise indicated, the term "aryl" as employed herein alone or as part of another group refers to monocyclic and bicyclic aromatic groups containing 6 to 10 carbons in the ring portion (such as phenyl or naphthyl, including 1-naphthyl and 2-naphthyl) and may optionally include 1 to 3 additional rings fused to a carbocyclic ring or a heterocyclic ring (such as aryl, cycloalkyl, heteroaryl, or cycloheteroalkyl rings, for example,

and may be optionally substituted through available carbon atoms with 1, 2, or 3 substituents, for example, hydrogen, halo, haloalkyl, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkyl-alkyl, cycloheteroalkyl, cycloheteroalkylalkyl, aryl, heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, arylalkoxy, arylthio, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylheteroaryl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino wherein the amino includes 1 or 2 substituents (which are alkyl, aryl, or any of the other aryl compounds mentioned in the definitions), thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkoxyarylthio, alkylcarbonyl, arylcarbonyl, alkylaminocarbonyl, arylaminocarbonyl, 20 alkoxycarbonyl, aminocarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfinyl, arylsulfinylalkyl, arylsulfonylamino, or arylsulfonaminocarbonyl, and/or any of the alkyl substituents set out

Unless otherwise indicated, the term "lower alkoxy", "alkoxy", "aryloxy" or "aralkoxy" as employed herein alone or as part of another group includes any of the above alkyl, aralkyl, or aryl groups linked to an oxygen atom.

Unless otherwise indicated, the term "amino" as employed 30 herein alone or as part of another group refers to amino that may be substituted with one or two substituents, which may be the same or different, such as alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloheteroalkyl, cycloheteroalkylalkyl, cycloheteroalkylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkyl, 35 alkoxyalkyl, or thioalkyl. In addition, the amino substituents may be taken together with the nitrogen atom to which they are attached to form 1-pyrrolidinyl, 1-piperidinyl, 1-azepinyl, 4-morpholinyl, 4-thiamorpholinyl, 1-piperazinyl, 4-alkyl-1-piperazinyl, 4-arylalkyl-1-piperazinyl, 4-diarylalkyl-1-piperazinyl, 1-pyrrolidinyl, 1-piperidinyl, or 1-azepinyl, optionally substituted with alkyl, alkoxy, alkylthio, halo, trifluoromethyl, or hydroxy.

Unless otherwise indicated, the term "lower alkylthio," "alkylthio," "arylthio," or "aralkylthio" as employed herein 45 alone or as part of another group includes any of the above alkyl, aralkyl, or aryl groups linked to a sulfur atom.

Unless otherwise indicated, the term "lower alkylamino," "alkylamino," "arylamino," or "arylalkylamino" as employed herein alone or as part of another group includes any of the 50 above alkyl, aryl, or arylalkyl groups linked to a nitrogen atom.

Unless otherwise indicated, the term "heterocyclyl" is intended to mean a stable 4- to 14-membered monocyclic, bicyclic or tricyclic heterocyclic ring which is saturated or 55 partially unsaturated and which consists of carbon atoms and 1, 2, 3, or 4 heteroatoms independently selected from the group consisting of N, NH, O and S and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The nitrogen and sulfur 60 heteroatoms may optionally be oxidized. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom, which results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. If 65 specifically noted, a nitrogen in the heterocycle may optionally be quaternized. It is preferred that when the total number

of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another.

Examples of heterocycles include, but are not limited to, pyrrolidonyl, 4-piperidonyl, chromanyl, decahydroquinolinyl, dihydrofuro[2,3-b]tetrahydrofuran, indolinyl, isochromanyl, isoindolinyloctahydroisoquinolinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydrofuranyl, tetrahydrofuranyl, tetrahydrothiophenyl, pyranyl, dihydropyranyl, 1,4-dioxanyl and 1,3-dioxanyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

Unless otherwise indicated, the term "heteroaryl" is intended to mean a stable 5- to 7-membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic aromatic ring which consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and is aromatic in nature.

Examples of heteroaryls are 1H-indazole, 2H,6H-1,5,2dithiazinyl, indolyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1,2, 5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH-carbazolyl, β-carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro-[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2, 4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinylperimidinyl, phenanthridinyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyrazolotriazinyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, carbolinyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, tetrazolyl, and xanthenyl. In another aspect of the invention, examples of heteroaryls are indolyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, cinnolinyl, furanyl, imidazolyl, indazolyl, indolyl, isoquinolinyl isothiazolyl, isoxazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyrazolotriazinyl, pyridazinyl, pyridyl, pyridinyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, thiazolyl, thienyl, and tet-

The term "heterocyclylalkyl" as used herein alone or as part of another group refers to heterocyclyl groups as defined above linked through a C atom or heteroatom to an alkyl chain.

The term "heteroarylalkyl" or "heteroarylalkenyl" as used herein alone or as part of another group refers to a heteroaryl group as defined above linked through a C atom or heteroatom to an alkyl chain, alkylene, or alkenylene as defined above.

The term "cyano" as used herein, refers to a —CN group. The term "nitro" as used herein, refers to an —NO₂ group. The term "hydroxy" as used herein, refers to an OH group.

The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. 10 Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric 20 and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane 25 disulfonic, oxalic, isethionic, and the like.

The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the 30 free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in 35 *Remington's Pharmaceutical Sciences*, 17th Edition, p. 1418, Mack Publishing Company, Easton, Pa. (1985), the disclosure of which is hereby incorporated by reference.

Any compound that can be converted in vivo to provide the bioactive agent (i.e., a compound of Formula I, Ia, Ib, Ic, Id, 40 Ie, If, Ig, Ih or Ij) is a prodrug within the scope and spirit of the invention.

The term "prodrugs" as employed herein includes esters and carbonates formed by reacting one or more hydroxyls of compounds of Formula I, Ia, Ib, Ic, Id, Ie, If Ig, Ih or Ij with 45 alkyl, alkoxy or aryl substituted acylating agents employing procedures known to those skilled in the art to generate acetates, pivalates, methylcarbonates, benzoates, and the like.

Various forms of prodrugs are well known in the art and are described in:

- a) Wermuth, C. G. et al., *The Practice of Medicinal Chemistry*, Chapter 31, Academic Press (1996);
- b) Bundgaard, H., ed., Design of Prodrugs, Elsevier (1985);
- c) Bundgaard, H., Chapter 5, "Design and Application of 55 Prodrugs," Krosgaard-Larsen, P. et al., eds., *A Textbook of Drug Design and Development*, pp. 113-191, Harwood Academic Publishers (1991); and
- d) Testa, B. et al., Hydrolysis in Drug and Prodrug Metabolism, Wiley-VCH (2003).

Said references are incorporated herein by reference, particularly as to the description of prodrugs.

In addition, compounds of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij are, subsequent to their preparation, preferably isolated and purified to obtain a composition containing an 65 amount by weight equal to or greater than 99% of a compound of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij ("substantially

62

pure" compound), which is then used or formulated as described herein. Such "substantially pure" compounds of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij are also contemplated herein as part of the present invention.

All stereoisomers of the compounds of the instant invention are contemplated, either in admixture or in pure or substantially pure form. The compounds of the present invention can have asymmetric centers at any of the carbon atoms including any one of the R substituents and/or exhibit polymorphism. Consequently, compounds of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij can exist in enantiomeric, or diastereomeric forms, or in mixtures thereof. The processes for preparation can utilize racemates, enantiomers, or diastereomers as starting materials. When diastereomeric or enantiomeric products are prepared, they can be separated by conventional methods for example, chromatographic or fractional crystal-lization.

The invention also includes isotopically-labeled compounds of the invention, wherein one or more atoms is replaced by an atom having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes suitable for inclusion in the compounds of the invention include isotopes of hydrogen, such as ²H and ³H, carbon such as ¹¹C, ¹³C, and ¹⁴C, chlorine, such as ³⁶Cl, fluorine such as ¹⁸F, iodine, such as ¹²³I and ¹²⁵I, nitrogen, such as ¹³N and ¹⁵N, oxygen, such as ¹⁵O, ¹⁷O, and ¹⁸O, phosphorus, such as ³²P, and sulfur, such as ³⁵S. Certain isotopically-labeled compounds of the invention, for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue distribution studies. The radioactive isotopes tritium, ³H, and carbon-14, ¹⁴C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection. Substitution with heavier isotopes such as deuterium, ²H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increase in vivo halflife or reduced dosage requirements, and hence may be preferred in some circumstances. Substitution with positron emitting isotopes, such as 11 C, 18 F, 15 O, and 13 N, can be useful in Positron Emission Topography (PET) studies for examining substrate receptor occupancy.

Isotopically-labeled compounds of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described herein, using an appropriate isotopically-labeled reagent in place of the non-labeled reagent otherwise employed.

"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. The present invention is intended to embody stable compounds.

"Therapeutically effective amount" is intended to include an amount of a compound of the present invention alone or an amount of the combination of compounds claimed or an amount of a compound of the present invention in combination with other active ingredients effective to modulate TGR5 or effective to treat or prevent various disorders.

As used herein, "treating" or "treatment" cover the treatment of a disease-state in a mammal, particularly in a human, and include: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) modulating the disease-state, i.e., arresting it development; and/or (c) relieving the disease-state, i.e., causing regression of the disease state.

SYNTHESIS

The compounds of the present invention can be prepared in a number of ways known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereof as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. All references cited herein are hereby incorporated in their entirety by reference.

The novel compounds of Formula I may be prepared using the reactions and techniques described in this section. The reactions are performed in solvents appropriate to the reagents and materials employed and are suitable for the transformations being effected. Also, in the description of the synthetic methods described below, it is to be understood that all proposed reaction conditions, including solvent, reaction atmosphere, reaction temperature, duration of the experiment 15 and workup procedures, are chosen to be the conditions standard for that reaction, which should be readily recognized by one skilled in the art. One skilled in the art of organic synthesis understands that the functionality present on various portions of the molecule must be compatible with the reagents 20 and reactions proposed. Not all compounds of Formula I falling into a given class may be compatible with some of the reaction conditions required in some of the methods described. Such restrictions to the substituents, which are compatible with the reaction conditions, will be readily 25 apparent to one skilled in the art and alternate methods must be used.

Scheme 1 describes a method for preparing compounds of formula III-a. An intermediate II-a can be prepared by methods known in the literature or by other methods known to one skilled in the art. Formation of a compound III-a can be carried out from a II-a and an acid II-b using propane phosphonic acid anhydride (T3P) and Hunig's Base, DIEA, or other commonly used amine/acid coupling methods such as HATU in the presence of an appropriate base, such as DIEA, or directly coupling of II-a with corresponding acid chloride II-c in the presence of an appropriate base, such as sodium carbonate or DIEA.

$$\begin{array}{c|c} & \underline{\text{Scheme 2}} \\ \hline R_{6a} & & Q & R_3 \\ \hline R_{6b} & & R_{6c} & \\ \hline II-a & II-a & \\ \hline \end{array}$$

Scheme 1

Scheme 1

OH

$$R_{5a}$$
 R_{5b}
 R_{5c}
 R_{5c}
 R_{5c}
 R_{5d}
 R_{5c}
 R_{5d}
 R_{5d}

III-a

Alternatively, as described in Scheme 2, when V is —O— in II-e, compound III-a can be prepared through a carbonyl chloride intermediate II-d, by treating II-a with phosgene or similar reagents such as diphogene or triphosgene in the presence of base such as DIEA. The resulting intermediate II-d is then treated with II-e in the presence of base such as Hunig's base or aqueous Na₂CO₃ to get desired III-a.

$$\begin{array}{c} R_{5a} \\ R_{6a} \\ R_{6b} \\ R_{6c} \\ \end{array} \begin{array}{c} R_{5c} \\ R_{5c} \\ \end{array} \begin{array}{c} R_{5c} \\ R_{5c} \\ \end{array} \begin{array}{c} R_{5c} \\ R_{5c} \\ \end{array}$$

$$R_{6a}$$
 R_{6a}
 R_{6b}
 R_{6c}
 R_{6c}

G = Br, Cl, I, OMs

G = Br, Cl, I, OMs

$$\begin{array}{c} \underline{Scheme\ 3} \\ R_{6a} \\ R_{6b} \\ R_{6c} \\ R_{6c} \\ R_{6c} \\ R_{5a} \\ R_{5a} \\ R_{5c} \\$$

$$\begin{array}{c} & & & & X \longrightarrow Z \\ R_{6a} & & & & & & & \\ R_{6b} & & & & & & \\ R_{6c} & & & & & & \\ R_{6c} & & & & & \\ R_{5c} & & & & & \\ R_{5c} & & & & & \\ R_{5d} & & &$$

$$R_{6a}$$
 R_{6a}
 R_{6a}
 R_{6a}
 R_{6a}
 R_{6a}
 R_{5a}
 R_{5a}
 R_{5a}
 R_{5a}
 R_{5a}
 R_{5a}
 R_{5a}
 R_{5a}
 R_{5a}

Scheme 3 describes a method for preparing compounds of formula IV. Boronic acid or ester III-c can be obtained commercially, or prepared by methods known in the literature or by other methods known to one skilled in the art. Formation of a compound IV can be obtained via coupling reaction of 65 boronic acid or ester III-c with III-a in the presence of palladium catalyst. The reactions can be carried out at room tem-

perature, or with heating, or done in a microwave reactor. Alternatively, compound with formula IV can be prepared through coupling III-b with III-d in a similar fashion described above, while compound III-b can be prepared via the coupling reaction of bis(pinacola)diboron with III-a in the presence of palladium catalyst such as [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II).

$$\begin{array}{c} X - Z \\ A \\ A \\ A \\ R_{6a} \\ R_{$$

As described in Scheme 4, when Z is —OH or NHR₁₉, compound I-b can be prepared through treatment IV with phosgene or similar reagents such as diphosgene or triphosgene in the presence of base such as DIEA. The resulting intermediate carbonochloridate or carbamic chloride can be then treated with amine Y-b in the presence of base such as

Hunig's base or aqueous Na₂CO₃ to get desired I-b directly or after hydrolysis under basic condition such as aqueous LiOH. The compound I-b can be also obtained through direct treatment with a suitable isocyanate in the presence of a base such as DIEA, LDA, or LiHMDS, and then hydrolyzed under a basic condition such as aqueous LiOH.

Scheme 5

$$\begin{array}{c} Y\text{-}c = \\ & - \text{CISO}_2 - \text{R}_{18} - \text{CO}_2\text{R}_6 \\ & - \text{CISO}_2 - \text{R}_{18} - \text{SO}_3\text{R}_6 \\ & - \text{CISO}_2 - \text{R}_{18} - \text{P}(\text{O})(\text{OR}_6)_2 \\ & - \text{CISO}_2 - \text{R}_{18} - \text{N}(\text{alkyl})_3 \end{array}$$

$$\begin{array}{c} Y\text{-}a = \\ & - \text{CISO}_2 - \text{N}(\text{R}_{19})\text{R}_{18} - \text{CO}_2\text{R}_6 \\ & - \text{CISO}_2 - \text{N}(\text{R}_{19})\text{R}_{18} - \text{SO}_3\text{R}_6 \\ & - \text{CISO}_2 - \text{N}(\text{R}_{19})\text{R}_{18} - \text{SO}_3\text{R}_6 \\ & - \text{CISO}_2 - \text{N}(\text{R}_{19})\text{R}_{18} - \text{P}(\text{O})(\text{OR}_6)_2 \\ & - \text{CISO}_2 - \text{N}(\text{R}_{19})\text{R}_{18} - \text{P}(\text{O})(\text{OR}_6)_2 \\ & - \text{CISO}_2 - \text{N}(\text{R}_{19})\text{R}_{18} - \text{P}(\text{O})(\text{OR}_6)_2 \\ & - \text{CISO}_2 - \text{N}(\text{R}_{19})\text{R}_{18} - \text{N}(\text{alkyl})_3 \end{array}$$

$$\begin{array}{c} \text{X-a} = \text{CISO}_2 - \text{N}(\text{R}_{19})\text{R}_{18} - \text{N}(\text{alkyl})_3 \\ & - \text{CISO}_2 - \text{N}(\text{R}_{19})\text{R}_{18} - \text{N}(\text{alkyl})_3 \end{array}$$

$$\begin{array}{c} \text{X-a} = \text{CI} \text{Br}, \text{I}, \text{OMs} \\ \text{Then Hydrolyze} \end{array}$$

IV

 $\begin{array}{lll} & -NR_{19}SO_2 -N(R_{19})R_{18} -SO_3H \\ & -NR_{19}SO_2 -N(R_{19})R_{18} -P(O)(OH)(OR_6) \\ & -NR_{19}SO_2 -N(R_{19})R_{18} -N(alkyl)_3 \end{array}$

As described in Scheme 5, when Z is NHR₁₉, the compound I-c can also be directly obtained through treatment with a suitable sulfonyl chloride or sulfamoyl chloride in the presence of a base, such as DIEA, at room temperature or elevated temperature, and then, if required, hydrolyzed under a basic condition, such as aqueous LiOH to afford I-c.

Scheme 6

 $Z = SO_3H$ or CO_2H

70

 $-CO - N(R_{19})R_{18} - P(O)(OH)(OR_6)$ $-CO_2 - N(R_{19})R_{18} - N(alkyl)_3$

As described in Schemed 6, when Z is $\mathrm{SO_3H}$ or $\mathrm{CO_2H}$, the sulfonic acid can first be converted to the corresponding sulfonyl chloride under standard condition, such as thionyl chloride. The obtained sulfonyl chloride is then treated with amine Y-e in the presence of a base such as DIEA at room temperature or elevated temperature to give desired I-d after, if required, hydrolysis under a basic condition, such as aqueous LiOH.

-continued X—Y

R_{6a}

$$R_{6a}$$
 R_{6a}
 R

As described in Scheme 7, when Z is ${\rm SO_2NHR_{19}}$, IV may react with electrophiles Y-e, under suitable basic conditions, such as with ${\rm K_2CO_3}$, LiHMDS, or LDA, to give compound I-e after hydrolysis under a basic condition, such as aqueous LiOH.

Scheme 8

As described in Scheme 8, when Z is —OH, SH or NHR₁₉, compound I-f can be prepared through treatment IV with bases, such as DIEA, K2CO3, LDA, or LiHMDS, and then reacted with electrophiles Y-f to give desired I-f after hydrolysis under a basic condition, such as aqueous LiOH.

EXAMPLES

The following Examples are offered as illustrative as a partial scope and particular embodiments of the invention and 10 are not meant to be limiting of the scope of the invention. Abbreviations and chemical symbols have their usual and customary meanings unless otherwise indicated. Unless otherwise indicated, the compounds described herein have been prepared, isolated and characterized using the Schemes and 15 other methods disclosed herein or may be prepared using the same

As appropriate, reactions were conducted under an atmosphere of dry nitrogen (or argon). For anhydrous reactions, DRISOLV® solvents from EM were employed. For other 20 reactions, reagent grade or HPLC grade solvents were utilized. Unless otherwise stated, all commercially obtained reagents were used as received.

NMR (nuclear magnetic resonance) spectra were typically obtained on Bruker or JEOL 400 MHz and 500 MHz instru- 25 ments in the indicated solvents. All chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. ¹H-NMR spectral data are typically reported as follows: chemical shift, multiplicity (s=singlet, br s=broad singlet, d=doublet, dd=doublet of doublets, t=triplet, q=quartet, sep=septet, m=multiplet, app=apparent), coupling constants (Hz), and integration.

One of skill in the art will recognize the standard abbreviations utilized herein, throughout the specification. For ease of reference, the abbreviations include, but are not necessarily 35 limited to: Aq=aqueous; AcOH=acetic acid; DIBAL-H=Diisobutylaluminum hydride; t-BuOH=tert butyl alcohol; BOC=tert-butoxycarbonyl; BOP=Benzotriazole-1-yl-oxytris(dimethylamino)phosphonium hexafluorophosphate; CAN=cerium (IV) ammonium nitrate; CH₂Cl₂ or 40 DCM=methylene chloride; MeCN or CH₃CN=acetonitrile; DEAD=diethyl azodicarboxylate; DIAD=diisopropyl azodi-DIPEA=diisopropylethylamine; carboxylate; DME=dimethyoxyethane; DMF=N,N-dimethylformamide; DMAP=4-Dimethylaminopyridine; DMSO=dimethyl sul- 45 foxide; EtOAc=ethyl acetate; TEA or Et₃N=triethylamine; Et₂O=diethyl ether; HATU=O-(7-Azabenzotriazole-1-vl)-1. 1,3,3-tetramethyluronium hexafluorophosphate; HPLC or liquid LC=high performance chromatography; K₂CO₃=potassium carbonate; LiOH=lithium hydroxide; 50 m-CPBA=m-chloroperoxybenzoic acid; MeOH=methanol; MgSO₄=magnesium sulfate; MS or Mass Spec=mass spectrometry; NaH=sodium hydride; NaHCO₃=sodium bicarbonate; NH₄OAc=ammonium acetate; Na₂SO₄=sodium sulcarbonate; NaHMDS=sodium 55 fate; Na₂CO₃=sodium hexamethyldisilazide; NaOH=sodium hydroxide; NaClO₂=Sodium Chlorite; NaHPO₄=Sodium phosphate; Pd₂(dba)₃=tris(dibenzylideneacetone)dipalladium Pd(dppf)Cl₂=[1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II); $Pd(dppf)Cl_2$ — CH_2Cl_2 =[1,1'-bis(diphe-60 nylphosphino)ferrocene|dichloropalladium(II) methylene chloride; Ph₃P=triphenylphosphine; PCl₅=phosphine pentachloride; rt=room temperature; RT=retention time; THF=tetrahydrofuran; TFA=trifluoroacetic acid; T3P=Propylphosphonic anhydride; TMS-N₃=trimethylsilyl 65 azide; min=minute(s); h or hr=hour(s); L or 1.=liter(s); mL or ml=milliliter(s); μ L or μl=microliter(s);

76

" α ", " β ", "R" and "S" are stereochemical designations familiar to those skilled in the art.

General

The term HPLC refers to a Shimadzu high performance liquid chromatography with one of following methods:

HPLC-1: Sunfire C18 (4.6×150 mm) 3.5 micron, gradient 10 to 100% B:A for 12 min, then 3 min hold at 100% B.

Mobile phase A: 0.05% TFA in water:CH₃CN (95:5)

Mobile phase B: 0.05% TFA in CH₃CN:water (95:5)

TFA Buffer pH=2.5; Flow rate: 1 mL/min; Wavelength: 254 nm, 220 nm.

HPLC-2: XBridge Phenyl (4.6×150 mm) 3.5 micron, gradient 10 to 100% B:A for 12 min, then 3 min hold at 100% B.

Mobile phase A: 0.05% TFA in water:CH₃CN (95:5) Mobile phase B: 0.05% TFA in CH₃CN:water (95:5)

TFA Buffer pH=2.5; Flow rate: 1 mL/min; Wavelength:

TFA Buffer pH=2.5; Flow rate: 1 mL/min; Wavelength: 254 nm, 220 nm.

HPLC-3: SUPELCO® Ascentis 4.6×50 mm 2.7 μm C18, gradient 0 to 100% B:A for 4 min.

Mobile phase A: water:CH₃CN (90:10)+10 μM NH₄OAc Mobile phase B: CH₃CN:water (90:10)+10 μM NH₄OAc HPLC-4: Waters Xbridge 4.6×100 mm 5 micron C18, gradient 0 to 100% B:A for 4 min.

Mobile phase A: water+10 µM NH₄OAc

Mobile phase B: CH₃CN+10 μM NH₄OAc

HPLC-5: SunFire 4.6×50 mm COMBISCREEN®, gradient 0 to 100% B:A for 4 min, then 1 min hold at 100% B.

Mobile phase A=10% MeOH-90% $\rm H_2O\text{-}0.1\%$ TFA

Mobile phase B=90% MeOH-10% H_2 O-0.1% TFA

Gradient Time=4 min

Flow Rate=4 ml/min

Wavelength=220

Method A: PHENOMENEX® C18 5 micron 4.6×50 mm column using a 4 minute gradient of 0-100% solvent B [90% MeOH:10% $H_2O:0.2\%$ H_3PO_4] and 100-0% solvent A [10% MeOH:90% $H_2O:0.2\%$ H_3PO_4] with 4 mL/min flow rate and a 1 min. hold, an ultra violet (UV) detector set at 220 nm.

Method B: PHENOMENEX® S5 ODS 4.6×30 mm column, gradient elution 0-100% B/A over 2 min (solvent A=10% MeOH/H₂O containing 0.1% TFA, solvent B=90% MeOH/H₂O containing 0.1% TFA), flow rate 5 mL/min, UV detection at 220 nm.

Method C: YMC S7 ODS 3.0×50 mm column, gradient elution 0-100% B/A over 2 min (solvent A=10% MeOH/H₂O containing 0.1% TFA, solvent B=90% MeOH/H₂O containing 0.1% TFA), flow rate 5 mL/min, UV detection at 220 nm.

Method D: YMC S-5 C18 5 micron 4.6×50 mm column using a 4 minute gradient of 0-100% solvent B [90% CH₃CN: 10% H₂O:0.1% TFA] and 100-0% solvent A [10% CH₃CN: 90% H₂O:0.1% TFA] with 4 mL/min flow rate and a 1 min. hold (100% B), an ultra violet (UV) detector set at 220 nm

The term prep HPLC refers to an automated Shimadzu HPLC system using a mixture of solvent A (10% MeOH/90% $\rm H_2O/0.1\%$ TFA) and solvent B (90% MeOH/10% $\rm H_2O/0.1\%$ TFA) or a mixture of solvent A (10% CH₃CN/90% $\rm H_2O/0.1\%$ TFA) and solvent B (90% CH₃CN/10% $\rm H_2O/0.1\%$ TFA). The

20

25

50

55

preparative columns were packed with YMC or PHENOM-ENEX® ODS C18 5 micron resin or equivalent.

Example 1

2-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetic acid

Step A. 4-Bromo-2,3-dihydro-1H-inden-1-one oxime

To a solution of 4-bromo-2,3-dihydro-1H-inden-1-one (3.00 g, 14.21 mmol) in MeOH (40 mL) was added hydroxylamine hydrochloride (3.95 g, 56.9 mmol). The resulting mixture was refluxed for 1 h and concentrated in vacuo. The resulting residue was partitioned between DCM and 50% saturated NaHCO₃, and stirred vigorously for 20 min. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered and concentrated to afford the title compound (3.18 g, 99% yield) as a pale yellow solid. LCMS, [M+H]⁺=226.0.

Step B. 5-Bromo-1,2,3,4-tetrahydroquinoline, HCl salt

To a partial suspension of 4-bromo-2,3-dihydro-1H-inden-1-one oxime (3.16 g, 13.98 mmol) in DCM (70 mL) at 0° C. was added DIBAL-H (84 mL, 84.0 mmol, 1.0 M in toluene) over 30 min. Upon completion of addition, the reaction mixture was allowed to slowly warm to room temperature, where it stirred overnight. After this time, the reaction mixture was cooled to 0° C. under a stream of argon, and sodium fluoride (35.2 g, 839 mmol) was added portion-wise, followed by

addition of water (4 mL) at such a rate as to keep the internal temperature below 10° C. After 30 min the resulting mixture was filtered through CELITE®, and the filtrate was concentrated. The resulting residue was re-dissolved in ethyl acetate (40 mL) and filtered. Concentrated HCl (2 mL) was added to the filtrate and the resulting mixture was stirred for 30 min. At the conclusion of this period, the resulting solid was collected by filtration, washed with ethyl acetate, and dried to afford the title compound (2.57 g, 74% yield). LCMS, [M+H]⁺=212.0. 1 H NMR (400 MHz, MeOD) δ 7.74 (dd, J=7.6, 1.5 Hz, 1H), 7.38-7.28 (m, 2H), 3.56-3.46 (m, 2H), 2.95-2.87 (m, 2H), 2.26-2.16 (m, 2H).

Step C. Ethyl 4-(2,3-dimethylphenoxy)butanoate

A mixture of 2,3-dimethylphenol (12.2 g, 100 mmol), tetrabutylammonium iodide (0.738 g, 1.997 mmol), ethyl 4-bromobutanoate (14.29 mL, 100 mmol), and potassium carbonate (27.6 g, 200 mmol) in THF (100 mL) was heated at 60° C. for 20 h. After this time, the reaction mixture was cooled to room temperature. Once at the prescribed temperature, the reaction mixture was quenched with water (50 mL), and 35 extracted with EtOAc (2×50 mL). The combined organic phases were concentrated, and purified by flash chromatography (0 to 30% EtOAc:hexanes) to afford the title compound (22.5 g, 90% yield) as colorless oil. LCMS, [M+Na]⁺=259.1. ¹H NMR (400 MHz, CDCl₃) δ 7.01 (dd, J=8.2, 7.5 Hz, 1H), 6.75 (d, J=7.5 Hz, 1H), 6.67 (d, J=8.2 Hz, 1H), 4.13 (q, J=7.1 Hz, 2H), 3.97 (t, J=6.0 Hz, 2H), 2.52 (t, J=7.4 Hz, 2H), 2.25 (s, 3H), 2.15-2.07 (m, 2H), 2.12 (s, 3H), 1.24 (t, J=7.1 Hz, 3H).

Step D. 4-(2,3-Dimethylphenoxy)butanoic acid

A mixture of ethyl 4-(2,3-dimethylphenoxy)butanoate (22.28 g, 94 mmol), 4 N LiOH (94 mL, 377 mmol) in dioxane (50 mL) was heated at 60° C. for 4 h. After cooling to room temperature, the mixture was adjusted to pH 2-3 with 3 N HCl, and extracted with EtOAc (2×10 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the title compound (20 g, 100% yield). LCMS, [M–H]⁺=207.1. ¹H NMR (400 MHz, CDCl₃) δ 7.02 (dd, J=8.2, 7.5 Hz, 1H), 6.76 (d,

15

40

 $\begin{array}{l} J{=}7.5\,Hz,\,1H),\,6.67\,(d,\,J{=}8.2\,Hz,\,1H),\,3.99\,(t,\,J{=}6.0\,Hz,\,2H),\\ 2.60\,(t,\,J{=}7.3\,Hz,\,2H),\,2.25\,(s,\,3H),\,2.18{-}2.09\,(m,\,2H),\,2.12\,(s,\,3H). \end{array}$

Step E. 1-(5-Bromo-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

To a solution of 4-(2,3-dimethylphenoxy)butanoic acid (1.35 g, 6.5 mmol), 5-bromo-1,2,3,4-tetrahydroquinoline, ²⁰ HCl salt (1.24 g, 5.0 mmol), and Hunig's base (3.49 mL, 20 mmol) in ethyl acetate (25 mL) at 0° C. was added a solution of T3P in Et₂O (50% w/w, 5.95 mL, 10 mmol) dropwise. The reaction mixture was allowed to slowly warm to room temperature where it stirred overnight. At the conclusion of this 25 period, additional ethyl acetate and water were added, and the resulting mixture was stirred vigorously for 15 min. After this time, the organic layer was separated, washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash 30 chromatography (0-30% ethyl acetate:hexanes) to afford the title compound as an off-white solid (1.50 g, 74% yield). LCMS, $[M+H]^+=402.0$. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J=8.5 Hz, 1H), 7.02 (dd, J=14.9, 7.7 Hz, 2H), 6.74 (t, J=11.0 Hz, 1H), 6.64 (d, J=8.2 Hz, 1H), 5.30 (s, 1H), 3.95 (t, 35 J=5.6 Hz, 2H), 3.77 (t, J=6.0 Hz, 2H), 2.73 (t, J=7.1 Hz, 2H), 2.68 (t, J=6.6 Hz, 2H), 2.25 (s, 3H), 2.18 (ddd, J=13.1, 6.5, 6.3 Hz, 2H), 2.02-1.84 (m, 5H).

Example 1

Argon was vigorously bubbled through a stirring mixture of 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (40 mg, 0.099 mmol), potassium carbonate (55 mg, 0.398 mmol), and ethyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)acetate 50 (56 mg, 0.199 mmol) in a 4:1 THF/water solution (1 mL) in a pressure vessel for 5 min. Tetrakis(triphenylphosphine)palladium (11 mg, 9.94 µmol) was added, and the vessel was flushed with argon and capped. The reaction mixture was stirred at 80° C. for 16 h. After this time, water and ethyl 55 acetate were added, and the resulting mixture was stirred vigorously for 15 min. Upon completion of this period, the organic layer was separated. The aqueous phase was adjusted to pH 2-3 with 1 N HCl, and then extracted with ethyl acetate. The organic extracts were combined with the previous 60 organic layer, dried over anhydrous Na2SO4, filtered, and concentrated. The resulting residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5 µm, C18, 30×75 mm; 10 min gradient from 100% A:0% B to 0% A:100% B and 3 min 100% B (A=90% H₂O/10% MeCN+ 65 0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 1 (14.3 mg, 32% yield).

LCMS, $[M+H]^+=448.2$. 1H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.33 (s, 1H), 7.23-7.14 (m, 2H), 7.02 (t, J=7.9 Hz, 1H), 6.74 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.1 Hz, 1H), 5.01 (s, 2H), 3.92 (s, 2H), 3.79 (t, J=6.8 Hz, 2H), 2.76 (t, J=7.1 Hz, 2H), 2.56 (s, 2H), 2.23-2.11 (m, 5H), 1.86 (m, 5H). HPLC-1: Rt=9.3 min, purity=98.6%; HPLC-2: Rt=8.4 min, purity=99.7%.

Example 2

4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)picolinic acid

Step A. 4-(2,3-Dimethylphenoxy)-1-(5-(4,4,5,5-tet-ramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydro-quinolin-1(2H)-yl)butan-1-one

Argon was vigorously bubbled through a stirring mixture of 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.50 g, 1.24 mmol), potassium acetate (0.49 g, 4.97 mmol), and bis(pinacolato)diboron (0.47 g, 1.86 mmol) in THF (6.2 mL) in a pressure vessel for 5 min. After this time, Pd(dppf)Cl₂—CH₂Cl₂ (0.10 g, 0.12 mmol) was added. Upon completion of addition, the vessel flushed with argon, capped, and heated to 80° C. for 16 h. At the conclusion of this period, water and ethyl acetate were added, and the resulting mixture was stirred vigorously for 20 min. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-30% ethyl acetate:hex-

anes) to afford the title compound (0.54 g, 97% yield) as a colorless viscous oil. LCMS, $[M+H]^+=450.1$.

Step B. Methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)picolinate

To a degassed solution of 4-(2,3-dimethylphenoxy)-1-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydro-quinolin-1(2H)-yl)butan-1-one (0.020 g, 0.045 mmol), methyl 4-bromopicolinate (0.019 g, 0.089 mmol) and potassium carbonate (0.018 g, 0.134 mmol) in dioxane (0.50 mL)/water (0.20 mL) was added tetrakis(triphenylphosphine)palladium (2.57 mg, 2.225 μ mol). Upon completion of addition,

the vial was purged with argon, sealed, and stirred at 90° C. for 16 h. After cooling to room temperature, the mixture was extracted with EtOAc. The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (17.7 mg, 87% yield) as a clear colorless oil. LCMS, [M+H]⁺ =459.1.

Example 2

A mixture of methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)picolinate (0.050 g, 0.109 mmol) and 4 M LiOH (0.109 mL, 0.436 mmol) in THF (1.0 mL) was stirred at room temperature for 16 h. The mixture was adjusted to pH 6-7 with 1 N aq. HCl, and extracted with EtOAc. The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to give Example 2 (45 mg, 90% yield) as a white solid. LCMS, [M+H]⁺=445.1. ¹H NMR (400 MHz, MeOD) δ 9.17 (s, 1H), 8.67-8.49 (br. s, 1H), 8.41 (s, 1H), 7.43 (br. s, 1H), 7.38 (t, J=7.7 Hz, 1H), 7.24 (d, J=7.9 Hz, 1H), 6.99 (t, J=7.9 Hz, 1H), 6.72 (d, J=7.6 Hz, 1H), 6.69 (d, J=8.2 Hz, 1H), 3.92 (br. s, 2H), 3.78 (t, J=6.9 Hz, 2H), 2.86 (t, J=6.9 Hz, 2H), 2.42 (br. s, 2H), 2.21-2.09 (m, 5H), 1.93-1.74 (m, 5H). HPLC-1: Rt=8.9 min, purity=98.9%; HPLC-2: Rt=8.2 min, purity=98.4%.

The following Examples were prepared in a manner analogous to Example 2.

TABLE 1

			Å A O ²	N			
Exam- ple	Name	(A)X	— Ү	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	Synthesis comment
3	2-(4-(1- (4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)-1H- pyrazol-1- yl)propanoic acid	N-N	°O₂H	462.1	7.61 (s, 1H), 7.41 (s, 1H), 7.23-7.13 (m, 2H), 7.02 (t, J = 7.9 Hz, 1H), 6.75 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 8.2 Hz, 1H), 5.09 (dd, J = 14.6, 7.3 Hz, 1H), 3.93 (s, 2H), 3.79 (t, J = 6.8 Hz, 2H), 2.76 (t, J = 7.1 Hz, 2H), 2.56 (s, 2H), 2.25-2.12 (m, 5H), 1.86 (dd, J = 13.4, 7.0 Hz, 7H)	9.5 min, 100% 8.4 min, 100%	Ester hydrolyzed during coupling
4	2-(3-(1- (4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)phenyl) acetic acid		CO₂H	458.2	7.36 (t, J = 7.6 Hz, 1H), 7.30-7.18 (m, 4H), 7.17- 7.07 (m, 2H), 7.00 (t, J = 7.8 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 6.63 (d, J = 8.2 Hz, 1H), 3.98-3.88 (m, 2H), 3.78 (t, J = 7.0 Hz, 2H), 3.69 (s, 2H), 2.77 (t, J = 7.2 Hz 2H), 2.47 (t, J = 6.1 Hz, 2H), 2.24-2.13 (m, 5H), 1.93 (s,	11.1 min, 99.5% 9.6 min, 99.5%	Ester hydrolyzed during coupling

83

TABLE 1-continued

20

25

55

3-((4-(3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3, 7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1Hpyrazol-1-yl)methyl)benzoic acid

Step A. 5-Bromoquinoline 1-oxide

To a solution of 5-bromoquinoline (2.5 g, 12.02 mmol) in DCM (50 mL) was added m-CPBA (3.50 g, 15.62 mmol) in three portions at room temperature. Upon completion of addition, the reaction mixture was stirred at room temperature for 3 h. After this time, 1N NaOH (40 ml) was added to the reaction, and the resulting mixture was extracted with DCM (2×50 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated to afford the title compound (2.7 g, 99% yield) as light yellow solid. LCMS, [M+H] $^+$ =223.9. 1 H NMR (400 MHz, CDCl₃) δ 8.75 (d, J=8.8 Hz, 1H), 8.65 (d, J=6.0 Hz, 1H), 8.18 (d, J=8.8 Hz, 1H), 7.95 (d, J=7.7 Hz, 1H), 7.68-7.56 (m, 1H), 7.44 (dd, J=8.2, 6.0 Hz, 1H).

Step B. 5-Bromoquinolin-2(1H)-one

To a solution of 5-bromoquinoline 1-oxide (2.7 g, 12.05 mmol) in DMF (8 mL) was added trifluoroacetic anhydride 65 (8.51 mL, 60.3 mmol) in three portions at 0° C. The reaction was allowed to warm to room temperature where it stirred

86

overnight. At the conclusion of this period, the reaction mixture was poured into a saturated aq. NaHCO $_3$ (100 mL) solution, and extracted with DCM (2×50 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO $_4$, filtered, and concentrated to afford the title compound (2.76 g, 98% yield) as a light yellow solid. LCMS, [M+H]⁺=223.9. 1 H NMR (400 MHz, DMSO-d $_6$) δ 11.98 (s, 1H), 8.05 (d, J=9.8 Hz, 1H), 7.50 (dd, J=8.0 Hz, 1H), 7.44 (t, J=8.0 Hz, 1H), 7.36 (d, J=8.0 Hz, 1H), 6.63 (d, J=9.8 Hz, 1H).

Step C. 5-Bromo-1-(4-methoxybenzyl)quinolin-2(1H)-one

To a solution of 5-bromoquinolin-2(1H)-one (0.84 g, 2.29 mmol) in DMF (20 mL) at room temperature was added sodium hydride (0.57 g, 14.22 mmol) and 4-methoxybenzyl chloride (1.24 mL, 9.10 mmol). Upon completion of addition, the reaction mixture was stirred at room temperature for 2 d, and then heat to 75° C. where it stirred for 2 h. After cooling to room temperature, the reaction mixture was quenched with water, and extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0 to 30% ethyl acetate:hexanes) to afford the title compound (0.84 g, 40% yield) as a white powder. LCMS, [M+H]⁺=344.0. 1 H NMR (400 MHz, CDCl₃) δ 8.20 (d, J=9.8 Hz, 1H), 7.44 (dd, J=6.6, 2.2 Hz, 1H), 7.28-7.23 (m, 3H), 7.14 (d, J=8.2 Hz, 1H), 6.89 (d, J=9.8 Hz, 1H), 6.83 (d, J=8.6 Hz, 2H), 5.5 (s, 2H), 3.76 (s, 3H).

Step D. 7-Bromo-3-(4-methoxybenzyl)-3,7b-dihydro-1H-cyclopropa[c]quinolin-2(1aH)-one

To a suspension of sodium hydride (136 mg, 3.40 mmol) in DMSO (5 mL) at room temperature was added trimethylsulfoxonium iodide (661 mg, 3.00 mmol) slowly under nitrogen. The reaction mixture was stirred at room temperature for 1 h, and then 5-bromo-1-(4-methoxybenzyl)quinolin-2(1H)-one (689 mg, 2.00 mmol) in 1 mL DMSO was added. Upon

20

45

55

completion of addition, the reaction mixture was stirred at room temperature for 2 h, and then heated to 90° C. for 2 d. After cooling to room temperature, the reaction mixture was quenched with water and extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0 to 30% ethyl acetate:hexanes) to afford the title compound (330 mg, 45% yield) as a white powder. LCMS, [M+H]*=358.0. 1 H NMR (400 MHz, CDCl₃) δ 7.21 (d, J=7.7 Hz, 1H), 7.08 (d, J=8.2 10 Hz, 2H), 6.91 (t, J=8.0 Hz, 1H), 6.85-6.75 (m, 3H), 4.97-5.25 (m, 2H), 3.75 (s, 3H), 2.90 (td, J=8.1, 5.2 Hz, 1H), 2.40 (ddd, J=9.6, 8.0, 4.9 Hz, 1H), 1.74 (td, J=9.1, 4.4 Hz, 1H), 0.69 (q, J=4.8 Hz, 1H).

Step E. 7-Bromo-3,7b-dihydro-1H-cyclopropa[c] quinolin-2(1aH)-one

To a suspension of 7-bromo-3-(4-methoxybenzyl)-3,7b-dihydro-1H-cyclopropa[c]quinolin-2(1aH)-one (0.300 g, 0.837 mmol) in 9:1 acetonitrile/water (5.5 mL) was added CAN (0.459 g, 0.837 mmol) at room temperature. After stirring at room temperature overnight, the reaction mixture was quenched with water (10 mL) and adjusted pH to 7-9 by using saturated Na₂CO₃. The resulting mixture was extracted with EtOAc. The combined organic layer was concentrated and purified by flash chromatography (0 to 50% ethyl acetate: hexanes) to afford the title compound (0.18 g, 95% yield) as a pale yellow solid. LCMS, [M+H]⁺=237.9. 1 H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.24 (d, J=7.7 Hz, 1H), 7.00 (t, J=7.7 Hz, 1H), 6.69 (d, J=7.7 Hz, 1H), 2.84 (td, J=8.1, 5.2 Hz, 1H), 2.22-2.13 (m, 1H), 1.76 (td, J=9.2, 4.7 Hz, 1H), 0.75 (dd, J=10.0, 5.0 Hz, 1H).

Step F. 7-Bromo-1a,2,3,7b-tetrahydro-1H-cyclo-propa[c]quinoline

The mixture of 7-bromo-3,7b-dihydro-1H-cyclopropa[c] quinolin-2(1aH)-one (100 mg, 0.420 mmol) and borane tetrahydrofuran complex (5 mL, 5.00 mmol) was heated at 80° C. for 4 h. After this time, MeOH (5 mL) was added slowly to 60 the reaction mixture, followed by 3 mL of conc. HCl. The resulting mixture was heated at 100° C. for 1 h, and then cooled to room temperature. After removing most of the solvent, the mixture was adjusted to a pH of 8-9 by using saturated Na₂CO₃. The aqueous solution was extracted with 65 EtOAc (2×10 mL). The combined organic layers were concentrated and purified by flash chromatography (0 to 30%

ethyl acetate:hexanes) to afford the title compound (78 mg, 83% yield) as an oil. LCMS, [M+H]*=223.9. $^{1}\mathrm{H}$ NMR (400 MHz, CDCl3) δ 8.15 (s, 1H), 7.24 (d, J=7.7 Hz, 1H), 7.00 (t, J=7.7 Hz, 1H), 6.69 (d, J=7.7 Hz, 1H), 2.84 (td, J=8.1, 5.2 Hz, 1H), 2.22-2.13 (m, 1H), 1.76 (td, J=9.2, 4.7 Hz, 1H), 0.75 (dd, J=10.0, 5.0 Hz, 1H).

Step F-a. (1aR,7bS)-7-Bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinoline

The separation of 10 g of racemates-bromo-1a,2,3,7b-tet-rahydro-1H-cyclopropa[c]quinoline was achieved by SFC (Supercritical Fluid Chromatography) using CHIRALCEL® OJ column (250 mm×4.6 mm, 5 micron) from chiral technology. The resolution was achieved with 85% of CO₂ and 15% methanol at a flow of 3 ml/min at 100-bar backpressure. The detector was set a 220 nm. 4.7 g of desired enantiomer (1aR, 7bS)-7-bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinoline was obtained (95% recovery).

Step G. 1-(7-Bromo-1a,2-dihydro-1H-cyclopropa[c] quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analogous to Step E, Example 1 except that 5-bromo-1,2,3,4-tetrahydroquinoline, HCl salt was replaced with 7-bromo-1a,2, 3,7b-tetrahydro-1H-cyclopropa[c]quinoline. LCMS, 50 [M+H]⁺=414.1.

Step H. Methyl 3-((4-bromo-1H-pyrazol-1-yl)methyl)benzoate

To a solution of 4-bromo-1H-pyrazole (1.00 g, 6.80 mmol) in DMF (11.7 mL) at 0° C. was added 1 M solution of NaHMDS in THF (7.48 mL, 7.48 mmol) slowly over 2 min.

25

40

The reaction mixture was stirred for 10 min and then the cooling bath was removed. After 30 min a solution of methyl 3-(bromomethyl)benzoate (1.71 g, 7.48 mmol) in DMF (1.9 mL) was added slowly, and the resulting mixture was stirred at room temperature overnight. At the conclusion of this period, the reaction mixture was quenched with saturated aq ammonium chloride (~1 mL), and partitioned between diethyl ether and water. The resulting mixture was stirred vigorously for 15 min. After this time, the organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-60% ethyl acetate:hexanes) to afford the title compound (1.59 g, 79%). LCMS, [M+H]*=295.0. 10 H NMR (400 MHz, CDCl₃) δ 8.00 (d, J=7.1 Hz, 1H), 7.94 (s, 1H), 7.50 (s, 1H), 7.47-7.36 (m, 3H), 5.31 (s, 2H), 3.92 (s, 3H).

Step I. Methyl 3-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)methyl)benzoate

The title compound was prepared using a procedure analogous to Step A, Example 2 except that 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with methyl 3-((4-bromo-1H-pyrazol-1-yl) methyl)benzoate. LCMS, $[M+H]^+=343.1$. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.92 (m, 2H), 7.82 (s, 1H), 7.68 (s, 1H), 7.43-7.39 (m, 2H), 5.35 (s, 2H), 3.91 (s, 3H), 1.30 (s, 12H).

Example 9

A stirring mixture of 1-(7-bromo-1a,2-dihydro-1H-cyclopropa[c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.02 g, 0.048 mmol), potassium carbonate (0.013 g, 0.097 mmol), and methyl 3-((4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-pyrazol-1-yl)methyl)benzoate (0.033 g, 0.097 mmol) in a THF/water solution (4:1, 1.4 mL) in a pressure vessel was purged with argon vigorously for 5 50 min. After this time, tetrakis(triphenylphosphine)palladium (0.011 g, 9.65 µmol) was added, and the vessel was flushed with argon, capped, and heated to 85° C. for 20 h. After cooling to room temperature, 4 M LiOH (0.12 mL, 0.48 mmol) was added and the reaction was heated to 65° C. for 3 55 h. At the conclusion of this period, the reaction mixture was filtered and the filtrate was purified by preparative HPLC (PHENOMENEX® Axia Luna, 5μ, C18 30×100 mm; 10 min gradient from 90% A:10% B to 0% A:100% B and 5 min 100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% 60 MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 9 (20 mg, 75% yield). LCMS, [M+H]⁺=536.5. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J=7.5 Hz, 1H), 8.06 (s, 1H), 7.78 (s, 1H), 7.58 (br. s, 1H), 7.56-7.46 (m, 2H), 7.21-7.08 (m, 2H), 6.99 (t, J=7.8 Hz, 2H), 6.72 (d, J=7.5 Hz, 1H), 65 6.62 (d, J=8.0 Hz, 1H), 5.48 (m, 2H), 3.96 (br. s, 1H), 3.88 (br. s, 1H), 2.84-2.70 (m, 1H), 2.63 (m, 1H), 2.18 (s, 6H), 2.05 (m,

1H), 1.89 (s, 2H), 1.72 (s, 1H), 0.94 (m, 1H), 0.58 (br. s, 1H). HPLC-1: Rt=10.6 min, purity=97.5%; HPLC-2: Rt=9.4 min, purity=95.7%.

Example 10

3-((4-(4-(4-(2,3-Dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Step A. 8-Bromo-2H-benzo[b][1,4]oxazin-3(4H)-one

To a solution of 2-amino-6-bromophenol (1 g, 5.32 mmol) in acetonitrile (10 mL) and water (10 mL) was added sodium bicarbonate (1.028 g, 12.23 mmol). The mixture was cooled to 0° C. and chloroacetyl chloride (0.554 mL, 6.91 mmol) was added dropwise. The reaction was refluxed overnight. After cooling to room temperature, the mixture was diluted with EtOAc, washed with water, dried over anhydrous MgSO₄, filtered, and concentrated to afford the title compound (1.14 g, 94% yield) as a dark brown solid. $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 8.22 (br. s, 1H), 7.23 (dd, J=8.0, 1.4 Hz, 1H), 6.86 (t, J=8.0 Hz, 1H), 6.76 (dd, J=7.9, 1.3 Hz, 1H), 4.74 (s, 2H).

Step B. 8-Bromo-3,4-dihydro-2H-benzo[b][1,4]oxazine

The title compound was prepared using a procedure analogous to bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]

55

quinoline except that 7-bromo-3,7b-dihydro-1H-cyclopropa [c]quinolin-2(1aH)-one was replaced with 8-bromo-2H-benzo[b][1,4]oxazin-3(4H)-one. LCMS, [M+H] $^+$ =214.0. 1 H NMR (400 MHz, CDCl₃) δ 6.90 (dd, J=7.9, 1.5 Hz, 1H), 6.63 (t, J=7.9 Hz, 1H), 6.53 (dd, J=7.9, 1.5 Hz, 1H), 4.33-4.39 (m, 52H), 3.42-3.48 (m, 2H).

Step C. 1-(8-Bromo-2H-benzo[b][1,4]oxazin-4(3H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analogous to 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-20 dimethylphenoxy)butan-1-one except that 5-bromo-1,2,3,4-tetrahydroquinoline, HCl salt was replaced by 8-bromo-3,4-dihydro-2H-benzo[b][1,4]oxazine. LCMS, [M+H]*=404.1.

¹H NMR (400 MHz, CDCl₃) & 7.33 (d, J=8.0 Hz, 1H), 7.26-7.21 (m, 1H), 7.00 (t, J=8.0 Hz, 1H), 6.78-6.71 (m, 2H), 6.64 (d, J=8.1 Hz, 1H), 4.36-4.28 (m, 2H), 3.98 (t, J=5.8 Hz, 2H), 3.95-3.90 (m, 2H), 2.80 (t, J=7.2 Hz, 2H), 2.24 (s, 3H), 2.19 (dt, J=13.1, 6.4 Hz, 2H), 2.02 (s, 3H).

Example 10

Example 10 was prepared using a procedure analogous to Example 9 except that 1-(7-bromo-1a,2-dihydro-1H-cyclo-propa[c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(8-bromo-2H-benzo[b][1,4] oxazin-4(3H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one. LCMS, [M+H]*=526.3. ¹H NMR (400 MHz, CDCl₃) \delta 8.07-7.98 (m, 2H), 7.94 (s, 1H), 7.86 (s, 1H), 7.53-7.40 (m, 2H), 7.32 (d, J=8.0 Hz, 1H), 7.24 (s, 1H), 6.98 (t, J=7.7 Hz, 1H), 6.87 (t, J=7.9 Hz, 1H), 6.71 (d, J=7.7 Hz, 1H), 6.63 (d, J=8.1 Hz, 1H), 5.40 (s, 2H), 4.37-4.29 (m, 2H), 4.02-3.92 (m, 4H), 2.84 (t, J=6.9 Hz, 2H), 2.25-2.13 (m, 5H), 1.98 (s, 3H). HPLC-1: Rt=10.8 min, purity=99.4%; HPLC-2: Rt=10.0 min, purity=99.3%.

Example 11

3-((4-(4-(4-(2,3-Dimethylphenoxy)butanoyl)-2-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Step A.

2-Bromo-N-(3-bromo-2-hydroxyphenyl)propanamide

To a mixture of 2-amino-6-bromophenol (3 g, 15.96 mmol) and sodium bicarbonate (3.35 g, 39.9 mmol) in ethyl acetate (30 mL) and water (10 mL) at 0° C. was added 2-bromopropionyl chloride (1.61 ml, 15.96 mmol) dropwise. The reaction mixture was stirred at 0° C. for 3 h and then diluted with water. The resulting mixture was extracted with EtOAc and the organic layer was washed with brine, dried over anhydrous MgSO4, filtered, and concentrated to afford the title compound (4.7 g, 73% yield). LCMS, [M+H]+=323.8.

Step B. 8-Bromo-2-methyl-2H-benzo[b][1,4]oxazin-3(4H)-one

A mixture of 2-bromo-N-(3-bromo-2-hydroxyphenyl)propanamide (4.72 g, 14.61 mmol) and potassium carbonate (2.020 g, 14.61 mmol) in DMF (50 mL) was stirred at room temperature overnight. At the conclusion of this period, the reaction mixture was diluted with water and extracted with ether. The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (100:0:0 to 0:90:10 hexanes:ethyl acetate:methanol) to afford the title compound (3.35 g, 95% yield) as a brown solid. ¹H NMR (400 MHz, CDCl₃) & 8.17 (br. S, 1H), 7.22 (dd, J=8.0, 1.4 Hz, 1H), 6.85 (t, J=7.9 Hz, 1H), 6.76 (dd, J=7.8, 1.4 Hz, 1H), 4.78 (q, J=6.8 Hz, 1H), 1.64 (dd, J=6.8 Hz, 3H).

Example 11

Example 11 was prepared using a procedure analogous to Example 10 except that 8-bromo-2H-benzo[b][1,4]oxazin-3 (4H)-one was replaced with 8-bromo-2-methyl-2H-benzo[b] [1,4]oxazin-3(4H)-one. LCMS, [M+H]⁺=540.4. ¹H NMR (500 MHz, MeOD) δ 8.03 (s, 1H), 7.95-7.99 (m, 2H), 7.92 (s, 1H), 7.44-7.54 (m, 2H), 7.40 (dd, J=7.8, 1.4 Hz, 1H), 7.26 (br. s, 1H), 6.85-6.95 (m, 2H), 6.65 (d, J=7.8 Hz, 2H), 5.43 (s, 2H), 4.32-4.39 (m, 1H), 4.23-4.31 (m, 1H), 3.92-4.01 (m, 2H), 3.15-3.25 (m, 1H), 2.90-2.98 (m, 1H), 2.80-2.88 (m, 1H), 2.15 (quin, J=6.5 Hz, 2H), 2.09 (s, 3H), 1.91 (s, 3H), 1.30

(d, J=6.4 Hz, 3H). HPLC-1: Rt=11.2 min, purity=99.4%; HPLC-2: Rt=10.2 min, purity=99.4%.

Example 12

3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-2,3,4, 5-tetrahydro-1H-benzo[b]azepin-6-yl)-1H-pyrazol-1yl)methyl)benzoic acid

Step A.
(E)-5-Bromo-3,4-dihydronaphthalen-1(2H)-one oxime

To a solution of 5-bromo-3,4-dihydronaphthalen-1(2H)-one (1.0 g, 4.44 mmol) in pyridine (15 mL) was added hydroxylamine hydrochloride (0.617 g, 8.89 mmol). The reaction mixture was stirred at room temperature for 1 h and then concentrated. The resulting residue was treated with water (60 mL) and extracted with ethyl acetate (60 mL). The organic layer was dried over anhydrous $\rm Na_2SO_4$, filtered, and concentrated to afford the title compound (1.41 g, 99% yield) as white solid. LCMS, [M+Na]⁺=240.0.

Step B. 6-Bromo-2,3,4,5-tetrahydro-1H-benzo[b]azepine

55

60

65

To a solution of (E)-5-bromo-3,4-dihydronaphthalen-1 (2H)-one oxime (1.41 g, 5.87 mmol) in DCM (20 mL) at -10° C. under nitrogen was slowly added a solution of 1.0 M DIBAL-Hinhexane (35.2 mL, 35.2 mmol). Upon completion of addition, the reaction mixture was stirred at room temperature for 2 h. After this time, the reaction mixture was cooled to 0° C. and then sodium fluoride (7.40 g, 176 mmol) and water (3.0 mL) were slowly added. The resulting mixture was stirred at 0° C. for 30 min and then CELITE® was added. The mixture was filtered and rinsed with DCM (100 mL). The filtrate was dried over anhydrous Na2SO4, filtered, and concentrated to provide the crude product. The crude product was converted to the HCl salt with aqueous 1.0 N HCl (3.0 mL) and then purified by preparative HPLC (PHENOMENEX® Axia Luna 5µ C18 30×100 mm; 10 min gradient from 80% $^{15}\,$ A:20% B to 0% A:100% B and 5 min 100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+ 0.1% TFA); detection at 220 nm). The purified product was free based with a solution of saturated sodium bicarbonate (15 mL) and was then extracted with ethyl acetate (20 mL). 20 The organic layer was dried over anhydrous Na₂SO₄, filtered. and concentrated to afford the title compound (612 mg, 45% yield). LCMS, [M+Na]⁺=236.0. ¹H NMR (400 MHz, MeOD) δ 7.12 (dd, J=7.8, 1.4 Hz, 1H), 6.88 (t, J=7.8 Hz, 1H), 6.83 (dd, J=7.8, 1.4 Hz, 1H), 3.08-3.02 (m, 4H), 1.86-1.79 (m, 25 2H), 1.69-1.62 (m, 2H).

Example 12

Example 12 was prepared using a procedure analogous to Example 9 except that 7-bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinoline was replaced with 6-bromo-2,3,4,5-tetrahydro-1H-benzo[b]azepine. LCMS, [M+H]*=538.4. \[^1\text{H}\] NMR (400 MHz, MeOD) \(\delta\) 8.02 (dt, J=7.3, 1.6 Hz, 1H), 7.97 (s, 1H), 7.77 (s, 1H), 7.60-7.49 (m, 3H), 7.36 (dd, J=7.7, 1.3 Hz, 1H), 7.27 (t, J=7.7 Hz, 1H), 7.16 (dd, J=7.7, 1.3 Hz, 1H), 6.97 (t, J=7.9 Hz, 1H), 6.67 (d, J=7.4 Hz, 1H), 6.66 (d, J=8.2 Hz, 1H), 5.50 (s, 2H), 4.65 (dt, J=12.7, 3.4 Hz, 1H), 3.98-3.85 (m, 2H), 3.39 (s, 2H), 2.92 (dd, J=14.1, 6.2 Hz, 1H), 2.82-2.71 (m, 1H), 2.52-2.37 (m, 2H), 2.10 (s, 5H), 1.99-1.86 (m, 2H), 40 1.84 (s, 3H), 1.82-1.73 (m, 1H). HPLC-1: Rt=9.5 min, purity=98.6%; HPLC-2: Rt=8.7 min, purity=98.2%.

Example 13

3-((4-(5-(4-(2,3-Dimethylphenoxy)butanoyl)-2,3,4, 5-tetrahydrobenzo[b][1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

35

40

1-Bromo-2-(3,3-diethoxypropoxy)-3-nitrobenzene

To a mixture of triphenylphosphine (1.323 g, 5.05 mmol), 3,3-diethoxypropan-1-ol (0.748 g, 5.05 mmol) and 6-nitrophenol (1.47 g, 4.01 mmol) in anhydrous THF (10 mL) was added DIAD (0.981 mL, 5.05 mmol) dropwise under nitrogen. The reaction mixture was stirred at room temperature for 18 h and then concentrated. The resulting residue was purified by flash chromatography (0-30% ethyl acetate:hexanes) to 20 afford the title compound (1.47 g, 87% yield) as a light yellow oil. LCMS, [M+Na+2] $^+$ =372.0. 1 H NMR (400 MHz, CDCl₃) 8 7.77 (dd, J=8.0, 1.6 Hz, 1H), 7.73 (dd, J=8.2, 1.6 Hz, 1H), 7.09 (t, J=8.1 Hz, 1H), 4.79 (t, J=5.7 Hz, 1H), 4.21 (t, J=6.2 Hz, 2H), 3.70 (dq, J=9.3, 7.0 Hz, 2H), 3.56 (dq, J=9.3, 7.1 Hz, 25 2H), 2.15 (q, J=6.1 Hz, 2H), 1.22 (t, J=7.1 Hz, 6H).

Step B. 9-Bromo-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepine

To a solution of 1-bromo-2-(3,3-diethoxypropoxy)-3-nitrobenzene (500 mg, 1.436 mmol) in AcOH (5.0 mL) was added zinc (939 mg, 14.36 mmol) and the mixture was stirred at room temperature for 90 min. After this time, the reaction mixture was filtered and the filtrate was concentrated. The 50 resulting residue was dissolved in DCM (5 mL) and treated with TFA (5 mL) and triethylsilane (1.147 mL, 7.18 mmol). The resulting mixture was stirred at room temperature for 1 h and then concentrated. The resulting residue was purified by preparative HPLC (PHENOMENEX® Axia Luna, 5µ, C18 55 30×100 mm; 10 min gradient from 80% A:20% B to 0% A:100% B and 5 min 100% B (A=90% H₂O/10% MeOH+ 0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm). The purified product was free based with a solution of saturated sodium bicarbonate (15 ml) and was 60 then extracted with ethyl acetate (20 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the title compound (181 mg, 53% yield). LCMS, [M+Na]⁺=228.0. ¹H NMR (400 MHz, CDCl₃) δ 7.01 (dd, J=7.8, 1.6 Hz, 1H), 6.68 (t, J=7.9 Hz, 1H), 6.62 (dd, J=7.9, 1.6 65 Hz, 1H), 4.20-4.13 (m, 2H), 3.31-3.22 (m, 2H), 2.08-1.98 (m, 2H).

96

Example 13

Example 13 was prepared using a procedure analogous to Example 9 except that 7-bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinoline was replaced with 9-bromo-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepine. LCMS, [M+H]⁺=540.3. ¹H NMR (400 MHz, MeOD) & 8.05-7.97 (m, 3H), 7.94 (s, 1H), 7.66 (dd, J=6.2, 3.3 Hz, 1H), 7.53 (dt, J=15.1, 7.7 Hz, 2H), 7.20-7.13 (m, 2H), 6.92 (t, J=7.8 Hz, 1H), 6.65 (s, 1H), 6.63 (d, J=2.2 Hz, 1H), 5.47 (s, 2H), 4.79 (ddd, J=13.7, 6.4, 2.9 Hz, 1H), 4.52-4.43 (m, 1H), 3.94-3.79 (m, 2H), 3.59 (td, J=11.6, 1.8 Hz, 1H), 2.92-2.79 (m, 1H), 2.54-2.36 (m, 2H), 2.35-2.20 (m, 1H), 2.10 (s, 3H), 2.08-1.99 (m, 2H), 1.83 (s, 3H), 1.80-1.74 (m, 1H). HPLC-1: Rt=13.7 min, purity=97.8%; HPLC-2: Rt=12.5 min, purity=98.7%.

Example 14

3-((4-(5-(4-(2,3-Dimethylphenoxy)butanoyl)-2-methyl-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Example 14 was prepared using a procedure analogous to Example 13 except that 3,3-diethoxypropan-1-ol was replaced by 4,4-dimethoxybutan-2-ol. LCMS, [M+H] $^+$ = 554.4. 1 H NMR (400 MHz, MeOD) δ 1 H NMR (400 MHz, MeOD) δ 8.04-7.99 (m, 1H), 7.97 (s, 1H), 7.87 (s, 1H), 7.77 (s, 1H), 7.60 (dd, J=7.1, 2.4 Hz, 1H), 7.58-7.49 (m, 2H), 7.20-7.10 (m, 2H), 7.00 (d, J=15.7 Hz, 1H), 6.71 (d, J=12.7 Hz, 1H), 6.69 (d, J=13.4 Hz, 1H), 5.44 (d, J=8.5 Hz, 2H), 4.72 (dt, J=13.6, 3.5 Hz, 1H), 3.93-3.82 (m, 3H), 3.67 (ddd, J=10.4, 6.1, 1.5 Hz, 1H), 2.86-2.77 (m, 1H), 2.52 (ddd, J=15.0, 8.3, 6.7 Hz, 1H), 2.36 (dt, J=15.1, 6.3 Hz, 1H), 2.09 (s, 3H), 2.07-1.99 (m, 2H), 1.79 (s, 3H), 1.77-1.71 (m, 1H), 1.19

10

15

45

50

(d, J=6.2 Hz, 3H). HPLC-1: Rt=9.5 min, purity=99.6%; HPLC-2: Rt=8.8 min, purity=99.5%.

Example 15

3-((4-(1-(2-(2,3-Dimethylphenethoxy)acetyl)-1,2,3, 4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzoic acid

Step A. 1-(5-Bromo-3,4-dihydroquinolin-1(2H)-yl)-2-chloroethanone

To a solution of 5-bromo-1,2,3,4-tetrahydroquinoline, HCl salt (300 mg, 1.42 mmol) and triethylamine (0.591 mL, 4.24 mmol) in EtOAc (5.0 mL) was added 2-chloroacetyl chloride (157 mg, 1.39 mmol) dropwise and the reaction was stirred at room temperature for 30 min. After this time, the reaction mixture was diluted with saturated sodium bicarbonate (30 mL) and then extracted with ethyl acetate (20 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to provide the crude product. The crude product was purified by flash chromatography (0-60% ethyl acetate/hexanes) to afford the title compound (446 mg, 100% yield) as a light brown oil. LCMS, [M+H] $^+$ =290.0. 1 H NMR (400 MHz, CDCl₃) δ 7.43 (d, J=8.5 Hz, 1H), 7.32 (br. s, 1H), 7.08 (t, J=8.0 Hz, 1H), 4.19 (s, 2H), 3.83-3.77 (m, 2H), 2.82 (t, J=6.9 Hz, 2H), 2.02 (dq, J=13.1, 6.7 Hz, 2H).

Step B. 1-(5-Bromo-3,4-dihydroquinolin-1(2H)-yl)-2-(2,3-dimethylphenethoxy)ethanone

To a suspension of sodium hydride (35.1 mg, 1.46 mmol) in anhydrous THF (3.0 mL) under nitrogen was added 2-(2,3dimethylphenyl)ethanol (220 mg, 1.46 mmol). The reaction mixture was stirred at room temperature for 15 min and then a solution of 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-2chloroethanone (352 mg, 1.22 mmol) in anhydrous THF (3.0 mL) was added. The resulting mixture was stirred at room temperature for 18 h. After this time, the reaction mixture was diluted with saturated sodium bicarbonate (55 mL) and then extracted with ethyl acetate (60 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated. The 30 resulting residue was purified by preparative HPLC (PHE-NOMENEX® Axia Luna, 5µ, C18, 30×250 mm; 25 min gradient from 80% A:20% B to 0% A:100% B and 5 min 100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford 35 the title compound (55 mg, 11% yield) as white powder. LCMS, $[M+H]^+=402.1$. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J=8.0 Hz, 1H), 7.30 (br. s, 1H), 7.02-6.96 (m, 4H), 4.20 (s, 2H), 3.74-3.69 (m, 2H), 3.66 (t, J=7.4 Hz, 2H), 2.92 (t, J=7.4 Hz, 2H), 2.78 (t, J=6.9 Hz, 2H), 2.24 (s, 3H), 2.18 (s, 3H), ⁴⁰ 1.99-1.90 (m, 2H).

Example 15

Example 15 was prepared using a procedure analogous to Example 9 except that 1-(7-bromo-1a,2-dihydro-1H-cyclo-propa[c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-2-(2,3-dimethylphenethoxy)ethanone. LCMS, [M+H]⁺=524.3. ¹H NMR (400 MHz, MeOD) δ 8.01 (d, J=7.4 Hz, 1H), 7.95 (d, J=5.5 Hz, 1H), 7.94 (s, 1H), 7.69 (s, 1H), 7.58-7.48 (m, 2H), 7.35-7.16 (m, 3H), 7.00 (d, J=10.3 Hz, 3H), 5.50 (s, 2H), 4.27 (s, 2H), 3.74 (t, J=5.6 Hz, 2H), 3.65 (t, J=6.8 Hz, 2H), 2.92 (t, J=7.0 Hz, 2H), 2.79 (t, J=6.5 Hz, 2H), 2.26 (s, 3H), 2.21 (s, 3H), 1.91 (p, J=6.6 Hz, 2H). HPLC-1: Rt=9.1 min, purity=99.0%; HPLC-2: Rt=8.6 min, purity=99.2%.

30

35

60

Example 16

3-((3-(1-((2-(2,3-Dimethylphenoxy)ethoxy)carbonyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino)propanoic acid

$$\bigcap_{M} \bigcap_{M} \operatorname{CO}_{2H}$$

Step A.
5-Bromo-3,4-dihydroquinoline-1(2H)-carbonyl chloride

To a solution of 5-bromo-1,2,3,4-tetrahydroquinoline, HCl salt (1.00 g, 4.72 mmol), TEA (1.314 mL, 9.43 mmol) and DMAP (0.115 g, 0.943 mmol) in DCM (12 mL) at 0° C. was added diphosgene (0.626 mL, 5.19 mmol) dropwise over a period of 10 min. Upon the conclusion of this period, the reaction mixture was slowly warmed to room temperature where it stirred for 16 h. After this time, the mixture was concentrated in vacuo and the resulting residue was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (0.804 g, 62% yield) as a white solid. LCMS, [M+Na] $^+$ =297.1.

Step B. Ethyl 2-(2,3-dimethylphenoxy)acetate

A mixture of 2,3-dimethylphenol (1.0 g, 8.19 mmol), ethyl bromoacetate (1.0 mL, 9.0 mmol) and cesium carbonate (2.67 g, 8.19 mmol) in DMF (10 mL) was stirred at 80° C. for 16 h. 65 After this time, the reaction mixture was partitioned between EtOAc and water. The organic layer was washed with water

100

and brine, dried and concentrated in vacuo to afford the title compound (1.7 g, 100% yield). LCMS, [M+Na]⁺=231.0.

Step C. 2-(2,3-Dimethylphenoxy)ethanol

To a solution of ethyl 2-(2,3-dimethylphenoxy)acetate (1.7 g, 8.16 mmol) in THF (50 mL) at 0° C. was added lithium borohydride (2 M in THF, 8.16 mL, 16.33 mmol) dropwise over a period of 10 min. At the conclusion of this period, the reaction mixture was slowly warmed to room temperature where it stirred for 16 h. After this time, the reaction mixture was quenched slowly with saturated NH₄Cl, and the organic layer was separated, washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to afford the title compound (1.06 g, 78% yield). LCMS, [M+H]⁺=167.0.

Step D. 2-(2,3-Dimethylphenoxy)ethyl 5-bromo-3,4-dihydroquinoline-1(2H)-carboxylate

A mixture of 5-bromo-3,4-dihydroquinoline-1(2H)-carbonyl chloride (0.05 g, 0.182 mmol), 2-(2,3-dimethylphenoxy) ethanol (0.038 g, 0.228 mmol) and TEA (0.076 mL, 0.546 mmol) in DCM (1.5 mL) was stirred at room temperature for 16 h. To the mixture was then added potassium tert-butoxide (1 M in THF, 0.364 mL, 0.364 mmol) and the resulting mixture was stirred at room temperature for 24 h before being quenched with water. The organic layer was separated and the aqueous phase was extracted with DCM. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuo to provide the crude material. The crude material was purified by flash chromatography (0-50% ethyl acetate/hexanes) to afford the title compound (51 mg, 69.3% yield). LCMS, [M+Na]⁺=427.9.

Step E. 3-Bromobenzyl 4-nitrophenyl carbonate

$$_{\mathrm{Br}}$$

20

with tert-butyl 3-((3-bromobenzyloxy)carbonylamino)propanoate. LCMS, [M+Na]+=428.2.

To a solution of (3-bromophenyl)methanol (10 g, 53.5 mmol) and pyridine (8.65 mL, 107 mmol) in DCM (80 mL) at 0° C. was added a solution of 4-nitrophenyl carbonochloridate (12.93 g, 64.2 mmol) in DCM (20 mL) dropwise. Upon the completion of addition, the reaction mixture was stirred at 5 0° C. for 2 h. After this time, the reaction was quenched with water. The organic layer was separated and washed with water, brine, dried over anhydrous MgSO₄, filtered, and concentrated to afford the title compound (19.5 g, 100%). ¹H NMR (400 MHz, CDCl₃) δ 8.31-8.29 (m, 1H), 8.28-8.25 (m, 1H), 7.61 (t, J=1.6 Hz, 1H), 7.53 (d, J=8.2 Hz, 1H), 7.42-7.34 (m, 3H), 7.30 (d, J=7.8 Hz, 1H), 5.26 (s, 2H).

Step F. tert-Butyl 3-((3-bromobenzyloxy)carbonylamino)propanoate

To a solution of 3-bromobenzyl 4-nitrophenyl carbonate (8 g, 21.58 mmol) in DCM (50 mL) was added N-ethyl-Nisopropylpropan-2-amine (7.47 mL, 43.2 mmol) and tertbutyl 3-aminopropanoate hydrochloride (3.92 g, 21.58 mmol). Upon the completion of addition, the reaction mixture was stirred at room temperature for 1 h and then quenched with water. The resulting mixture was extracted with CH₂Cl₂ and the combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (7.10 g, 89% yield) as a light brown oil. LCMS, [M-tBu+2H]⁺=302.1. ¹H NMR (400 7.19 (m. 2H), 5.31 (br. s. 1H), 5.06 (s. 2H), 3.43 (dd. J=12.1)6.1 Hz, 2H), 2.46 (t, J=6.0 Hz, 2H), 1.45 (s, 9H).

Step G. tert-Butyl 3-((3-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)benzyloxy)carbonylamino)propanoate

The title compound was prepared using a procedure analogous to 4-(2,3-dimethylphenoxy)-1-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one except that 1-(5-bromo-3,4-dihydroquinolin-1 (2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced

Step H. 2-(2,3-Dimethylphenoxy)ethyl 5-(3-((3-tertbutoxy-3-oxopropylcarbamoyloxy)methyl)phenyl)-3, 4-dihydroquinoline-1 (2H)-carboxylate

102

The title compound was prepared using a procedure analogous to methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)picolinate except that 4-(2,3dimethylphenoxy)-1-(5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1one was replaced by tert-butyl 3-((3-(4,4,5,5-tetramethyl-1, 3,2-dioxaborolan-2-yl)benzyloxy)carbonylamino) propanoate, and methyl 4-bromopicolinate was replaced by 2-(2,3-dimethylphenoxy)ethyl 5-bromo-3,4-dihydroquinoline-1(2H)-carboxylate. LCMS, [M-tBu+2H]⁺=547.2. ¹H NMR (400 MHz, CDCl₃) 8 7.64 (d, J=8.1 Hz, 1H), 7.46-7.35 (m, 2H), 7.34-7.27 (m, 1H), 7.27-7.20 (m, 1H), 7.16 (t, J=7.9) Hz, 1H), 7.03 (t, J=7.9 Hz, 1H), 6.97 (d, J=7.5 Hz, 1H), 6.79 (d, J=7.7 Hz, 1H), 6.70 (d, J=8.1 Hz, 1H), 5.12 (s, 2H), 4.60-4.52 (m, 2H), 4.24-4.19 (m, 2H), 3.73 (t, J=6.4 Hz, 2H), 3.41 (dd, J=12.0, 6.0 Hz, 2H), 2.57 (t, J=6.3 Hz, 2H), 2.44 (t, MHz, CDCl₃) δ 7.50 (s, 1H), 7.44 (d, J=7.7 Hz, 1H), 7.29- 40 J=5.9 Hz, 2H), 2.26 (s, 3H), 2.17 (s, 3H), 1.86-1.75 (m, 2H), 1.42 (s, 9H).

Example 16

A solution of 2-(2,3-dimethylphenoxy)ethyl 5-(3-((3-tertbutoxy-3-oxopropylcarbamoyloxy)methyl)phenyl)-3,4-dihydroquinoline-1(2H)-carboxylate (0.0255 g, 0.042 mmol), 4-chlorophenol (10.88 mg, 0.085 mmol) and TFA (0.5 mL, 6.49 mmol) in DCM (1 mL) was stirred at room temperature 50 for 16 h. At the conclusion of this period, the solvent was removed in vacuo. The resulting residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ , C18, 30×75 mm; 10 min gradient from 75% A:25% B to 0% A:100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% $H_2O+0.1\%$ TFA); detection at 220 nm) to afford the title compound (9.5 mg, 40% yield) as a white solid. LCMS, $[M+H]^+=547.2$. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J=8.3 Hz, 1H), 7.41-7.34 (m, 1H), 7.29 (d, J=7.1 Hz, 1H), 7.21 (d, J=4.2 Hz, 2H), 7.16 (t, J=7.9 Hz, 1H), 7.03 (t, 60 J=7.8 Hz, 1H), 6.97 (d, J=7.1 Hz, 1H), 6.79 (d, J=7.5 Hz, 1H), 6.70 (d, J=8.2 Hz, 1H), 5.13 (s, 2H), 4.59-4.53 (m, 2H), 4.24-4.18 (m, 2H), 3.73 (t, J=6.5 Hz, 2H), 3.45 (dd, J=12.0, 6.1 Hz, 2H), 2.72-2.39 (m, 7H), 2.26 (s, 3H), 2.17 (s, 3H), 1.80 (dt, J=12.8, 6.4 Hz, 2H). HPLC-1: Rt=11.3 min, purity=100%; HPLC-2: Rt=10.0 min, purity=99.3%.

The following Examples were prepared in a manner analogous to Example 16.

TABLE 2

Exam- ple	Name	R	< present	LCMS, [M + H] ⁺	$^{1}\mathrm{H}$ NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
17	3-((3-(1-((2-(3- Chloro-2-methyl- phenoxy)ethoxy) carbonyl)-1,2,3,4- tetrahydroquinolin- 5-yl)benzyloxy) carbonylamino) propanoic acid	CI	No	567.1	7.58 (d, J = 7.7 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.27-7.19 (m, 3H), 7.16 (t, J = 7.9 Hz, 1H), 7.05 (t, J = 8.1 Hz, 1H), 6.98 (d, J = 7.8 Hz, 2H), 6.73 (d, J = 7.9 Hz, 1H), 5.13 (s, 2H), 4.61-4.54 (m, 2H), 4.27-4.19 (m, 2H), 3.72 (t, J = 6.5 Hz, 2H), 3.45 (dd, J = 11.8, 5.9 Hz, 2H), 2.64-2.50 (m, 4H), 2.29 (s, 3H), 1.87-1.75 (m, 2H)	11.7 min, 100% 10.3 min, 100%
18	3-((3-(1-((2-(2,3- Dichlorophenoxy) ethoxy)carbonyl)- 1,2,3,4-tetra- hydroquinolin- 5-yl)benzyloxy) carbonylamino) propanoic acid	CI	No	587.1	7.61 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.27-7.21 (m, 2H), 7.18 (t, J = 8.0 Hz, 1H), 7.15- 7.06 (m, 2H), 6.99 (d, J = 7.3 Hz, 1H), 6.84 (dd, J = 7.8, 1.7 Hz, 1H), 5.13 (s, 2H), 4.62-4.56 (m, 2H), 4.34-4.27 (m, 2H), 3.73 (t, J = 6.5 Hz, 2H), 3.47 (dd, J = 12.0, 6.0 Hz, 2H), 2.61 (d, J = 5.7 Hz, 2H), 2.56 (t, J = 6.4 Hz, 2H), 1.85-1.76 (m, 2H)	11.2 min, 100% 10.0 min, 100%
19	3-((3-(1-((2-(2,5- Dichlorophenoxy) ethoxy)carbonyl)- 1,2,3,4-tetra- hydroquinolin- 5-yl)benzyloxy) carbonylamino) propanoic acid	CI	No	587.2	7.62 (d, J = 8.2 Hz, 1H), 7.42- 7.34 (m, 1H), 7.28 (d, J = 8.5 Hz, 2H), 7.27-7.20 (m, 2H), 7.17 (t, J = 7.9 Hz, 1H), 6.97 (d, J = 7.0 Hz, 1H), 6.93 (d, J = 2.2 Hz, 1H), 6.90 (dd, J = 8.4, 2.2 Hz, 1H), 5.13 (s, 2H), 4.62-4.54 (m, 2H), 4.33-4.26 (m, 2H), 3.73 (t, J = 6.5 Hz, 2H), 3.45 (dd, J = 11.9, 6.1 Hz, 2H), 2.64-2.50 (m, 4H), 1.80 (dt, J = 12.9, 6.4 Hz, 2H)	10.9 min, 100% 9.7 min, 100%
20	3-((3-(1-((2-(3-Fluoro-2-methyl-phenoxy)ethoxy) carbonyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy) carbonylamino) propanoic acid	F	No	551.3	7.59 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.26 (d, J = 7.7 Hz, 1H), 7.26-7.19 (m, 2H), 7.16 (t, J = 7.9 Hz, 1H), 7.07 (dd, J = 15.1, 8.2 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.67 (t, J = 8.6 Hz, 1H), 6.61 (d, J = 8.3 Hz, 1H), 5.13 (s, 2H), 4.59-4.54 (m, 2H), 4.27-4.21 (m, 2H), 3.72 (t, J = 6.5 Hz, 2H), 3.45 (dd, J = 11.9, 6.0 Hz, 2H), 2.65-2.48 (m, 4H), 2.15 (s, 3H), 1.85-1.75 (m, 2H)	11.0 min, 100% 9.9 min, 100%
21	3-((3-(3-((2-(3- Chloro-2-methyl- phenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H- cyclopropa[c] quinolin-7-yl)	CI	Yes	579.3	7.45-7.36 (m, 2H), 7.37-7.29 (m, 2H), 7.25 (d, J = 7.1 Hz, 1H), 7.08 (t, J = 8.1 Hz, 2H), 7.02 (d, J = 7.4 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 5.10 (d, J = 12.6 Hz, 2H), 4.60-4.51 (m, 2H), 4.47 (dt, J = 8.8, 4.1 Hz,	13.0 min, 99.6% 12.5 min, 99.6%

		05		NH R	CO ₂ H	
Exam- ple	Name	R	< present	LCMS, [M + H] ⁺	$^{1}\mathrm{H}$ NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
	benzyloxy) carbonylamino) propanoic acid				1H), 4.23 (t, J = 4.0 Hz, 2H), 3.40-3.32 (m, 2H), 2.94 (d, J = 12.8 Hz, 1H), 2.49 (t, J = 6.8 Hz, 2H), 2.21 (s, 3H), 1.89 (td, J = 8.6, 4.6 Hz, 1H), 1.75 (dd, J = 13.4, 7.9 Hz, 1H), 0.93 (td, J = 8.3, 5.0 Hz, 1H), 0.68-0.61 (m, 1H)*	
22	3-((3-(3-((2-(3-Fluoro-2-methyl-phenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl) benzyloxy) carbonylamino) propanoic acid	F	Yes	563.3	7.47-7.36 (m, 2H), 7.36-7.29 (m, 2H), 7.25 (d, J = 7.4 Hz, 1H), 7.09 (dd, J = 15.4, 8.1 Hz, 2H), 7.02 (d, J = 7.3 Hz, 1H), 6.72 (d, J = 8.3 Hz, 1H), 6.66 (t, J = 8.8 Hz, 1H), 5.11 (s, 2H), 4.61-4.50 (m, 2H), 4.46 (dt, J = 8.8, 4.1 Hz, 1H), 4.23 (t, J = 4.2 Hz, 2H), 3.40-3.32 (m, 2H), 2.94 (d, J = 12.9 Hz, 1H), 2.48 (t, J = 6.8 Hz, 2H), 2.07 (s, 3H), 1.88 (td, J = 8.6, 4.6 Hz, 1H), 1.75 (dt, J = 13.6, 6.9 Hz, 1H), 0.92 (td, J = 8.3, 5.0 Hz, 1H), 0.69-0.60 (m, 1H)*	14.8 min, 99.7% 14.6 min, 100%

40

45

50

Example 23

3-((4-(1-((3-(2,3-Dimethylphenyl)propoxy)carbonyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Step A. 3-(2,3-Dimethylphenyl)propyl 5-bromo-3,4-dihydroquinoline-1(2H)-carboxylate

The title compound was prepared using a procedure analogous to 2-(2,3-dimethylphenoxy)ethyl 5-bromo-3,4-dihydro-quinoline-1(2H)-carboxylate except that ethyl 2-(2,3-dimethylphenoxy)acetate was replaced by methyl 3-(2,3-dimethylphenyl)propanoate. LCMS, [M+Na]⁺=426.0.

Example 23

Example 23 was prepared using a procedure analogous to Example 9 except that 1-(7-bromo-1a,2-dihydro-1H-cyclo-propa[c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 3-(2,3-dimethylphenyl)propyl 5-bromo-3,4-dihydroquinoline-1(2H)-carboxylate. LCMS,

^{*&}lt;sup>1</sup>H NMR (400 MHz, MeOD) δ.

 $\begin{array}{l} \text{[M+H]^{+}=}524.3. \ ^{1}\text{H} \ NMR \ (400 \ MHz, \ MeOD)} \ \delta \ 8.02 \ (dt, \ J=7.3, \ 1.5 \ Hz, \ 1H), \ 7.97 \ (s, \ 1H), \ 7.90 \ (s, \ 1H), \ 7.68 \ (s, \ 1H), \ 7.62-7.46 \ (m, \ 3H), \ 7.21 \ (t, \ J=7.9 \ Hz, \ 1H), \ 7.15 \ (dd, \ J=7.6, \ 1.3 \ Hz, \ 1H), \ 7.07-6.94 \ (m, \ 3H), \ 5.50 \ (s, \ 2H), \ 4.23 \ (t, \ J=6.2 \ Hz, \ 2H), \ 3.84-3.70 \ (m, \ 2H), \ 2.82 \ (t, \ J=6.5 \ Hz, \ 2H), \ 2.79-2.70 \ (m, \ 2H), \ 2.79-2.$

2H), 2.29 (s, 3H), 2.22 (s, 3H), 2.00-1.88 (m, 4H). HPLC-1: Rt=11.9 min, purity=100%; HPLC-2: Rt=10.9 min, purity=100%.

The following Examples were prepared in a manner analogous to Example 23.

TABLE 3

		TABLE 3			
Exam-	Name	Formula I	LCMS, [M + H] ⁺	1 H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
24	3-((4-(3-(4-(3- Chloro-2-methyl- phenoxy) butanoyl)- 1a,2,3,7b- tetrahydro-1H- cyclopropa[c] quinolin-7-yl)- 1H-pyrazol-1- yl)methyl) benzoic acid	N-N CI	556.4	8.06 (m, 2H), 7.75 (s, 1H), 7.58 (s, 1H), 7.49 (m, 2H), 7.19 (d, J = 7.4 Hz, 1H), 7.12 (t, J = 7.7 Hz, 1H), 7.02 (m, 1H), 6.66 (d, J = 8.0 Hz, 1H), 5.42 (s, 2H), 4.04-3.94 (m, 1H), 3.88 (m, 1H), 2.78-2.68 (m, 1H), 2.21-2.12 (m, 2H), 2.07 (br. s, 1H), 1.99 (s, 3H), 1.69 (m, 1H), 0.84 (m, 1H), 0.46 (m, 1H)	
25	3-((4-(1-((2-(3- Chloro-2-methyl- phenoxy)ethoxy) carbonyl)-1,2,3,4- tetrahydro- quinolin- 5-yl)-1H- pyrazol-1-yl) methyl)benzoic acid	N-N Cl	546.2	8.08-7.99 (m, 2H), 7.65 (s, 1H), 7.61-7.52 (m, 1H), 7.52-7.39 (m, 3H), 7.11 (t, J = 7.9 Hz, 1H), 7.07-7.00 (m, 2H), 6.97 (d, J = 8.0 Hz, 1H), 5.42 (s, 2H), 4.57-4.51 (m, 2H), 4.23-4.17 (m, 2H), 2.72 (t, J = 6.5 Hz, 2H), 2.34-2.21 (m, 3H), 1.86 (dt, J = 12.7, 6.4 Hz, 2H)	11.4 min, 97.1% 9.9 min, 92.7%
26	3-((4-(3-((2-(3- Chloro-2-methyl- phenoxy)ethoxy) carbonyl)- 1a,2,3,7b- tetrahydro-1H- cyclopropa[c] quinolin-7-yl)- 1H-pyrazol-1- yl)methyl) benzoic acid	N-N CI O	558.2	7.95-7.88 (m, 2H), 7.61 (s, 1H), 7.51 (s, 1H), 7.38-7.27 (m, 2H), 7.16 (s, 1H), 7.04-6.94 (m, 3H), 6.91 (d, J= 7.9 Hz, 1H), 6.65 (d, J= 8.0 Hz, 1H), 5.30 (s, 2H), 4.58-4.48 (m, 1H) 4.48-4.33 (m, 2H), 4.12 (dd, J= 10.4, 6.5 Hz, 2H), 3.32 (dt, J= 3.3, 1.6 Hz, 1H), 2.20 (s, 3H), 2.06 (td, J= 8.6, 4.7 Hz, 1H), 1.68 (dt, J= 13.6, 6.8 Hz, 1H), 0.86-0.77 (m, 1H), 0.67 (dd, J= 9.8, 4.8 Hz, 1H)	10.6 min, 96.6% 10.5 min, 100%

TABLE 3-continued

Exam-	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
27	3-((4-(3-((2-(3-Fluoro-2-methyl-phenoxy)ethoxy) carbonyl)- 1a,2,3,7b- tetrahydro-1H- cyclopropa[c] quinolin-7-yl)- 1H-pyrazol-1- yl)methyl) benzoic acid	N-N F	542.3	8.03 (d, J = 7.2 Hz, 1H), 7.98 (s, 2H), 7.75 (s, 1H), 7.64-7.47 (m, 2H), 7.26 (d, J = 7.3 Hz, 1H), 7.23-7.06 (m, 3H), 6.77 (d, J = 8.3 Hz, 1H), 6.71 (t, J = 8.7 Hz, 1H), 5.54 (s, 2H), 4.60 (dd, J = 10.3, 6.4 Hz, 1H), 4.57-4.46 (m, 2H), 4.29 (d, J = 3.9 Hz, 2H), 3.09 (d, J = 12.5 Hz, 1H), 2.20 (br. s, 1H), 2.12 (s, 3H), 1.85 (br. s, 1H), 1.08 (br. s, 1H), 0.69 (br. s, 1H)*	14.6 min, 99.4% 14.5 min, 100%
28	4-((4-(4-((2-(2,3- Dimethylphenoxy) ethoxy)carbonyl)- 3,4-dihydro-2H- benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl) methyl)benzoic acid	N-N OH OH	528.3	8.07 (d, J = 8.4 Hz, 2H), 7.97 (s, 1H), 7.86-7.92 (m, 1H), 7.73 (br s, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 1.3 Hz, 2 H), 7.05 (t, J = 7.8 Hz, 1H), 6.89 (t, J = 7.9 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 5.44 (s, 2H), 4.59-4.62 (m, 2H), 4.59-4.62 (m, 2H), 4.33-4.38 (m, 2H), 4.22-4.26 (m, 2H), 2.28 (s, 2H), 2.17 (s, 3H)	11.0 min, 100% 10.2 min, 99.8%
29	3-((4-(4-((2-(2,3- Dimethylphenoxy) ethoxy)carbonyl)- 3,4-dihydro-2H- benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl) methyl)benzoic acid	N-N OO OO OO	528.2	8.09 (s, 1H), 8.05 (dt, J = 7.1, 1.7 Hz, 1H), 7.96 (s, 1H), 7.90 (s, 1H), 7.73 (br. s, 1H), 7.43-7.51 (m, 2H), 7.25 (d, J = 1.3 Hz, 1H), 7.05 (t, J = 7.9 Hz, 1H), 6.88 (t, J = 8.0 Hz, 1H), 6.81 (d, J = 7.5 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 5.41 (s, 2H), 4.58-4.63 (m, 2H), 4.34-4.39 (m, 2H), 4.22-4.27 (m, 2H), 3.93-3.98 (m, 2H), 2.28 (s, 3H), 2.18 (s, 3H)	11.2 min, 99.0% 10.3 min, 99.1%
30	4-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo [b][1,4]oxazepin- 9-yl)-1HT-pyrazol- 1-yl)methyl) benzoic acid	N-N OH OH	540.3	8.06 (s, 1H), 8.04 (d, J= 8.4 Hz, 2H), 7.96 (s, 1H), 7.67 (dd, J= 6.1, 3.5 Hz, 1H), 7.37 (d, J= 8.3 Hz, 2H), 7.37 (d, J= 8.3 Hz, 2H), 7.17 (d, J= 2.6 Hz, 1H), 7.16 (s, 1H), 6.93 (t, J= 7.9 Hz, 1H), 6.66 (d, J= 5.8 Hz, 1H), 6.66 (d, J= 5.8 Hz, 1H), 5.49 (s, 2H), 4.79 (dt, J= 6.1, 3.3 Hz, 1H), 4.49 (dt, J= 12.0, 3.0 Hz, 1H), 3.94-3.80 (m, 2H), 3.60 (td, J= 11.8, 1.8 Hz, 1H), 2.91-2.82 (m, 1H), 2.52-2.37 (m, 2H), 2.36-2.22 (m, 1H), 2.11 (s, 3H), 2.10-2.01 (m, 2H), 1.84 (s, 3H), 1.82-1.76 (m, 1H)*	13.5 min, 100% 12.4 min, 100%

		TABLE 3-Continu	ica		
Exam- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\mathrm{H}$ NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
31	4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydro-1H- benzo[b]azepin- 6-yl)-1H-pyrazol- 1-yl)methyl) benzoic acid	N-N OH	538.3	8.22 (d, J = 8.3 Hz, 2H), 7.78 (s, 1H), 7.72 (s, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.47 (dd, J = 7.8, 1.3 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.27 (dd, J = 7.7, 1.1 Hz, 1H), 7.15 (t, J = 7.9 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 5.63 (s, 2H), 4.84-4.78 (m, 1H), 4.14-4.01 (m, 2H), 3.14 (dd, J = 14.1, 6.1 Hz, 1H), 2.97-2.89 (m, 1H), 2.70-2.54 (m, 2H), 2.48 (dt, J = 17.6, 4.7 Hz, 1H), 2.31-2.22 (m, 2H), 2.15-2.08 (m, 2H), 2.06 (s, 3H), 2.00-1.92 (m, 1H), 1.63-1.53 (m, 1H)*	
32	3-((4-(1-(4-(2- Methyl-3- (trifluoromethyl) phenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin- 5-yl)-1H-pyrazol- 1-yl)methyl) benzoic acid	OH N-N CF ₃	578.2	8.02 (dt, J = 6.9, 1.8 Hz, 1H), 7.97 (s, 1H), 7.76 (s, 1H), 7.60-7.49 (m, 3H), 7.31-7.22 (m, 4H), 7.18 (d, J = 7.7 Hz, 1H), 7.13 (d, J = 8.3 Hz, 1H), 5.49 (s, 2H), 4.03 (br. s, 2H), 3.80 (t, J = 6.8 Hz, 2H), 2.85 (t, J = 7.0 Hz, 2H), 2.66 (br. s, 2H), 2.24-2.15 (m, 2H), 2.07 (br. s, 3H), 1.94-1.84 (m, 2H)*	9.9 min, 96.5% 9.1 min, 96.3%

3-((4-(3-((2-(2,6-32A Difluorophenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl) methyl) benzoic acid

7.96 (d, J = 7.5 Hz, 1H), 7.92 (d, J = 11.4 Hz, 2H), 7.70 (s, 1H), 7.60-7.42 (m, 2H), 7.21 (d, J = 7.9 Hz, 1H), 7.17-7.05 (m, 2H), 7.05-6.82 (m, 3H), 5.47 (s, 2H), 4.55-4.27 (m, 4H), 3.00 (d, J = 12.7 Hz, 1H), 2.24-2.08 (m, 1H), 1.76 (d, J = 20.6 Hz, 1H), 1.29 (s, 1H), 1.16-0.98 (m, 1H), 0.73-0.98 (m, 1H), 0.73-

546.1

9.5 min, 82.7% 9.8 min, 99.0% 0.59 (m, 1H)*

		114			
		TABLE 3-contin	ued		
Exam- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
32B	3-((4-(3-((2-(4- Chloro-3- methoxyphenoxy) ethoxy)carbonyl)- 1a,2,3,7b- tetrahydro-1H- cyclopropa[c] quinolin-7-yl)- 1H-pyrazol-1-yl) methyl) benzoic acid	CO ₂ H CO ₂ H OM	576.0	8.12-8.04 (m, 1H), 8.01 (s, 1H), 7.82 (s, 1H), 7.61 (s, 1H), 7.57-7.46 (m, 2H), 7.33-7.27 (m, 1H), 7.22 (d, J = 8.7 Hz, 1H), 7.07 (d, J = 3.5 Hz, 2H), 6.52 (d, J = 2.3 Hz, 1H), 6.42 (dd, J = 8.7, 2.4 Hz, 1H), 5.50 (s, 2H), 4.67-4.34 (m, 3H), 4.25-4.11 (m, 2H), 3.85 (s, 3H), 3.08 (d, J = 12.9 Hz, 1H), 2.13-2.03 (m, 1H), 1.77 (dd, J = 13.5, 7.9 Hz, 1H), 1.03 (td, J = 8.3, 5.2 Hz, 1H), 0.77 (dd, J = 9.5, 4.7 Hz, 1H)	9.8 min, 100.0% 10.2 min, 97.5%
32C	4-Chloro-3-((4-(3-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzoic acid	O OH CI CI	594.0	8.04 (dd, J = 8.3, 2.0 Hz, 1H), 8.02-7.98 (m, 1H), 7.86 (s, 1H), 7.71 (s, 1H), 7.55 (d, J = 8.3 Hz, 1H), 7.29 (m, 1H), 7.10 (d, J = 4.2 Hz, 2H), 7.09 - 7.03 (m, 1H), 7.00 (d, J = 7.1 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 5.60 (s, 2H), 4.68-4.58 (m, 1H), 4.58-4.42 (m, 2H), 4.29-4.13 (m, 2H), 3.10 (d, J = 13.1 Hz, 1H), 2.28 (s, 3H), 2.20-2.04 (m, 1H), 1.78 (dd, J = 13.5, 7.9 Hz, 1H), 1.04 (td, J = 8.3, 5.2 Hz, 1H), 0.78 (dd, J = 9.9, 5.0 Hz, 1H)	11.0 min, 100% 11.1 min, 100%

3-((4-((1aR, 7bS)-3-(4-(2,4,5-Trichloro-phenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzoic acid 32D

612.1

10.88 (br. s, 1H), 8.147.99 (m, 2H), 7.80 (s, 1H),
7.61 (s, 1H), 7.57-7.44
(m, 1H), 7.36 (s, 2H), 7.237.09 (m, 2H), 6.95 (s, 2H),
5.48 (s, 2H), 5.21-4.79 (m,
1H), 4.05 (s, 2H), 2.80 (s,
2H), 2.67-2.42 (m, 1H),
2.33-2.04 (m, 3H),
1.92-1.56 (m, 1H),
1.10-0.83 (m, 1H),
0.66-0.43 (m, 1H)

		17 (DEE 5 CORCING	- Cu		
Exam- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
32E	3-((4-((1aR,7bS)- 3-(2-((2,4,5- Trichloro- phenoxy)methyl) cyclopropane- carbonyl)- 1a,2,3,7b- tetrahydro-1H- cyclopropa[c] quinolin-7-yl)- 1H-pyrazol- 1-yl)methyl) benzoic acid	N-N CI CI CI	624.1	8.10 (d, J = 7.3 Hz, 1H), 8.03 (s, 1H), 7.87 (s, 1H), 7.65 (s, 1H), 7.61-7.46 (m, 2H), 7.34 (s, 1H), 7.24-7.08 (m, 3H), 6.83 (s, 1H), 5.52 (s, 2H), 5.17- 4.84 (m, 1H), 4.23-3.95 (m, 1H), 3.61 (s, 1H), 2.93-2.62 (m, 1H), 2.25-1.92 (m, 3H), 1.88- 1.67 (m, 1H), 1.55-1.34 (m, 1H), 1.19-0.97 (m, 2H), 0.93-0.69 (m, 1H)	13.3 min, 97.5% 12.2 min, 94.7%
32F	3-((4-(1-(4-(4- Bromo-2,3- dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin- 5-yl)-1H- pyrazol-1-yl) methyl) benzoic acid	N-N Br	603.8	8.08 (dt, J = 6.7, 1.7 Hz, 1H), 8.02 (s, 1H), 7.65 (s, 1H), 7.57-7.48 (m, 2H), 7.35-7.28 (m, 2H), 7.24-7.15 (m, 2H), 6.57-6.48 (m, 2H), 5.48 (s, 2H), 3.93-3.84 (m, 2H), 3.79 (t, J = 6.9 Hz, 2H), 2.78 (t, J = 7.0 Hz, 2H), 2.59-2.47 (m, 2H), 2.24 (s, 3H), 2.17 (dt, J = 12.7, 6.5 Hz, 2H), 2.00-1.78 (m, 5H)	
32G	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)-3-methyl- 1H-pyrazol-1- yl)methyl) benzoic acid	N-N N-N O	538.3	8.02-7.93 (m, 1H), 7.86 (s, 1H), 7.54- 7.44 (m, 2H), 7.42-7.29 (m, 1H), 7.23 (m, 2H), 7.17-7.04 (m, 1H), 6.94 (t, J = 7.9 Hz, 1H), 6.71- 6.60 (m, 2H), 5.35 (s, 2H), 3.88 (m, 2H), 3.75 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 7.0 Hz, 2H), 2.46-2.32 (m, 2H), 2.18- 2.05 (m, 8H), 1.82 (dd, J = 13.4, 6.7 Hz, 5H)*	9.7 min, 99.4% 9.0 min, 99.2%
32H	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)-5-methyl- 1H-pyrazol-1- yl)methyl) benzoic acid	O OH	538.3	7.96 (d, J = 7.7 Hz, 1H), 7.71 (s, 1H), 7.71 (s, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.40 (d, J = 7.7 Hz, 1H), 7.32 (s, 1H), 7.29-7.16 (m, 2H), 7.16-7.04 (m, 1H), 6.95 (t, J = 7.9 Hz, 1H), 6.69 (d, J = 7.5 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 5.46 (s, 2H), 3.90 (m, 2H), 3.75 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 7.0 Hz, 2H), 2.46-2.33 (m, 2H), 2.14 (s, 3H), 2.13-2.08 (m, 2H), 2.06 (s, 3H), 1.93-1.74 (m, 5H)*	9.8 min, 99.6% 9.0 min, 98.8%

TABLE 3-continued

Exam- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
32.1	3-((4-(1-(4-(2,3,5- Trimethylphenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)-1H-pyrazol- 1-yl)methyl) benzoic acid	N-N CO ₂ H	538.1	7.98 (dt, J = 7.2, 1.5 Hz, 1H), 7.91 (s, 1H), 7.66-7.55 (m, 1H), 7.54-7.44 (m, 3H), 7.28-718 (m, 2H), 7.18-7.03 (m, 1H), 6.47 (s, 2H), 5.43 (s, 2H), 3.88-3.77 (m, 2H), 3.72 (t, J = 6.8 Hz, 2H), 2.75 (t, J = 6.8 Hz, 2H), 2.75 (t, J = 6.8 Hz, 2H), 2.79 (s, 3H), 2.16-2.02 (m, 2H), 1.96 (s, 3H), 1.84-1.72 (m, 2H), 1.64 (s, 3H)*	
32K	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)-1H-pyrazol- 1-yl)methyl)- 2,4-difluoro- benzoic acid	F CO ₂ H	560.1	8.04 (dd, J = 15.1, 8.6 Hz, 1H), 7.61 (s, 1H), 7.43 (s, 1H), 7.30-7.07 (m, 4H), 6.95 (t, J = 7.8 Hz, 1H), 6.65 (t, J = 8.9 Hz, 2H), 5.49 (s, 2H), 3.93-3.80 (m, 2H), 3.73 (t, J = 6.8 Hz, 2H), 2.80 (t, J = 6.8 Hz, 2H), 2.55-2.37 (m, 2H), 2.11 (dt, J = 12.4, 6.3 Hz, 2H), 2.04 (s, 3H), 1.85- 1.64 (m, 5H)*	9.8 min, 99.5% 10.1 min, 100%

55

60

65

Example 33

2-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)thiazol-2-yl)methoxy) benzoic acid

$$\begin{array}{c} \text{S} \\ \text{O} \\ \text{$$

Step A. (5-Bromothiazol-2-yl)methanol

To a solution of sodium borohydride (0.030 g, 0.781 mmol) in MeOH (2.0 mL) was added a solution of 5-bromothiazole-2-carbaldehyde (0.100 g, 0.521 mmol) in MeOH (1.00 mL) dropwise over a period of 5 min at room temperature. Upon the conclusion of this period, the reaction mixture was stirred at room temperature for 1 h. After this time, the solvent was removed in vacuo and the resulting residue was partitioned between EtOAc and water. The organic layer was separated and the aqueous phase was extracted with EtOAc. The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to afford the title compound (0.067 g, 66% yield) as a dark oil. LCMS, [M+H]⁺=195.9.

Step B. 4-(2,3-Dimethylphenoxy)-1-(5-(2-(hydroxymethyl)thiazol-4-yl)-3,4-dihydroquinolin-1 (2H)-yl)butan-1-one

 $^{^{*1}\}mbox{H}$ NMR (400 MHz, MeOD) $\delta.$

50

The title compound was prepared using a procedure analogous to methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)picolinate except that methyl 4-bromopicolinate was replaced with (5-bromothiazol-2-yl) methanol. LCMS, [M+H]⁺=437.1. ¹H NMR (400 MHz, 5 CDCl₂) δ 7.33 (d, J=7.0 Hz, 1H), 7.26-7.19 (m, 2H), 7.06 (s.

1H), 7.03-6.95 (m, 1H), 6.73 (d, J=7.5 Hz, 1H), 6.63 (d, J=8.2 Hz, 1H), 5.01 (s, 2H), 3.92 (t, J=5.2 Hz, 2H), 3.79 (t, J=6.9 Hz, 2H), 2.74 (t, J=7.3 Hz, 2H), 2.62 (t, J=6.2 Hz, 2H), 2.25-2.11 (m, 5H), 1.93 (s, 3H), 1.89-1.80 (m, 2H).

Example 33

To a solution of 4-(2,3-dimethylphenoxy)-1-(5-(2-(hydroxymethyl)thiazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl) butan-1-one (0.010 g, 0.023 mmol), Ph₃P (7.81 mg, 0.030 mmol) and methyl 2-hydroxybenzoate (4.36 mg, 0.029 mmol) in THF (10 mL) was added DEAD (4.71 μ L, 0.030 mmol) under sonication. The reaction mixture was sonicated for 20 min and then stirred at room temperature for 16 h. After $\ ^{20}$ this time, the reaction mixture was quenched with water and extracted with EtOAc. The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The resulting residue was dissolved in THF (0.20 mL), and 4 M LiOH (0.023 mL, 0.092 mmol) was added. The resulting 25 mixture was stirred at room temperature for 5 h. After this time, the mixture was adjusted to a pH of 6-7 with 1 N HCl and then extracted with EtOAc. The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide a residue. The residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ , C18, 30×75 mm; 10 min gradient from 75% A:25% B to 0% A:100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+ $0.\overline{1}\%$ TFA); detection at 220 nm) to afford Example 33 (3 mg, 23% yield) as an off-white solid. LCMS, $[M+H]^+=557.2$. ¹H NMR (400 MHz, DMSO-d₆) δ 8.15 (dd, J=7.7, 1.6 Hz, 1H), 7.80-7.61 (m, 2H), 7.58-7.51 (m, 1H), 7.44-7.26 (m, 2H), 7.18 (dd, J=12.6, 5.0 Hz, 2H), 7.02-6.97 (m, 1H), 6.72 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.2 Hz, 1H), 5.63 (s, 2H), 4.01-3.87 (m, 2H), 3.78 (t, J=6.8 Hz, 2H), 2.73 (t, J=7.2 Hz, 2H), 2.68-2.58 (m, 2H), 2.26-2.08 (m, 5H), 1.94 (s, 3H), 1.84 (dt, J=13.2, 6.6 Hz, 2H). HPLC-1: Rt=11.5 min, purity=100%; HPLC-2: Rt=10.3 min, purity=98.0%.

Example 34

3-((5-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)thiazol-2-yl)methyl)benzoic acid

Step A. Methyl 3-(5-bromothiazol-2-yloxy)benzoate

A mixture of 2,5-dibromothiazole (500 mg, 2.06 mmol), methyl 3-hydroxybenzoate (313 mg, 2.06 mmol) and potassium carbonate (341 mg, 2.47 mmol) in DMF (4 mL) was heated at 140° C. in a microwave reactor for 20 min. After cooling to room temperature, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was separated, washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (520 mg, 80% yield). LCMS, [M+H]*=315.9.

Example 34

Example 34 was prepared using a procedure analogous to Example 2 except that methyl 4-bromopicolinate was replaced with methyl 3-(5-bromothiazol-2-yloxy)benzoate. LCMS, [M+H]⁺=543.4. ¹H NMR (400 MHz, CD₃CN) δ 7.99-7.89 (m, 2H), 7.65-7.54 (m, 2H), 7.37 (br. s, 1H), 7.29-7.17 (m, 2H), 7.08 (s, 1H), 6.99 (t, J=7.9 Hz, 1H), 6.70 (t, 35 J=7.1 Hz, 2H), 3.92 (t, J=5.8 Hz, 2H), 3.71 (t, J=6.6 Hz, 2H), 2.71 (t, J=7.1 Hz, 2H), 2.64 (t, J=6.3 Hz, 2H), 2.17 (s, 3H), 2.08 (dt, J=13.0, 6.5 Hz, 2H), 1.91 (s, 3H), 1.83 (dt, J=13.1, 6.6 Hz, 2H). HPLC-1: Rt=14.2 min, purity=96.9%; HPLC-2: Rt=13.5 min, purity=95.7%.

Example 35

2-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino)acetic acid

20

40

To a degassed solution of 1-(5-bromo-3,4-dihydroquino- $\lim_{t\to 0} 1(2H)-y(t)-4-(2,3-\dim_{t}^{2}) + \lim_{t\to 0} 1(2H)-y(t)-2H$ g, 0.537 mmol), 4-(hydroxymethyl)phenylboronic acid 25 (0.122 g, 0.805 mmol) and potassium carbonate (0.223 g, 1.611 mmol) in dioxane (3.00 mL)/water (1.20 mL) was added tetrakis(triphenylphosphine)palladium (0.016 g, 0.013 mmol). Upon completion of addition, the vial was purged with argon, sealed and stirred at 90° C. for 16 h. After this time, the reaction mixture was partitioned between water and EtOAc, and the organic layer was separated. The aqueous phase was extracted with EtOAc and the combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide the crude material. The crude material was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (0.215 g, 93% yield) as a clear colorless oil. LCMS, [M+H]⁺=430.2.

Step B. 4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1, 2,3,4-tetrahydroquinolin-5-yl)benzyl 4-nitrophenyl carbonate

122

The title compound was prepared using a procedure analogous to 3-bromobenzyl 4-nitrophenyl carbonate except that (3-bromophenyl)methanol was replaced with 4-(2,3-dimethyl)phenoxy)-1-(5-(4-(hydroxymethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one. LCMS, [M+H]⁺=595.2. ¹H NMR (400 MHz, CDCl₃) & 8.32-8.16 (m, 2H), 7.44 (d, J=7.8 Hz, 2H), 7.37 (d, J=9.1 Hz, 2H), 7.28-7.13 (m, 4H), 7.09 (s, 1H), 6.98 (t, J=7.8 Hz, 1H), 6.72 (d, J=7.4 Hz, 1H), 6.62 (d, J=8.0 Hz, 1H), 5.31 (s, 2H), 3.92 (br. s, 2H), 3.76 (t, J=6.7 Hz, 2H), 2.74 (t, J=7.1 Hz, 2H), 2.44 (br. s, 2H), 2.29-2.08 (m, 5H), 1.92 (s, 3H), 1.84-1.71 (m, 2H).

Step C. Methyl 2-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino)acetate

A solution of 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1, 2,3,4-tetrahydroquinolin-5-yl)benzyl 4-nitrophenyl carbonate (0.020 g, 0.034 mmol), methyl 2-aminoacetate hydrochloride (5.07 mg, 0.040 mmol) and TEA (9.38 μL, 0.067 mmol) in DCM (0.200 mL) was stirred at room temperature for 16 h. After this time, the reaction mixture was quenched with 1 N NaOH. The organic layer was washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated in 55 vacuo. The resulting residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ, C18, 30×100 mm; 10 min gradient from 75% A:25% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford the title compound (11.6 mg, 63% yield) as a clear colorless oil. LCMS, [M+H]⁺=545.2. ¹H NMR (400 MHz, MeOD) δ 7.37 (d, J=7.9 Hz, 2H), 7.25 (d, J=7.4 Hz, 2H), 7.13 (d, J=7.5 Hz, 1H), 7.09 (d, J=6.8 Hz, 2H), 6.98 (t, J=7.9 Hz, 1H), 6.72 65 (d, J=7.5 Hz, 1H), 6.66 (d, J=8.1 Hz, 1H), 5.14 (s, 2H), 3.87 (s, 3H), 3.79-3.63 (m, 6H), 2.82 (t, J=6.9 Hz, 2H), 2.35 (s, 2H), 2.20-2.04 (m, 5H), 1.87-1.66 (m, 5H).

25

30

40

45

Example 35

Example 35 was prepared using a procedure analogous to Example 2 except that methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)picolinate was replaced with methyl 2-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino)acetate. LCMS, [M+H]+531.2. HNMR (400 MHz, CDCl₃) 8 7.38 (d, J=7.9 Hz, 2H), 7.24 (s, 2H), 7.20 (t, J=7.6 Hz, 2H), 7.11 (d, J=7.7 Hz, 1H), 7.00 (t, J=7.9 Hz, 1H), 6.74 (d, J=7.5 Hz, 1H), 6.63 (d, J=8.1 Hz, 1H), 5.17 (s, 2H), 4.07 (d, J=5.6 Hz, 2H), 3.93 (br. s, 2H), 3.78 (t, J=7.0 Hz, 2H), 2.78 (t, J=7.2 Hz, 2H), 2.45 (br. s, 2H), 2.25-2.12 (m, 5H), 1.92 (s, 3H), 1.84-1.74 (m, 2H). HPLC-1: Rt=10.4 min, purity=100%; HPLC-2: Rt=9.3 min, purity=100%.

Example 36

3-(Cyclopropyl((3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy) carbonyl)amino)propane-1-sulfonic acid

Step A. 3-(Cyclopropylamino)propane-1-sulfonic

To a solution of 1,3-propane sultone (2.246 g, 18.39 mmol) in THF (20.0 mL) was added cyclopropanamine (1.214 mL, 17.51 mmol) at room temperature. Upon completion of addition, the reaction mixture was stirred at 40° C. for 30 min, at which point the mixture became a thick white paste. At the conclusion of this period, the reaction mixture was vigorously

124

stirred at 65° C. for 2 h. After cooling to room temperature, the resulting solid was collected by filtration to afford the tilted compound (0.522 g, 17% yield) as a white solid. $^1\mathrm{H}$ NMR (400 MHz, DMSO-d₆) δ 8.67 (br. s, 1H), 3.12 (t, J=6.9 Hz, 2H), 2.72-2.63 (m, 1H), 2.60 (t, J=6.8 Hz, 2H), 2.51-2.46 (m, 1H), 1.97-1.85 (m, 2H), 0.79-0.70 (m, 4H).

Step B. 3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1, 2,3,4-tetrahydroquinolin-5-yl)benzyl 4-nitrophenyl carbonate

The title compound was prepared using a procedure analogous to 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyl 4-nitrophenyl carbonate except that 4-(hydroxymethyl)phenylboronic acid was replaced with 3-(hydroxymethyl)phenylboronic acid. LCMS, [M+H]⁺= 595.3.

Example 36

To a solution of 3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyl 4-nitrophenyl carbonate (0.020 g, 0.034 mmol) and DIPEA (0.018 mL, 0.101 mmol) in DCM (0.5 mL) was added 3-(cyclopropylamino) propane-1-sulfonic acid (7.54 mg, 0.042 mmol). The resulting mixture was stirred at room temperature for 3 days. At the conclusion of this period, the solvent was removed in vacuo, 55 and the resulting residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5µ, C18, 30×75 mm; 10 min gradient from 70% A:30% B to 0% A:100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/ 10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 36 (4.4 mg, 20% yield). LCMS, [M+H]⁺=635.3. ¹H NMR (400 MHz, MeOD) δ 7.42-7.37 (m, 2H), 7.33-7.25 (m, 2H), 7.21-7.14 (m, 2H), 7.08 (br. s, 1H), 6.99 (t, J=7.9 Hz, 1H), 6.73 (d, J=7.5 Hz, 1H), 6.68 (d, J=8.1 Hz, 1H), 5.16 (s, 2H), 3.90 (br. s, 2H), 3.76 (t, J=7.0 Hz, 2H), 3.43 (t, J=7.3 Hz, 2H), 2.85 (t, J=6.9 Hz, 2H), 2.82-2.74 (m, 2H), 2.65 (ddd, J=10.8, 7.2, 3.9 Hz, 1H), 2.39 (br. s, 1H), 2.20-2.10 (m, 5H),

10

15

20

35

40

 $2.10\text{-}2.01~(m,\ 2H),\ 1.90\text{-}1.70~(m,\ 5H),\ 0.78~(dd,\ J=12.4,\ 6.9~Hz,\ \ 2H),\ \ 0.71\text{-}0.62~(m,\ \ 2H).\ \ HPLC-2:\ \ Rt=8.4~min,\ purity=100\%.$

Step B. 3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1, 2,3,4-tetrahydroquinolin-5-yl)benzyl piperazine-1-carboxylate

Example 37

3-(4-((3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonyl) piperazin-1-yl)propanoic acid

To a solution of 1-tert-butyl 4-(3-(1-(4-(2,3-dimethylphe-noxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyl)piperazine-1,4-dicarboxylate (0.16 g, 0.25 mmol) in DCM (1.0 mL) was added TFA (1 mL, 12.98 mmol). Upon completion of addition, the reaction mixture was stirred at room temperature for 2 h. After this time, the pH was adjusted to 7-8 with 1 NNaOH and saturated NaHCO₃. The organic layer was separated, washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated to afford the title compound (115 mg, 84% yield). LCMS, [M+H]⁺=542.2.

Step A. 1-tert-Butyl 4-(3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyl)piperazine-1,4-dicarboxylate

The title compound was prepared using a procedure analogous to Example 36 except that 3-(cyclopropylamino)propane-1-sulfonic acid was replaced by tert-butyl piperazine-1-carboxylate. LCMS, [M-Boc+2H]⁺=542.2.

Example 37

The mixture of 3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyl piperazine-1-carboxylate (0.050 g, 0.092 mmol), methyl 3-bromopropanoate (0.019 g, 0.115 mmol) and K₂CO₃ (0.026 g, 0.185 mmol) in acetonitrile (1.0 mL) was stirred at 60° C. for 16 h. After this time, 4 M LiOH (0.2 ml, 0.800 mmol) was added and the resulting mixture was stirred at room temperature for 16 h. The cloudy mixture was adjusted to pH 3-4 with TFA and 50 concentrated. The resulting residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5µ, C18, 30×75 mm; 10 min gradient from 80% A:20% B to 0% A:100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 37 (19.6 mg, 33% yield) as a white solid. LCMS, $[M+H]^{+}=614.3.$ ¹H NMR (400 MHz, MeOD) δ 7.50-7.41 (m, 2H), 7.38-7.28 (m, 2H), 7.25 (s, 1H), 7.22-7.18 (m, 1H), 7.16 (s, 1H), 7.04(t, J=7.9 Hz, 1H), 6.78(d, J=7.5 Hz, 1H), 6.73(d, J=7 60 J=8.2 Hz, 1H), 5.25 (s, 2H), 3.96 (br. s, 4H), 3.81 (t, J=7.0 Hz, 4H), 3.50 (t, J=7.0 Hz, 4H), 3.39 (br. s, 2H), 2.89 (dd, J=15.4, 7.0 Hz, 4H), 2.44 (s, 2H), 2.27-2.13 (m, 5H), 1.89 (s, 3H), 1.83 (dt, J=13.5, 6.8 Hz, 2H). HPLC-1: Rt=11.0 min, purity=92.1%; HPLC-2: Rt=11.1 min, purity=92.6%.

The following Examples were prepared in a manner analogous to Example 35.

TABLE 4

		Y X A	R _{5b}				
Ex- am- ple	Name	XY	V R _{5b}	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	Synthesis Comment
38	1-((4-(1- (4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) carbonyl)aze- tidine-3- carboxylic acid	CO ₂ H	CH ₂ Me	557.3	7.36 (d, J = 8.0 Hz, 2H), 7.26-7.20 (m, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.4 Hz, 1H), 7.00 (t, J = 7.9 Hz, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 5.14 (s, 2H), 4.24 (d, J = 7.6 Hz, 4H), 3.93 (br. s, 2H), 3.79 (t, J = 7.0 Hz, 2H), 3.46 (dt, J = 15.0, 7.5 Hz, 1H), 2.79 (t, J = 7.2 Hz, 2H), 2.46 (br. s, 2H), 2.25-2.13 (m, 5H), 1.91 (s, 3H), 1.80 (dt, J = 13.2, 6.6 Hz, 2H)	10.7 min, 98.8% 9.5 min, 98.8%	Amino acid used, no hydro- lysis step
39	2-(((4-(1- (4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) carbonyl) (methyl)amino) acetic acid	OH OH	CH ₂ Me	545.2	7.38 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 7.9 Hz, 1H), 7.25-7.14 (m, 4H), 7.12 (d, J = 5.8 Hz, 1H), 7.00 (t, J = 7.9 Hz, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 5.18 (d, J = 11.2 Hz, 2H), 4.09 (d, J = 9.0 Hz, 2H), 3.93 (s, 2H), 3.77 (d, J = 6.4 Hz, 2H), 3.03 (s, 3H), 2.78 (t, J = 7.1 Hz, 2H), 2.46 (s, 2H), 2.27-2.11 (m, 5H), 1.92 (s, 3H), 1.85-1.73 (m, 2H)	10.8 min, 100% 9.3 min, 100%	Amino ester used
40	1-((4-(1- (4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) carbonyl) pyrrolidine- 2-carboxylic acid	O N N N N N N N N N N N N N N N N N N N	CH ₂ Me	571.2	7.38 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 6.8 Hz, 1H), 7.31-7.14 (m, 4H), 7.10 (d, J = 6.7 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.64 (d, J = 8.2 Hz, 1H), 5.22 (s, 2H), 4.43 (dd, J = 8.3, 2.9 Hz, 1H), 3.99-3.88 (m, 2H), 3.77 (t, J = 6.8 Hz, 2H), 3.61-3.52 (m, 2H), 3.52-3.41 (m, 2H), 2.76 (t, J = 7.2 Hz, 2H), 2.46 (br. s, 2H), 2.41-2.31 (m, 1H), 2.25-2.13 (m, 5H), 2.13-2.03 (m, 1H),	11.0 min, 100% 9.6 min, 100%	Amino acid used, no hydro- lysis step

		Y X A	N	R_{5b}				
Ex- am- ple	Name		V	R _{5b}	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	Synthesis Comment
46	3-(((4-(1- (4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)thiazol- 2-yl)methoxy) carbonyl- amino) propanoic acid	CO ₂ H NH	CH_2	Me	552.2	7.40-7.31 (m, 1H), 7.29-7.18 (m, 2H), 7.08 (s, 1H), 7.00 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 5.50-5.43 (m, 1H), 5.41 (s, 2H), 3.92 (br. s, 2H), 3.79 (t, J = 6.8 Hz, 2H), 3.50 dd, J = 11.8, 5.9 Hz, 2H), 2.76 (t, J = 7.2 Hz, 2H), 2.69-2.55 (m, 4H), 2.24-2.08 (m, 5H), 1.92 (s, 3H), 1.85 (dd, J = 13.3, 6.7 Hz, 2H)	9.9 min, 99.7% 9.0 min, 99.7%	Amino acid used, no hydro- lysis step
47	3-((3-(1- ((2-(3- Fluoro-2- methyl- phenoxy) earbonyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) carbonyl- amino) butanoic acid	HN CO ₂ H	O	F	565.3	7.58 (d, J = 8.1 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.26-7.19 (m, 2H), 7.16 (t, J = 7.9 Hz, 1H), 7.07 (dd, J = 15.1, 8.2 Hz, 1H), 7.01-6.94 (m, 1H), 6.67 (t, J = 8.7 Hz, 1H), 5.19 (d, J = 7.6 Hz, 1H), 5.19 (d, J = 7.6 Hz, 1H), 5.12 (s, 2H), 4.60-4.53 (m, 2H), 4.26-4.19 (m, 2H), 4.16-4.04 (m, 1H), 3.72 (t, J = 6.5 Hz, 2H), 2.56 (t, J = 6.3 Hz, 4H), 2.14 (d, J = 1.8 Hz, 3H), 1.86-1.75 (m, 2H), 1.25 (d, J = 6.8 Hz, 3H)	11.2 min, 100% 9.9 min, 100%	Amino acid used, no hydro- lysis step
48	3-((3-(1- ((2-(3- Chloro-2- methyl- phenoxy) carbonyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) (carbonyl- amino)	HN CO ₂ H	O	Cl	581.3	7.58 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.26-7.20 (m, 2H), 7.16 (t, J = 7.9 Hz, 1H), 7.05 (t, J = 8.1 Hz, 1H), 6.98 (d, J = 7.9 Hz, 2H), 6.73 (d, J = 8.0 Hz, 1H), 5.20 (br s, 1H), 5.13 (s, 2H), 4.59-4.53 (m, 2H), 4.25-4.18 (m, 2H), 4.15-4.04 (m, 1H), 3.72	11.9 min, 100% 10.4 min, 100%	Amino acid used, no hydro- lysis step

		A A	R_{5}				
Ex- am- ple	Name	XY	V R ₅	LCMS, $_b$ [M + H] ⁺	1 H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	Synthesis Comment
	butanoic acid				(t, J = 6.5 Hz, 2H), 2.59- 2.53 (m, 4H), 2.29 (s, 3H), 1.86-1.75 (m, 2H), 1.25 (d, J = 6.8 Hz, 3H)		
49	4-((3-(1- ((2-(3- Chloro-2- methyl- phenoxy) ethoxy) carbonyl- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) carbonyl- amino)-2- hydroxy- butanoic acid	CO ₂ H OH	O CI	1 597.3	7.58 (d, J = 7.9 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 7.4 Hz, 1H), 7.26 (d, J = 7.4 Hz, 1H), 7.19 (m, 2H), 7.15 (t, J = 7.9 Hz, 1H), 7.05 (t, J = 8.1 Hz, 1H), 7.00-6.93 (m, 2H), 6.73 (d, J = 8.0 Hz, 1H), 5.24-5.08 (m, 2H), 4.60-4.51 (m, 2H), 4.27-4.18 (m, 3H), 3.94 (br. s, 2H), 3.71 (t, J = 6.5 Hz, 2H), 3.48-3.22 (m, 2H), 2.54 (t, J = 6.3 Hz, 2H), 2.28 (s, 3H), 1.79 (dt, J = 12.8, 6.4 Hz, 2H)	11.7 min, 98.4% 10.5 min, 100%	Amino acid used, no hydro- lysis step
50	4-((3-(1- ((2-(3- Fluoro-2- methyl- phenoxy) ethoxy) carbonyl- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) carbonyl- amino)-2- hydroxy- butanoic acid	CO ₂ H OH	O F	581.3	7.58 (d, J = 7.8 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.32-7.19 (m, 3H), 7.15 (t, J = 7.9 Hz, 1H), 7.06 (dd, J = 15.1, 8.1 Hz, 1H), 6.95 (d, J = 7.4 Hz, 1H), 6.66 (t, J = 8.6 Hz, 1H), 6.61 (d, J = 8.3 Hz, 1H), 5.28-5.06 (m, 2H), 4.60-4.51 (m, 2H), 4.28-4.16 (m, 3H), 3.71 (t, J = 6.4 Hz, 2H), 3.69-3.18 (m, 4H), 2.54 (t, J = 6.3 Hz, 2H), 2.14 (d, J = 1.7 Hz, 3H), 1.79 (dt, J = 12.7, 6.3 Hz, 2H)	11.1 min, 98.7% 10.1 min, 100%	Amino acid used, no hydro- lysis step

A A R_{5b} O V													
Ex- am- ple	Name	X	— Y	V R _{5b}	LCMS, [M + H] ⁺	$^{1}\text{H NMR }(400\text{ MHz},$ CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	Synthesis Comment					
51	3-((3-((4- (1-(4-(2,3- Dimethyl- phenoxy)) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)-1H- pyrazol-1- yl)methyl) benzyloxy) carbonyl- amino) propanoic acid	HO ₂ C	NH	CH ₂ Me	625.4	7.64 (br. s, 1H), 7.52 (s, 1H), 7.46- 7.31 (m, 3H), 7.32- 7.22 (m, 3H), 7.20 (br. s, 1H), 7.00 (t, J = 7.9 Hz, 1H), 6.75-6.63 (m, 2H), 5.41 (s, 2H), 5.11 (s, 2H), 3.90 (br. s, 2H), 3.78 (t, J = 6.8 Hz, 2H), 3.40 (td, J = 6.7, 0.8 Hz, 2H), 2.84 (t, J = 6.8 Hz, 2H), 2.58-2.46 (m, 4H), 2.21-2.11 (m, 2H), 2.07 (s, 3H), 1.89- 1.81 (m, 2H), 1.78 (s, 3H)*	11.5 min, 100% 11.7 min, 100%	Amino acid used, no hydro- lysis step					
52	((3-((4-(1- (4-(2,3- Dimethyl- phenoxy)) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)-1H- pyrazol-1- yl)methyl) benzyloxy) carbonyl- amino) methane- sulfonic acid	N-N	NH O	CH ₂ Me	647.4	8.03 (br. s, 1H), 7.83 (br. s, 1H), 7.83 (br. s, 1H), 7.55-7.38 (m, 3H), 7.32 (s, 4H), 7.01 (t, J = 7.8 Hz, 1H), 6.71 (d, J = 7.5 Hz, 2H), 5.55 (s, 2H), 5.21 (s, 2H), 4.28 (s, 2H), 3.93 (br. s, 2H), 3.81 (t, J = 6.7 Hz, 2H), 2.85 (t, J = 6.9 Hz, 2H), 2.58 (br. s, 2H), 2.26- 2.13 (m, 2H), 2.10 (s, 3H), 1.93-1.85 (m, 2H), 1.83 (s, 3H)*	15.0 min, 100% 11.8 min, 99.1%	Amino sulfonic acid used					
53	2-((3-((4- (1-(4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)-1H- pyrazol-1- yl)methyl) benzyloxy) carbonyl- amino) ethane- sulfonic acid	HO ₃ S	NHO	CH ₂ Me	661.4	8.02 (br.s, 1H), 7.84 (br. s, 1H), 7.49-7.36 (m, 3H), 7.36-7.23 (m, 4H), 7.00 (t, J = 7.9 Hz, 1H), 6.69 (d, J = 7.9 Hz, 2H), 5.55 (s, 2H), 5.15 (s, 2H), 3.79 (t, J = 6.8 Hz, 2H), 3.58 (t, J = 6.3 Hz, 2H), 3.02 (t, J = 6.6 Hz, 2H), 2.84 (t, J = 6.9 Hz, 2H), 2.56 (br. s, 2H), 2.21-2.11 (m, 2H), 2.08 (s, 3H), 1.92-1.84 (m, 2H), 1.81 (s, 3H)*	14.6 min, 100% 11.9 min, 100%	Amino sulfonic acid used					

TABLE 4-continued

A R_{5b} R_{5b} R_{5b}												
Ex- am- ple	Name	——————————————————————————————————————		.CMS, I + H] ⁺	1 H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	Synthesis Comment					
54	3-((3-((4- (1-(4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)-1H- pyrazol-1- yl)methyl) benzyloxy) carbonyl- amino) propane-1- sulfonic acid	HO ₃ S NH O	CH_2 Me	675.3	7.92 (br. s, 1H), 7.75 (br. s, 1H), 7.44-7.29 (m, 3H), 7.31-7.11 (m, 4H), 6.95 (t, J = 7.9 Hz, 1H), 6.64 (d, J = 7.8 Hz, 2H), 5.50 (s, 2H), 5.08 (s, 2H), 3.85 (br. s, 2H), 3.74 (t, J = 6.7 Hz, 2H), 3.21 (t, J = 6.4 Hz, 2H), 2.91-2.67 (m, 4H), 2.50 (br. s, 2H), 2.10 (dt, J = 12.4, 6.1 Hz, 2H), 2.03 (s, 3H), 2.00- 1.89 (m, 2H), 1.88- 1.77 (m, 2H), 1.74 (s, 3H)*	10.2 min, 99.0% 10.4 min, 100%	Amino sulfonic acid used					
55	3-((3-(1- (4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) carbonyl- amino) propane-1- sulfonic acid	HN O	CH ₂ Me	595.2	7.49-7.39 (m, 2H), 7.39-7.28 (m, 2H), 7.27-7.18 (m, 2H), 7.13 (d, J = 6.3 Hz, 1H), 7.06 (t, J = 7.9 Hz, 1H), 6.80 (d, J = 7.5 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H), 5.17 (s, 2H), 3.98 (br. s, 2H), 3.83 (t, J = 7.0 Hz, 2H), 3.32 (t, J = 6.8 Hz, 2H), 2.96-2.86 (m, 4H), 2.46 (br. s, 2H), 2.30-2.15 (m, 5H), 2.10-1.99 (m, 2H), 1.92 (s, 3H), 1.85 (dt, J = 13.3, 6.7 Hz, 2H)*	10.6 min, 99.4% 10.6 min, 100%	Amino sulfonic acid used					
56	2-(((3-(1-(4-(2,3-Dimethyl-phenoxy)) butanoyl)-1,2,3,4-tetrahydro-quinolin-5-yl)benzyloxy) carbonyl) (methyl) amino) ethanesulfonic acid	SO ₃ H	CH ₂ Me	595.2	7.39-7.27 (m, 2H), 7.27-7.15 (m, 2H), 7.27-7.15 (m, 2H), 7.11 (d, J = 7.8 Hz, 1H), 7.09 (s, 1H), 7.01 (s, 1H), 6.93 (t, J = 7.9 Hz, 1H), 6.67 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 5.09 (s, 2H), 3.83 (br. s, 2H), 3.70 (t, J = 7.1 Hz, 2H), 3.67-3.60 (m, 2H), 2.92 (s, 3H), 2.78 (t, J = 6.9 Hz, 2H), 2.33 (br. s, 2H), 2.16-2.01 (m, 5H), 1.85-1.64 (m, 5H)*	10.7 min, 100% 10.7 min, 100%	Amino sulfonic acid used					

			JEE 4 continued			
		Y X A	R_{5b} N V			
Ex- am- ple	Name	XY	$\begin{array}{cc} & \text{LCMS}, \\ V & R_{5b} & [\text{M} + \text{H}]^{+} \end{array}$	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	Synthesis Comment
57	2-(4-((3- (1-(4-(2,3- Dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) carbonyl) piperazin- 1-yl)ethane- sulfonic acid	SO ₃ H N	CH ₂ Me 650.3	7.40-7.35 (m, 2H), 7.30-7.22 (m, 2H), 7.19-7.11 (m, 2H), 7.07 (s, 1H), 6.97 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.66 (d, J = 8.2 Hz, 1H), 5.18 (s, 2H), 4.28 (d, J = 13.6 Hz, 2H), 3.88 (br. s, 2H), 3.61 (br. s, 2H), 3.53 (t, J = 7.0 Hz, 2H), 3.35-3.25 (m, 2H), 3.21 (t, J = 7.0 Hz, 2H), 3.17-3.05 (m, 2H), 2.82 (t, J = 6.9 Hz, 2H), 2.36 (br. s, 2H), 2.18- 2.06 (m, 5H), 1.85- 1.70 (m, 5H)*	10.8 min, 100% 10.9 min, 100%	Amino sulfonic acid used
58	(S)-2-Amino- 5-((3- (1-(4-(2,3- dimethyl- phenoxy) butanoyl)- 1,2,3,4- tetrahydro- quinolin-5- yl)benzyloxy) carbonyl- amino) pentanoic acid	HO ₂ C NH ₂ HN O	CH ₂ Me 588.3	7.41-7.30 (m, 2H), 7.29-7.19 (m, 2H), 7.19-7.08 (m, 2H), 7.04 (br. s, 1H), 6.95 (t, J = 7.8 Hz, 1H), 6.69 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 5.07 (s, 2H), 4.01- 3.91 (m, 1H), 3.87 (br. s, 2H), 3.71 (t, J = 7.0 Hz, 2H), 3.34-3.24 (m, 2H), 3.15 (t, J = 6.7 Hz, 2H), 2.79 (t, J = 6.9 Hz, 2H), 2.35 (br. s, 2H), 2.02-2.05 (m, 5H), 2.01-1.54 (m, 7H)*	10.9 min, 91.9% 11.3 min, 90.7%	(S)-5- Amino-2- (tert- butoxy- carbonyl- amino) pentanoic acid used, Boc depro- tection using TFA

15

20

25

50

3-(((5-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)pyridin-2-yl)methoxy) carbonylamino)propanoic acid

Step A. (5-Bromopyridin-2-yl)methanol

To a solution of NaBH₄ (0.822 g, 21.73 mmol) in MeOH (25 mL) was added ethyl 5-bromopicolinate (1.0 g, 4.35 40 mmol) portion-wise over a period of 10 min at room temperature. The mixture was stirred at room temperature for 10 min and then heated to 70° C. for 30 min. The solvent was removed in vacuo, and the resulting residue was diluted with EtOAc and water. The aqueous phase was adjusted to pH 7 with 1 N aq. HCl, and extracted with EtOAc. The combined organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to afford the title compound (0.65 g, 80% yield) as a white solid. LCMS, [M+H]⁺=187.9.

Step B. (5-Bromopyridin-2-yl)methyl 4-nitrophenyl carbonate

144

The title compound was prepared using a procedure analogous to 3-bromobenzyl 4-nitrophenyl carbonate except that (3-bromophenyl)methanol was replaced with (5-bromopyridin-2-yl)methanol. LCMS, [M+H]⁺=352.9.

Step C. Methyl 3-(((5-bromopyridin-2-yl)methoxy) carbonylamino)propanoate

$$\bigcap_{N \in \mathcal{N}} O \bigcap_{N \in \mathcal{N}} CO_2Me$$

The title compound was prepared using a procedure analogous to methyl 2-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino) acetate except that 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyl 4-nitrophenyl carbonate was replaced with (5-bromopyridin-2-yl)methyl 4-nitrophenyl carbonate and methyl 2-aminoacetate hydrochloride was replaced with methyl 3-aminopropanoate hydrochloride. LCMS, [M+H]*=317.0.

Example 59

Example 59 was prepared using a procedure analogous to Example 2 except that methyl 4-bromopicolinate was replaced with methyl 3-(((5-bromopyridin-2-yl)methoxy) carbonylamino)propanoate. LCMS, [M+H]⁺=546.3. ¹H NMR (400 MHz, MeOD) δ δ 8.74 (s, 1H), 8.47 (br. s, 1H), 8.04 (br. s, 1H), 7.43 (br. s, 1H), 7.37 (t, J=7.8 Hz, 1H), 7.23 (d, J=7.7 Hz, 1H), 7.00 (t, J=7.9 Hz, 1H), 6.72 (d, J=7.5 Hz, 1H), 6.69 (d, J=8.2 Hz, 1H), 5.25 (br. s, 2H), 3.90 (s, 2H), 3.77 (t, J=6.9 Hz, 2H), 3.37 (t, J=6.7 Hz, 2H), 2.84 (t, J=7.0 Hz, 5 2H), 2.49 (t, J=6.7 Hz, 2H), 2.42 (br. s, 2H), 2.24-2.05 (m, 5H), 1.95-1.73 (m, 5H). HPLC-1: Rt=6.6 min, purity=100%; HPLC-2: Rt=7.1 min, purity=100%.

40

45

50

55

Step A. 4-(2,3-Dimethylphenoxy)-1-(5-(2-(piperazin-1-yl)pyridin-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one

The title compound was prepared using a procedure analogous to 4-(2,3-dimethylphenoxy)-1-(5-(4-(hydroxymethyl) phenyl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one except 60 that 4-(hydroxymethyl)phenylboronic acid was replaced by 1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)piperazine. LCMS, [M+H] $^+$ =485.3. 1 H NMR (400 MHz, CDCl₃) δ 8.21 (d, J=5.1 Hz, 1H), 7.22-7.28 (m, 2H), 7.07-7.13 (m, 1H), 7.03 (t, J=7.9 Hz, 1H), 6.76 (d, J=7.5 Hz, 65 1H), 6.67 (d, J=8.1 Hz, 1H), 6.53 (s, 1H), 6.50 (d, J=5.9 Hz, 1H), 3.98 (t, J=5.7 Hz, 2H), 3.80 (t, J=6.9 Hz, 2H), 3.47-3.59

146

 $(m,\,4H),\,2.95\text{--}3.04\ (m,\,4H),\,2.77\ (t,\,J=7.3\ Hz,\,2H),\,2.53\ (t,\,J=6.5\ Hz,\,2H),\,2.16\text{--}2.27\ (m,\,5H),\,2.00\ (br.\,s,\,3H),\,1.85\ (quin,\,J=6.7\ Hz,\,2H).$

Example 60

A mixture of 4-(2,3-dimethylphenoxy)-1-(5-(2-(piperazin-1-yl)pyridin-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one (9 mg, 0.019 mmol), ethyl 3-bromopropanoate (16.8 mg, 0.093 mmol) and potassium carbonate (12.8 mg, 0.093 mmol) in dioxane (0.5 mL) was heated at 130° C. in a sealed vial for 5 h. After this time, 1 M sodium hydroxide (0.2 mL, 0.200 mmol) and MeOH (0.2 mL) were added and the reaction mixture was stirred at room temperature for 3 h. At the conclusion of this period, the mixture was titrated with 1 N HCl to pH 7 and extracted with EtOAc. The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was purified by preparative HPLC (Waters XBridge, 5µ, C18, 19×250 mm, 25 min gradient from 85% A:15% B to 0% A:100% B, then 5 min hold at 100% B (A=95% H₂O/5% MeCN+0.05% TFA); (B=95% MeCN/5% H₂O+0.05% TFA); detection at 220 nm) to afford Example 60 (3 mg, 28% yield). LCMS, [M+H]⁺=557.2. ¹H NMR (500 MHz, MeOD) δ 8.37 (d, J=5.1 Hz, 1H), 8.17 (s, 1H), 7.50 (t, J=7.6 Hz, 2H), 7.35 (br. s, 1H), 7.21 (t, J=7.9 Hz, 1H), 6.95 (d, J=7.5 Hz, 1H), 6.91 (s, 1H), 6.87 (d, J=8.1 Hz, 1H), 6.78 (br. s, 1H), 4.15 (br. s, 2H), 4.06 (br. s, 2H), 3.99 (t, J=6.9 Hz, 2H), 35 3.62 (t, J=6.9 Hz, 2H), 3.59-3.54 (m, 4H), 3.21 (s, 1H), 3.09 (s, 1H), 3.06 (t, J=6.9 Hz, 2H), 3.01 (t, J=7.1 Hz, 2H), 2.68 (br. s, 2H), 2.43-2.34 (m, 5H), 2.12 (s, 3H), 2.07-2.00 (m, 2H).

Example 61

2-(4-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)pyrimidin-2-ylamino)ethanesulfonic acid, TFA salt

10

30

50

A mixture of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (0.5 g, 2.58 mmol), potassium carbonate (0.356 g, 2.58 mmol) and 5-(bromomethyl)-2-(methylthio) pyrimidine (30% in THF, 2.070 g, 2.83 mmol) in DMF (5 mL) was stirred at room temperature for 14 h. After this time, the reaction mixture was diluted with EtOAc, washed with saturated sodium bicarbonate, dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (0.6 g, 70% yield) as a light yellow 25 solid. LCMS, [M+H]⁺=333.2. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J=5.1 Hz, 1H), 7.87 (s, 1H), 7.81 (s, 1H), 6.49 (d, J=5.1 Hz, 1H), 5.36 (s, 2H), 2.56 (s, 3H), 1.33 (s, 12H).

Step B. 4-(2,3-Dimethylphenoxy)-1-(5-(1-((2-(methylthio)pyrimidin-4-yl)methyl)-1H-pyrazol-4-yl)-3,4dihydroquinolin-1(2H)-yl)butan-1-one

The title compound was prepared using a procedure analogous to 4-(2,3-dimethylphenoxy)-1-(5-(4-(hydroxymethyl) phenyl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one except that 4-(hydroxymethyl)phenylboronic acid was replaced with 60 2-(methylthio)-4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)methyl)pyrimidine. $[M+H]^+=528.4.$ ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J=5.3 J=7.8 Hz, 1H), 6.74 (d, J=7.5 Hz, 1H), 6.69 (d, J=5.1 Hz, 1H), 6.65 (d, J=8.4 Hz, 1H), 5.40 (s, 2H), 3.94 (t, J=5.5 Hz, 2H),

148

3.81 (t, J=6.8 Hz, 2H), 2.79 (t, J=7.2 Hz, 2H), 2.54-2.63 (m, 5H), 2.11-2.26 (m, 5H), 1.82-1.97 (m, 5H).

Step C. 4-(2,3-Dimethylphenoxy)-1-(5-(1-((2-(methylsulfonyl)pyrimidin-4-yl)methyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one

A mixture of 4-(2,3-dimethylphenoxy)-1-(5-(1-((2-(methylthio)pyrimidin-4-yl)methyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one (90 mg, 0.17 mmol) and 35 m-CPBA (84 mg, 0.38 mmol) in DCM (3 mL) was stirred at room temperature for 3 h. After this time, the reaction mixture was diluted with DCM, washed with 5% aq. Na₂CO₃, dried over anhydrous MgSO₄, filtered, and concentrated to afford the title compound (93 mg, 97% yield) as a yellow gum. $^{40}\,$ LCMS, [M+H]+=560.3. ^{1}H NMR (400 MHz, CDCl3) δ 8.88 (d, J=5.1 Hz, 1H), 7.65 (s, 1H), 7.49 (s, 1H), 7.14-7.25 (m, 4H), 7.02 (t, J=7.8 Hz, 1H), 6.75 (d, J=7.7 Hz, 1H), 6.66 (d, J=8.1 Hz, 1H), 5.60 (s, 2H), 3.95 (t, J=5.3 Hz, 2H), 3.81 (t, ₄₅ J=6.8 Hz, 2H), 3.38 (s, 3H), 2.76 (t, J=7.0 Hz, 2H), 2.61 (t, J=6.2 Hz, 2H), 2.13-2.25 (m, 5H), 1.84-1.99 (m, 5H).

Example 61

A mixture of 4-(2,3-dimethylphenoxy)-1-(5-(1-((2-(methylsulfonyl)pyrimidin-4-yl)methyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one (10 mg, 0.018 mmol), 2-aminoethanesulfonic acid (22.36 mg, 0.179 mmol), and TEA (49.8 μl, 0.357 mmol) in DMF (0.3 mL) was heated at 120° C. for 1 h. After this time, the reaction mixture was diluted with CH₂Cl₂, washed with saturated NaHCO₃, dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was purified by preparative HPLC (PHE-min gradient from 100% A: 0% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+

20

0.1% TFA); detection at 220 nm) to afford Example 61 (3.5 mg, 26% yield). LCMS, [M+H]⁺=605.2. 1 H NMR (400 MHz, CDCl₃) δ 9.02 (br. s, 1H), 8.04 (br. s, 1H), 7.63 (s, 1H), 7.50 (br. s, 1H), 7.12-7.24 (m, 3H), 7.01 (t, J=7.7 Hz, 1H), 6.74 (d, J=7.5 Hz, 1H), 6.64 (d, J=7.9 Hz, 1H), 6.37 (br. s, 1H), 5.43 (br. s, 2H), 3.85-4.06 (m, 4H), 3.79 (t, J=6.5 Hz, 2H), 3.23 (br. s, 2H), 2.77 (t, J=6.9 Hz, 2H), 2.59 (br. s, 2H), 2.11-2.24 (m, 5H), 1.82-2.01 (m, 5H). HPLC-1: Rt=7.6 min, purity=100%; HPLC-2: Rt=7.2 min, purity=100%.

Example 62

3-(4-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)pyrimidin-2-ylamino)propanoic acid, TFA salt

A mixture of 4-(2,3-dimethylphenoxy)-1-(5-(1-((2-(methvlsulfonyl)pyrimidin-4-yl)methyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one (26 mg, 0.047 mmol), tert-butyl 3-aminopropanoate, HCl salt (43.0 mg, 0.237 mmol), and TEA (66.0 nl, 0.474 mmol) in DMF (0.5 mL) was heated at 70° C. for 2 h. The reaction mixture was diluted with EtOAc, washed with saturated NaHCO3, dried over anhydrous MgSO₄, filtered, and concentrated to provide the crude ester. The crude ester was dissolved in DCM (0.3 mL) and 50 treated with TFA (91 µL, 1.184 mmol). The reaction mixture was stirred at room temperature for 1 h and concentrated. The resulting residue was purified by preparative HPLC (PHE-NOMENEX® Axia Luna column, 5μ, C18, 30×75 mm; 10 55 min gradient from 100% A: 0% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+ 0.1% TFA); detection at 220 nm) to afford Example 62 (0.7 mg, 2% yield) as a colorless gum. LCMS, [M+H]⁺=569.2. ¹H NMR (400 MHz, CDCl₃) δ 9.74 (br. s, 1H), 8.09 (br. s, 1H), 7.65 (s, 1H), 7.49 (br. s, 1H), 7.13-7.26 (m, 3H), 7.03 (t, J=7.8 Hz, 1H), 6.75 (d, J=7.5 Hz, 1H), 6.66 (d, J=8.1 Hz, 1H), 6.43 (d, J=6.2 Hz, 1H), 5.42 (s, 2H), 3.95 (t, J=5.1 Hz, 2H), 3.81 (t, J=5.1 Hz, $J=6.7~Hz,~4H),~2.78~(t,~J=7.0~Hz,~2H),~2.56-2.72~(m,~4H),~_{65}$ 2.15-2.27 (m, 5H), 1.82-2.03 (m, 5H). HPLC-1: Rt=7.9 min, purity=98.8%; HPLC-2: Rt=8.2 min, purity=98.5%.

2-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)-2-phenylacetic acid

$$N-N$$
 CO_2H
 O

Step A. Ethyl 2-(4-bromo-1H-pyrazol-1-yl)-2-phenylacetate

The title compound was prepared using a procedure analogous to methyl 3-((4-bromo-1H-pyrazol-1-yl)methyl)ben-zoate except that methyl 3-(bromomethyl)benzoate was replaced with ethyl 2-bromo-2-phenylacetate. LCMS, [M+H]⁺=308.9. 1 H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.45-7.36 (m, 6H), 6.14 (s, 1H), 4.34-4.23 (m, 2H), 1.27 (t, J=7.1 Hz, 3H).

Example 63

Example 63 was prepared using a procedure analogous to Example 2 except that methyl 4-bromopicolinate was replaced with ethyl 2-(4-bromo-1H-pyrazol-1-yl)-2-pheny-lacetate. The ester was hydrolyzed during the Suzuki coupling step. LCMS, [M+H] $^+$ =524.2. 1 H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.41 (s, 5H), 7.33 (d, J=13.2 Hz, 1H), 7.20-7.09 (m, 3H), 7.00 (t, J=7.8 Hz, 1H), 6.70 (d, J=7.5 Hz, 1H), 6.62 (d, J=8.0 Hz, 1H), 6.17 (s, 1H), 5.30 (s, 1H), 3.91 (s, 2H), 3.77 (t, J=6.7 Hz, 2H), 2.74 (t, J=7.1 Hz, 2H), 2.52 (s, 2H), 2.22-2.06 (m, 5H), 1.96-1.74 (m, 5H). HPLC-1: Rt=10.2 min, purity=99%; HPLC-2: Rt=9.2 min, purity=98.6%.

The following Examples were prepared in a manner analogous to Example 63.

TABLE 5

Ex- am- ple	Name	—X—Y	< present	LCMS, [M + H] ⁺	^{l}H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
64	1-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl) cyclobutanecarboxylic acid	\sim	No	488.2	7.60 (s, 1H), 7.50 (s, 1H), 7.21- 7.12 (m, 3H), 6.99 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 3.91 (t, J = 5.3 Hz, 2H), 3.00 (ddd, J = 13.5, 7.0, 3.7 Hz, 2H), 2.80-2.68 (m, 4H), 2.55 (br. s, 2H), 2.80-2.68 (m, 1H), 2.22-2.02 (m, 6H), 1.94-1.77 (m, 5H)	9.9 min, 99.5% 8.8 min, 99.6%
65	2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)-2- methylpropanoic acid	ZZZZH CO2H	No	476.2	7.60 (s, 1H), 7.52 (s, 1H), 7.22- 7.07 (m, 3H), 7.00 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 3.91 (t, J = 5.4 Hz, 2H), 3.77 (t, J = 6.8 Hz, 3H), 2.74 (t, J = 7.1 Hz, 2H), 2.54 (br. s, 2H), 2.24-2.09 (m, 5H), 2.00-1.75 (m, 11H)	9.7 min, 99.7% 8.7 min, 97.2%
66	2-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoic acid	ZO2H	No	524.2	8.04 (dd, J = 7.8, 1.1 Hz, 1H), 7.55 (s, 1H), 7.51 (td, J = 7.5, 1.3 Hz, 1H), 7.46 (s, 1H), 7.41 (t, J = 7.1 Hz, 1H), 7.24 (s, 1H), 7.21-7.11 (m, 2H), 7.07 (d, J = 7.6 Hz, 1H), 6.99 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 5.69 (s, 2H), 3.91 (br. s, 2H), 3.76 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.57 (br. s, 2H), 2.24-2.07 (m, 5H), 1.95-1.78 (m, 5H)	11.0 min, 100% 9.5 min, 100%
67	1-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl) cyclopropanecarboxylic acid	ZZZZH CO2H	No	474.2	7.54 (s, 1H), 7.43 (s, 1H), 7.21-7.08 (m, 3H), 6.99 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 3.91 (br. s, 2H), 3.76 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.55 (br. s, 2H), 2.25-2.08 (m, 5H), 1.97-1.76 (m, 7H), 1.72 (dd, J = 8.1, 4.9 Hz, 2H)	9.6 min, 99.9% 8.4 min, 99.9%
68	3-Chloro-4-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	Zoo ₂ H	No	576.3	8.01 (s, 1H), 7.79 (dd, J = 9.1, 1.4 Hz, 1H), 7.58 (s, 1H), 7.43 (s, 1H), 7.13-7.24 (m, 3H), 6.98- 7.05 (m, 1H), 6.74 (d, J = 7.7 Hz, 1H), 6.60-6.66 (m, 1H), 5.64 (d, J = 1.32 Hz, 2H), 3.89-3.98 (m, 2H), 3.81 (t, J = 6.8 Hz, 2H), 2.81 (t, J = 7.2 Hz, 2H), 2.55 (br. s, 2H), 2.11-2.23 (m, 5H), 1.82- 1.95 (m, 5H)	11.5 min, 100% 10.4 min, 99.3%

Ex- am- ple	Name	—X—Y	< present	LCMS, [M + H] ⁺	^{l}H NMR (400 MHz, CDCl3) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
69	3-Chloro-4-((4-(3-(4-(2,3-dimethylphenoxy)) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	Zodovo Co	Yes	588.3	7.99 (s, 1H), 7.78 (dd, J = 9.1, 1.4 Hz, 1H), 7.70 (s, 1H), 7.65 (s, 1H), 7.08-7.21 (m, 2H), 6.90- 7.06 (m, 2H), 6.74 (d, J = 7.7 Hz, 1H), 6.64 (d, J = 7.9 Hz, 1H), 5.61 (s, 2H), 5.02 (br. s, 1H), 3.84-4.05 (m, 3H), 2.76 (dd, J = 14.9, 7.6 Hz, 2H), 2.54-2.68 (m, 1H), 2.11-2.31 (m, 5H), 2.07 (d, J = 6.2 Hz, 1H), 1.86-1.97 (m, 3H), 1.71 (d, J = 5.5 Hz, 1H), 0.86-0.99 (m, 1H), 0.60 (br. s, 1H)	11.9 min, 99.7% 10.7 min, 99.7%
69A	(2S)-2-Amino-5-(3-chloro-4-((4-(3-(4-(2,3-dimethylphenoxy))butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)pentanoic acid	Por CI NH2 OH	Yes	702.3	7.79 (2 H, s), 7.57-7.64 (2 H, m), 7.18-7.23 (1 H, m), 7.14 (1 H, t, J = 7.8 Hz), 7.03-7.10 (1 H, m), 6.94 (1 H, t, J = 7.8 Hz), 6.66 (2 H, dd, J = 14.6, 7.9 Hz), 5.61 (2 H, d, J = 1.1 Hz), 4.72 (1 H, br. s.), 4.00 (1 H, t, J = 6.4 Hz), 3.92-3.98 (1 H, m), 3.83-3.92 (1 H, m), 3.39-3.52 (2 H, m), 2.96 (1 H, br. s.), 2.65-2.77 (2 H, m), 2.13 (3 H, s), 2.06-2.12 (2 H, m), 1.97-2.06 (2 H, m), 1.90-1.97 (2 H, m), 1.67-1.89 (6 H, m), 0.83-0.91 (1 H, m), 0.50 (1 H, d, J = 3.3 Hz)*	7.7 min, 96.7% 8.7 min, 98.0%
69B	(3-Chloro-4-((4-(3-(4-(2,3-dimethylphenoxy)	CI Z	Yes	681.2	7.92-7.85 (m, 2H), 7.78 (s, 1H), 7.70 (dd, J = 10.0, 1.4 Hz, 1H), 7.61 (c, 1H), 7.21 (d, J = 7.8 Hz,	N/A 8.4 min,

69B (3-Chloro-4-((4-(3-(4-(2,3dimethylphenoxy) butanoyl)-1a,2,3,7btetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1Hpyrazol-1-yl)methyl)-5fluorobenzamido) methanesulfonic acid

7.92-7.85 (m, 2H), 7.78 (s, 1H), 7.70 (dd, J = 10.0, 1.4 Hz, 1H), 7.70 (dd, J = 10.0, 1.4 Hz, 1H), 7.61 (s, 1H), 7.21 (d, J = 7.8 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 7.09-7.02 (m, 1H), 6.95 (t, J = 7.9 Hz, 1H), 6.69 (d, J = 7.7 Hz, 2H), 6.65 (d, J = 8.3 Hz, 1H), 5.62 (d, J = 1.2 Hz, 2H), 4.51 (s, 2H), 3.99-3.92 (m, 1H), 3.92-3.83 (m, 1H), 2.76-2.67 (m, 2H), 2.14 (s, 3H), 2.12-2.05 (m, 2H), 2.05-1.96 (m, 1H), 1.92-1.80 (m, 3H), 1.79-1.68 (m, 1H), 0.94-0.84 (m, 1H), 0.54-0.46 (m, 1H)*

Ex- am- ple	Name	—X—Y	< present	LCMS, [M + H] ⁺	^{1}H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
69C	2-(3-Chloro-4-((4-(3-(4-(2,3-dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Yes	695.2	$\begin{array}{l} 7.79 \; (\mathrm{d},\mathrm{J}=9.1\;\mathrm{Hz},2\mathrm{H}),7.65-\\ 7.57 \; (\mathrm{m},2\mathrm{H}),7.21 \; (\mathrm{d},\mathrm{J}=7.9\;\mathrm{Hz},1\mathrm{H}),7.14 \; (\mathrm{t},\mathrm{J}=7.8\;\mathrm{Hz},1\mathrm{H}),\\ 7.04 \; (\mathrm{t},\mathrm{J}=14.9\;\mathrm{Hz},1\mathrm{H}),6.67 \; (\mathrm{d},\mathrm{J}=\\ 7.9\;\mathrm{Hz},1\mathrm{H}),6.67 \; (\mathrm{d},\mathrm{J}=\\ 7.6\;\mathrm{Hz},1\mathrm{H}),6.64 \; (\mathrm{d},\mathrm{J}=8.2\;\mathrm{Hz},1\mathrm{H}),5.61 \; (\mathrm{d},\mathrm{J}=1.1\;\mathrm{Hz},2\mathrm{H}),\\ 4.87-4.59 \; (\mathrm{m},1\mathrm{H}),3.99-3.91 \; (\mathrm{m},1\mathrm{H}),3.99-3.82 \; (\mathrm{m},1\mathrm{H}),\\ 3.80 \; (\mathrm{t},\mathrm{J}=6.5\;\mathrm{Hz},2\mathrm{H}),2.92 \; (\mathrm{d},\mathrm{J}=\\ 63.9\;\mathrm{Hz},1\mathrm{H}),2.71 \; (\mathrm{m},2\mathrm{H}),\\ 2.13 \; (\mathrm{s},3\mathrm{H}),2.12-2.05 \; (\mathrm{m},2\mathrm{H}),\\ 2.03-1.96 \; (\mathrm{m},1\mathrm{H}),1.85 \; (\mathrm{s},3\mathrm{H}),\\ 1.77-1.69 \; (\mathrm{m},1\mathrm{H}),0.88 \; (\mathrm{m},1\mathrm{H}),\\ 0.54-0.45 \; (\mathrm{m},1\mathrm{H})^* \end{array}$	N/A 8.3 min, 98.7%
69D	2-(3-Chloro-4-((4-(3-(4-(2,3-dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)acetic acid	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Yes	645.2	$7.83 \ (s, 1H), 7.78 \ (s, 1H), 7.65 \ (dd, J=9.9, 1.6 \ Hz, 1H), 7.60 \ (s, 1H), 7.21 \ (d, J=7.9 \ Hz, 1H), 7.14 \ (t, J=7.8 \ Hz, 1H), 7.11 \ (r, J=7.8 \ Hz, 1H), 7.11 \ (r, J=1), 6.68 \ (d, J=7.6 \ Hz, 1H), 6.64 \ (d, J=8.3 \ Hz, 1H), 5.61 \ (d, J=1.3 \ Hz, 2H), 4.10 \ (s, 2H), 3.99-3.92 \ (m, 1H), 3.91-3.79 \ (m, 1H), 3.33 \ (d, J=7.0 \ Hz, 2H), 2.71 \ (td, J=7.0, 3.1 \ Hz, 2H), 2.13 \ (s, 3H), 2.12-2.04 \ (m, 2H), 2.04-1.95 \ (m, 1H), 1.85 \ (s, 3H), 1.76-1.68 \ (m, 1H), 0.92-0.82 \ (m, 1H), 0.54-0.44 \ (m, 1H)*$	10.7 min, 97.8% 9.9 min, 97.6%
69E	3-(3-Chloro-4-((4-(3-(4-(2,3-dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Yes	659.3	$\begin{array}{c} 7.77 \ (d,J=5.1\mathrm{Hz},2\mathrm{H}),7.63-\\ 7.56 \ (m,2\mathrm{H}),7.21 \ (d,J=8.2\mathrm{Hz},1\mathrm{H}),7.14 \ (t,J=7.8\mathrm{Hz},1\mathrm{H}),\\ 7.11-7.01 \ (m,1\mathrm{H}),6.94 \ (t,J=7.9\mathrm{Hz},1\mathrm{H}),6.64 \ (d,J=8.1\mathrm{Hz},1\mathrm{H}),\\ 5.60 \ (d,J=1.3\mathrm{Hz},2\mathrm{H}),4.54-\\ 4.49 \ (m,1\mathrm{H}),3.63 \ (t,J=6.8\mathrm{Hz},2\mathrm{H}),3.33 \ (dd,J=4.2,2.5\mathrm{Hz},2\mathrm{H}),2.71 \ (td,J=7.0,3.1\mathrm{Hz},2\mathrm{H}),2.63 \ (t,J=6.9\mathrm{Hz},2\mathrm{H}),\\ 2.13 \ (s,3\mathrm{H}),2.12-2.05 \ (m,2\mathrm{H}),2.05-1.95 \ (m,1\mathrm{H}),1.94+1.77 \ (m,3\mathrm{H}),1.77-1.67 \ (m,1\mathrm{H}),\\ 0.93-0.81 \ (m,1\mathrm{H}),8.56-0.43 \ (m,1\mathrm{H}),8.\\ \end{array}$	10.7 min, 97.4% 9.9 min, 96.9%

		N-N N-N N-N				
Ex- am- ple	Name	—X—Y	< present	LCMS, [M + H] ⁺	^{1}H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
69F	(2S)-5-(3-Chloro-4-((4-(3-(4-(2,3-dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)-2-guanidinopentanoic acid	Property of the state of the st	Yes	744.3	7.79 (2 H, s), 7.58-7.64 (2 H, m), 7.18-7.24 (1 H, m), 7.14 (1 H, t, J = 7.77 Hz), 7.06 (1 H, d, J = 7.21 Hz), 6.94 (1 H, t, J = 7.91 Hz), 6.66 (2 H, dd, J = 14.43, 7.77 Hz), 5.61 (2 H, d, J = 11.11 Hz), 4.73 (1 H, br. s.), 4.31 (1 H, dd, J = 7.35, 5.41 Hz), 3.92-3.99 (1 H, m), 3.81-3.92 (1 H, m), 3.36-3.51 (2 H, m), 2.95 (1 H, br. s.), 2.64-2.78 (2 H, m), 2.13 (3 H, s), 1.95-2.12 (5 H, m), 1.79-1.92 (4 H, m), 1.68-1.80 (3 H, m), 0.84-0.92 (1 H, m), 0.50 (1 H, br. s.)	7.7 min, 100% 9.0 min, 99%
69G	1-(7-(1-(3-Aminobenzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa [c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy) butan-1-one	nulun NH2	Yes	507.3	7.68 (s, 1H), 7.50 (s, 1H), 7.19-7.12 (m, 2H), 7.09 (t, J = 7.8 Hz, 1H), 6.99 (t, J = 7.9 Hz, 1H), 6.97-6.88 (m, 1H), 6.73 (d, J = 7.4 Hz, 1H), 6.69-6.60 (m, 3H), 6.60-6.55 (m, 1H), 5.26 (s, 2H), 4.03-3.94 (m, 1H), 3.94-3.82 (m, 1H), 3.78-3.59 (m, 2H), 2.84-2.65 (m, 2H), 2.65-2.48 (m, 1H), 2.20 (s, 3H), 2.18-2.06 (m, 4H), 1.93 (s, 3H), 1.76-1.62 (m, 1H), 0.99-0.81 (m, 1H), 0.66-0.47 (m, 1H)	9.6 min, 99.3% 10.3 min, 93.0%
69Н	4-Chloro-3-((4-(3-(4-(2,3-dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzoic acid	Too2H	Yes	570.2	8.07 (d, J = 1.6 Hz, 1H), 8.04 (dd, J = 8.3, 2.0 Hz, 1H), 7.83 (s, 1H), 7.69 (s, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.21 (d, J = 7.3 Hz, 1H), 7.15 (t, J = 7.7 Hz, 1H), 7.06-6.92 (m, 2H), 6.73 (d, J = 7.4 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H), 5.59 (s, 2H), 4.06-3.91 (m, 2H), 3.91-3.78 (m, 1H), 2.88- 2.73 (m, 1H), 2.73-2.58 (m, 1H), 2.18 (s, 5H), 2.14-1.97 (m, 2H), 1.88 (s, 3H), 1.81-1.63 (m, 1H), 1.10-0.88 (m, 2H), 0.68-0.47 (m, 1H)	10.7 min, 99.1% 10.8 min, 100%

Ex- am- ple	Name	—X—Y	< present	LCMS, [M + H] ⁺	^{1}H NMR (400 MHz, CDCl $_{3})$ δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
69J	2-(3-((1-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) cyclopropyl)methyl)ureido) ethanesulfonic acid	NH NH SO ₃ H	No	624.4	$\begin{array}{l} 8.17 \ (s, 1 H), 7.97 \ (s, 1 H), 7.42-\\ 7.19 \ (m, 3 H), 6.99 \ (t, J = 7.9 \ Hz, \\ 1 H), 6.71 \ (d, J = 7.6 \ Hz, 1 H), \\ 6.68 \ (d, J = 8.2 \ Hz, 1 H), 4.33 \ (s, 2 H), 3.97-3.84 \ (m, 2 H), 3.78 \ (t, J = 6.7 \ Hz, 2 H), 3.08 \ (s, 2 H), 3.00 \\ (t, J = 6.2 \ Hz, 2 H), 3.08 \ (s, 2 H), 3.00 \\ (t, J = 6.2 \ Hz, 2 H), 2.81 \ (t, J = 7.0 \ Hz, 2 H), 2.66-2.51 \ (m, 2 H), \\ 2.12 \ (s, 5 H), 1.96-1.71 \ (m, 5 H), \\ 0.80 \ (t, J = 5.4 \ Hz, 2 H), 0.67 \ (t, J = 5.4 \ Hz, 2 H), \end{array}$	N/A 8.8 min, 99.6%
69K	2-(3-Chloro-4-((4-(3-(4-(2,3-dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yI)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)-N,N,N-trimethylethanaminium,	HN TFA'	Yes	675.3	1 H NMR (400 MHz, MeOD) δ 7.90-7.78 (m, 2H), 7.65 (dd, J = 9.8, 1.5 Hz, 1H), 7.58 (s, 1H), 7.28-7.20 (m, 1H), 7.16 (t, J = 7.7 Hz, 1H), 7.12-7.01 (m, 1H), 6.95 (t, J = 8.3 Hz, 1H), 6.73-6.59 (m, 2H), 5.62 (s, 2H), 4.00-3.89 (m, 1H), 3.84 (s, 3H), 3.57 (t, J = 6.7 Hz, 2H), 3.36-3.33 (m, 1H), 3.22 (s, 9H), 2.73 (s, 3H), 2.18-2.02 (m, 6H), 1.73 (s, 4H), 0.90-0.74 (m, 1H), 0.50-0.37 (m, 1H)	7.7 min, 98.6% 9.1 min, 98.5%
69L	2-(4-Chloro-3-((4-(3-(4-(2,3-dimethylphenoxy) butanoyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H- lpyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	NH SO ₃ H	Yes	677.2	7.89 (s, 1H), 7.77 (dd, J = 8.3, 2.1 Hz, 1H), 7.72 (s, 1H), 7.66 (s, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.36-7.24 (m, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.95 (t, J = 8.0 Hz, 1H), 6.78-6.55 (m, 2H), 5.59 (s, 2H), 4.01-3.86 (m, 1H), 3.86-3.70 (m, 3H), 3.06 (t, J = 6.6 Hz, 2H), 2.82-2.66 (m, 3H), 2.10 (s, 6H), 1.77 (s, 3H), 1.38-1.26 (m, 2H), 0.94-0.79 (m, 1H), 0.44 (s, 1H)*	13.1 min, 95.9% 13.7 min, 98.2%
69M	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenoxy)ethylphosphonic acid	OH OH	No	604.3	$\begin{aligned} 7.57 &(s, 1H), 7.47 &(s, 1H), 7.28 &(t, \\ J &= 7.9 &Hz, 1H), 7.26-7.19 &(m, \\ 2H), 7.19-7.06 &(m, 1H), 6.96 &(t, \\ J &= 7.9 &Hz, 1H), 6.93-6.82 &(m, \\ 3H), 6.71-6.57 &(m, 2H), 5.33 &(s, \\ 2H), 4.23 &(dt, J &= 10.7, 7.6 &Hz, \\ 2H), 3.93-3.78 &(m, 2H), 3.73 &(t, \\ J &= 6.8 &Hz, 2H), 2.80 &(t, J &= \\ 6.8 &Hz, 2H), 2.55-2.37 &(m, 2H), \\ 2.25 &(t, J &= 7.5 &Hz, 1H), 2.21 &(t, \\ J &= 7.5 &Hz, 1H), 2.17-2.07 &(m, \\ 2H), 2.03 &(s, 3H), 1.85-1.77 &(m, \\ 2H), 1.77-1.61 &(m, 3H)* \end{aligned}$	9.8 min, 99.1% 9.3 min, 99.2%

		N-N N-N				
Ex- am- ple	Name	—X—Y	< cl> d present	LCMS, [M + H]*	^{1}H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
69N	(3-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido) methanesulfonic acid	Notation of the second of the	Yes	644.1	7.79 (s, 1H), 7.63 (s, 1H), 7.37 (s, 1H), 7.32 (d, J = 7.3 Hz, 1H), 7.29-7.20 (m, 2H), 7.15 (t, J = 7.7 Hz, 1H), 7.05 (m, 1H), 6.95 (t, J = 7.7 Hz, 1H), 6.89 (d, J = 7.3 Hz, 1H), 6.76-6.56 (m, 2H), 5.34 (s, 2H), 4.30 (s, 2H), 4.03-3.88 (m, 1H), 3.88-3.74 (m, 1H), 3.00 (q, J = 7.2 Hz, 4H), 2.73 (s, 2H), 2.10 (m, 7H), 1.86-1.67 (m, 4H), 1.29 (d, J = 7.2 Hz, 6H), 0.97-0.79 (m, 4H)*	10.1 min, 100% 10.4 min, 100%
69P	(3-(3-((4-((1aS,7bR)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido) methanesulfonic acid	No SO3H	Yes	644.1	$\begin{array}{l} 7.79 \; (s,1H), 7.63 \; (s,1H), 7.37 \; (s,1H), 7.32 \; (d,J=7.3Hz,1H),\\ 7.29-7.20 \; (m,2H), 7.15 \; (t,J=7.4Hz,1H), 7.05 \; (m,1H), 6.95 \; (t,J=7.7Hz,1H), 6.89 \; (d,J=7.3Hz,1H), 6.76-6.56 \; (m,2H),\\ 5.34 \; (s,2H), 4.30 \; (s,2H), 4.03-3.88 \; (m,1H), 3.88-3.74 \; (m,1H), 3.00 \; (q,J=7.2Hz,4H),\\ 2.73 \; (s,2H), 2.10 \; (m,7H), 1.86-1.67 \; (m,4H), 1.29 \; (d,J=7.2Hz,6H), 0.97-0.79 \; (m,4H)* \end{array}$	10.1 min, 98.1% 10.4 min, 100%
69Q	4-(N-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)sulfamoylamino) butanoic acid	HN OH WANT OF OH	No	660.3	7.60 (s, 1H), 7.49 (s, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.27-7.18 (m, 2H), 7.15 (d, J = 7.5 Hz, 3H), 6.97 (t, J = 7.9 Hz, 2H), 6.67 (t, J = 8.2 Hz, 2H), 5.35 (s, 2H), 3.94-3.82 (m, 2H), 3.74 (t, J = 6.8 Hz, 2H), 2.97 (t, J = 6.8 Hz, 2H), 2.97 (t, J = 6.8 Hz, 2H), 2.57-2.44 (m, 2H), 2.22 (t, J = 7.3 Hz, 2H), 2.12 (dt, J = 12.6, 6.4 Hz, 2H), 2.05 (s, 3H), 1.87-1.63 (m, 7H)*	9.0 min, 88.6% 9.0 min, 89.0%
69S	3-(N-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)sulfamoylamino) propanoic acid	Note of the second seco	No	646.3	7.60 (s, 1H), 7.49 (s, 1H), 7.35- 7.27 (m, 1H), 7.28-7.19 (m, 2H), 7.19-7.10 (m, 3H), 6.97 (t, J = 7.7 Hz, 2H), 6.67 (t, J = 7.9 Hz, 2H), 5.35 (s, 2H), 3.94- 3.80 (m, 2H), 3.74 (t, J = 6.8 Hz, 2H), 3.19 (t, J = 7.0 Hz, 2H), 2.81 (t, J = 6.9 Hz, 2H), 2.55- 2.47 (m, 2H), 2.45 (t, J = 7.0 Hz, 2H), 2.18-2.09 (m, 2H), 2.05 (s, 3H), 1.88-1.64 (m, 5H)*	8.9 min, 93.2% 8.5 min, 92.5%

		TABLE 5 CONTINUE				
		N-N X				
Ex- am- ple	Name	—X—Y	< present	LCMS, [M + H] ⁺	^{1}H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
69T	2-(3-(3-Chloro-4-((4-(3-(4-(2,3-dimethylphenoxy)) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-5-fluorophenyl)ureido)acetic acid	Now H	No	660.3	9.13 (s, 1H), 7.87 (s, 1H), 7.61 (s, 1H), 7.40 (s, 1H), 7.35 (dd, J = 12.2, 1.9 Hz, 1H), 7.21-7.17 (m, 1H), 7.16-7.07 (m, 2H), 6.97 (t, J = 7.8 Hz, 1H), 6.70 (d, J = 7.8 Hz, 2H), 6.51 (t, J = 5.8 Hz, 1H), 5.41 (s, 2H), 4.65 (br. s., 1H), 4.00-3.91 (m, 1H), 3.87 (br. s., 1H), 3.81 (d, J = 5.8 Hz, 2H), 2.90-2.63 (m, 3H), 2.14 (s, 3H), 2.09-1.91 (m, 4H), 1.88 (s, 3H), 1.80-1.72 (m, 1H), 0.96-0.85 (m, 1H), 0.45 (d, J = 4.4 Hz, 1H)**	10.9 min, 96.6% 10.0 min, 97.5%

40

45

50

55

60

Example 70

2-(3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzylcarbamoyloxy)acetic acid

Step A. tert-Butyl 3-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzylcar-bamate

The title compound was prepared using a procedure analogous to 4-(2,3-dimethylphenoxy)-1-(5-(4-(hydroxymethyl) phenyl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one except that 4-(hydroxymethyl)phenylboronic acid was replaced with

^{*&}lt;sup>1</sup>H NMR (400 MHz, CD₃OD) δ . **¹H NMR (500 MHz, DMSO-d₆) δ .

20

25

40

165

 $\label{eq:continuous} tert-butyl \quad 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) \\ benzylcarbamate. \ LCMS, [M+Na]^+=551.4.$

Step B. 1-(5-(3-(Aminomethyl)phenyl)-3,4-dihydro-quinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

To a solution of tert-butyl 3-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzylcarbamate (0.12 g, 0.227 mmol) in DCM (2.5 mL) at 0° C. was added TFA (0.35 mL, 4.54 mmol) dropwise. The reaction mixture was slowly warmed to room temperature and stirred for 16 h. After this time, the reaction mixture was quenched with 50% saturated NaHCO $_3$, and the aqueous phase was extracted with DCM. The combined organic layer was dried over anhydrous MgSO $_4$, filtered, and concentrated in vacuo to afford the title compound (0.075 g, 77% yield). LCMS, [M+H] $^+$ =429.2.

Step C. Ethyl 2-((4-nitrophenoxy)carbonyloxy)acetate

$$\begin{array}{c} 45 \\ \text{EtO}_2\text{C} \\ \end{array}$$

The title compound was prepared using a procedure analogous to 3-bromobenzyl 4-nitrophenyl carbonate except that (3-bromophenyl)methanol was replaced with ethyl 2-hydroxyacetate. LCMS, [M+Na] $^+$ =292.0. 1 H NMR (400 MHz, 55 CDCl₃) δ 8.24 (d, J=9.2 Hz, 2H), 7.37 (d, J=9.2 Hz, 2H), 4.72 (s, 2H), 4.25 (q, J=7.2 Hz, 2H), 1.28 (t, J=7.1 Hz, 3H).

Example 70

Example 70 was prepared using a procedure analogous to 65 Example 35 except that 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyl 4-nitrophe-

166

nyl carbonate was replaced by ethyl 2-((4-nitrophenoxy)carbonyloxy)acetate, and methyl-2-aminoacetate was replaced with 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1 (2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one. LCMS, 5 [M+H]⁺=531.2. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, J=7.6 Hz, 1H), 7.24 (dd, J=24.5, 7.3 Hz, 3H), 7.17 (s, 1H), 7.13 (t, J=6.9 Hz, 2H), 7.00 (t, J=7.9 Hz, 1H), 6.74 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.1 Hz, 1H), 4.65 (s, 2H), 4.43 (d, J=6.1 Hz, 2H), 3.93 (br. s, 2H), 3.79 (t, J=7.0 Hz, 2H), 2.79 (t, J=7.3 Hz, 2H), 10 2.48 (t, J=6.2 Hz, 2H), 2.23-2.12 (m, 5H), 1.93 (s, 3H), 1.79 (dt, J=13.3, 6.7 Hz, 2H). HPLC-1: Rt=10.5 min, purity=99.6%; HPLC-2: Rt=9.4 min, purity=99.9%.

Example 71

3-((3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)benzylcarbamoyloxy)methyl)benzoic acid

Step A. Methyl 3-(hydroxymethyl)benzoate

To a solution of 3-(methoxycarbonyl)benzoic acid (0.200 g, 1.11 mmol) in THF (6.0 mL) at 0° C. was added borane tetrahydrofuran complex (5.55 mL, 5.55 mmol) slowly. The reaction mixture was slowly warmed to room temperature and stirred at for 3 h. After this time, the reaction mixture was diluted with EtOAc and quenched very slowly with water. The organic layer was separated, washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated to afford the title compound (0.16 g, 84% yield) as a colorless oil. LCMS, [M+H]⁺=167.0.

20

3-(3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzylamino)-3-oxopropanoic acid

To a solution of 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.040 g, 0.093 mmol), 3-methoxy-3-oxopropanoic acid (0.017 g, 0.140 mmol) and DIPEA (0.082 mL, 0.467 mmol) in ethyl acetate (1 mL) was added T3P (50% w/w in EtOAc, 0.069 mL, 0.117 mmol). The reaction mixture was stirred at room temperature for 16 h and concentrated in vacuo. The resulting residue was dissolved in THF (1 mL), added 4 N NaOH (0.093 mL, 0.373 mmol), and stirred at 65° C. for 24 h. After this time, the mixture was adjusted to pH 5-6 with 1 N aq. HCl, and extracted with EtOAc. The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide a residue. The residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ , C18, 30×75 mm; 10 min gradient from 75% A:25% B to $0\% \text{ A:} 100\% \text{ B} (A=90\% \text{ H}_2\text{O}/10\% \text{ MeCN+0.1}\% \text{ TFA});$ (B=90% MeCN/10% $H_2O+0.1\%$ TFA); detection at 220 nm) to afford Example 73 (0.035 g, 71% yield). LCMS, [M+H]⁺= 515.3. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, J=7.8 Hz, 1H), 7.29-7.18 (m, 2H), 7.12 (br. s, 3H), 7.00 (t, J=7.9 Hz, 2H), 6.74 (d, J=7.5 Hz, 1H), 6.63 (d, J=8.2 Hz, 1H), 4.52 (d, J=5.6 Hz, 2H), 3.93 (br. s, 2H), 3.77 (t, J=6.9 Hz, 2H), 3.35 (s, 2H), 2.78 (t, J=7.3 Hz, 2H), 2.45 (br. s, 2H), 2.24-2.11 (m, 5H), 1.92 (s, 3H), 1.85-1.73 (m, 2H). HPLC-1: Rt=10.2 min, purity=99.5%; HPLC-2: Rt=9.1 min, purity=99.7%.

Example 74

2-(3-(3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)benzyl)ureido)acetic acid

Example 71 was prepared using a procedure analogous to Example 70 except that ethyl 2-hydroxyacetate was replaced with methyl 3-(hydroxymethyl)benzoate. LCMS, [M+H] $^+$ = 607.3. 1 H NMR (400 MHz, MeOD) δ 8.10 (s, 1H), 8.00 (d, J=7.3 Hz, 1H), 7.63 (d, J=7.0 Hz, 1H), 7.47 (t, J=7.6 Hz, 1H), 7.39 (t, J=7.5 Hz, 1H), 7.36-7.25 (d, J=8.1 Hz, 3H), 7.19 (br. s, 2H), 7.10-6.99 (m, 2H), 6.77 (d, J=7.5 Hz, 1H), 6.73 (d, J=8.1 Hz, 1H), 5.21 (s, 2H), 4.40 (s, 2H), 3.96 (br. s, 2H), 3.80 (t, J=6.9 Hz, 2H), 2.44 (br. s, 2H), 2.27-2.12 (m, 5H), 1.91 (s, 3H), 1.86-1.73 (m, 2H). HPLC-1: Rt=5.2 min, purity=100%; HPLC-2: Rt=5.4 min, purity=100%.

Example 72

3-(N-(3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)benzyl)sulfamoyl)propanoic acid

To a solution of 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.025 g, 0.058 mmol) and TEA (0.024 mL, 0.175 mmol) in DCM (0.6 mL) was added methyl 3-(chlorosulfonyl)propanoate (0.016 g, 0.088 mmol). The reaction mixture was stirred at room temperature for 5 h and concentrated in vacuo. 45 The resulting residue was dissolved in 1 mL of THF, added 4 M LiOH (0.102 mL, 0.408 mmol), and stirred at room temperature for 16 h. After this time, the mixture was adjusted to pH 5-6 with 1 N aq. HCl, and then extracted with EtOAc. The combined organic layer was dried over anhydrous MgSO₄, 50 filtered, and concentrated in vacuo. The resulting residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5µ, C18, 30×75 mm; 10 min gradient from 75% A:25% B to 0% A:100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 72 (27.5 mg, 79% yield) as a white solid. LCMS, [M+H]⁺=565.3. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, J=7.6 Hz, 1H), 7.30 (d, J=7.7 Hz, 1H), 7.21 (d, J=7.7 Hz, 2H), 7.18 (s, 1H), 7.14 (d, J=7.4 Hz, 1H), 7.10 (d, J=7.0 Hz, 1H), 7.01 (t, J=7.9 Hz, 1H), 6.74 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.1 Hz, 1H), 4.72 (t, J=5.8 Hz, 1H), 4.33 (d, J=5.8 Hz, 2H), 3.94 (br. s, 2H), 3.78 (t, J=7.0 Hz, 2H), 3.28 (t, J=7.3 Hz, 2H), 2.86-2.75 (m, 4H), 2.49-2.40 (m, 2H), 2.24-2.12 (m, 5H), 1.94 (s, 3H), 1.81 (dt, J=13.4, 6.6 Hz, 2H). HPLC-1: 65 Rt=10.4 min, purity=93.2%; HPLC-2: Rt=9.4 min, purity=98.8%.

30

35

169

Step A. Methyl 2-((4-nitrophenoxy)carbonylamino)acetate

$$\begin{array}{c|c} & & & H \\ & & & \\ & &$$

To a solution of methyl 2-aminoacetate hydrochloride (0.137 g, 1.09 mmol) and DIPEA (0.52 mL, 2.98 mmol) in DCM (5 mL) at 0° C. was added a solution of 4-nitrophenyl 15 carbonochloridate (0.20 g, 0.992 mmol) in DCM (2 mL) dropwise. The reaction mixture was slowly warmed to room temperature and stirred for 16 h. After this time, the reaction was quenched with water, and the organic layer was separated. The aqueous phase was extracted with DCM, and the 20 combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide the crude material. The crude material was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (0.213 g, 84% yield) as a white solid. LCMS, [M+Na]⁺= 25 277.1. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J=9.1 Hz, 2H), 7.32 (d, J=9.1 Hz, 2H), 5.62 (br. s, 1H), 4.07 (d, J=5.5 Hz, 2H), 3.80 (s, 3H).

Example 74

A solution of 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.030 g, 0.070 mmol), methyl 2-((4-nitrophenoxy)carbonylamino)acetate (0.022 g, 0.088 mmol) and DIPEA (0.037 mL, 0.210 mmol) in DCM (1 mL) was stirred at room temperature for 11 d. After this time, the reaction mixture was quenched with water and the organic layer was separated. The aqueous layer was extracted with DMC, and the combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The resulting residue was dissolved in THF (1 mL)/MeOH (0.05 mL) and then 4 N aq. LiOH (0.3 mL) was added. The resulting mixture was stirred at 65° C. 50 for 16 h. At the conclusion of this period, the mixture was diluted in EtOAc, and adjusted to pH 6-7 with 1 N HCl. The organic layer was separated, washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The resulting residue was purified by preparative 55 HPLC (PHENOMENEX® Axia Luna column, 5u, C18, 30×75 mm; 10 min gradient from 75% A:25% B to 0% A:100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 74 (5.4 mg, 14% yield) as a white solid. LCMS, 60 $[M+H]^{+}=530.3.$ ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, J=7.5 Hz, 1H), 7.30-7.15 (m, 3H), 7.16-7.05 (m, 3H), 7.04-6.95 (m, 1H), 6.74 (d, J=7.5 Hz, 1H), 6.62 (d, J=8.2 Hz, 1H), 4.37 (s, 2H), 3.95-3.84 (m, 4H), 3.80-3.68 (m, 2H), 2.74 (t, J=7.3 Hz, 2H), 2.45 (br. s, 2H), 2.19 (s, 3H), 2.12 (dt, J=12.9, 6.5 Hz, 65 2H), 1.94 (s, 3H), 1.83-1.68 (m, 2H). HPLC-1: Rt=9.5 min, purity=98.3%; HPLC-2: Rt=8.6 min, purity=97.6%.

170

Example 75

2-(3-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)benzyl)ureido)acetic acid

Step A. 3-((4-Bromo-1H-pyrazol-1-yl)methyl)benzoic acid

The title compound was prepared using a procedure analogous to Example 2 except that methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)picolinate was replaced by methyl 3-((4-bromo-1H-pyrazol-1-yl)methyl)benzoate. LCMS, [M+H]⁺=281.0.

Step B. 3-((4-Bromo-1H-pyrazol-1-yl)methyl)benzamide

To a solution of 3-((4-bromo-1H-pyrazol-1-yl)methyl) benzoic acid (0.20 g, 0.711 mmol) in THF (3.5 mL) at 0° C. was added N-methylmorpholine (0.086 g, 0.854 mmol), and isobutyl chloroformate (0.107 g, 0.783 mmol) slowly. The reaction was stirred at 0° C. for 1.5 h and ammonium hydroxide (0.249 g, 7.11 mmol) was slowly added. The reaction was allowed to warm to room temperature where it stirred overnight. At the conclusion of this period, the reaction mixture was partitioned between DCM and water. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (0.188 g, 94%). LCMS, [M+H]⁺=280.0.

20

25

The title compound was prepared using a procedure analobromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinoline except that 7-bromo-3,7b-dihydro-1H-cyclopropa [c]quinolin-2(1aH)-one was replaced with 3-((4-bromo-1Hpyrazol-1-yl)methyl)benzamide. LCMS, [M+H]⁺=266.1. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (s, 1H), 7.36 (s, 1H), 7.33-7.25 (m, 2H), 7.18 (s, 1H), 7.09 (d, J=7.4 Hz, 1H), 5.24 (s, 2H), 3.85 (s, 2H), 1.78 (s, 2H).

Step D. tert-Butyl 3-((4-bromo-1H-pyrazol-1-yl) methyl)benzylcarbamate

To a solution of (3-((4-bromo-1H-pyrazol-1-yl)methyl) 35 phenyl)methanamine (84 mg, 0.317 mmol) in THF (1.6 mL) was added saturated NaHCO₃ (0.75 mL), followed by slow addition of di-tert-butyl dicarbonate (0.38 mL, 0.38 mmol, 1.0 M in THF). The reaction was stirred at room temperature organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (93 mg, 81% yield). LCMS, $[M+H]^{+}=366.1.$

Step E. tert-Butyl 3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzylcarbamate

172

The title compound was prepared using a procedure analogous to 4-(2,3-dimethylphenoxy)-1-(5-(4-(hydroxymethyl) phenyl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one except that 4-(hydroxymethyl)phenylboronic acid was replaced with tert-butyl 3-((4-bromo-1H-pyrazol-1-yl)methyl)benzylcarbamate. LCMS, [M+H]+=609.4.

Step F. 1-(5-(1-(3-(Aminomethyl)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analogous to 14543-(aminomethyl)phenyl)-3,4-dihydroquinolin-1 30 (2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one except that tert-butyl 3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4tetrahydroquinolin-5-yl)benzylcarbamate was replaced with tert-butyl 3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzylcarbamate. LCMS, [M+H]⁺=509.4.

Example 75

To a solution of 1-(5-(1-(3-(aminomethyl)benzyl)-1Hovernight and then partitioned between DCM and water. The 40 pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (15 mg, 0.029 mmol) and Hunig's base (5.7 mg, 0.044 mmol) in THF (0.3 mL) at 0° C. was added ethyl 2-isocyanatoacetate (4.2 mg, 0.032 mmol, 10% in THF) dropwise. Upon completion of addition, the reaction 45 was allowed to warm to room temperature where it stirred overnight. The reaction mixture was partitioned between DCM and saturated NaHCO₂ and stirred for 15 min. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated to provide the crude ester. The 50 crude ester was re-dissolved in THF/MeOH (9:1, 0.3 mL) and added 4 N LiOH (73 µL, 0.29 mmol). The reaction mixture was stirred at reflux overnight. At the conclusion of this period, the organic solvents were removed and the mixture was adjusted to pH~5 with conc. HCl. The resulting mixture 55 was partitioned between 5% citric acid and DCM and stirred for 15 min. After this time, the organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by preparative HPLC (PHE-NOMENEX® Axia Luna column, 5μ, C18, 30×75 mm; 10 $_{60}$ $\,$ min gradient from 100% A:0% B to 0% A:100% B and 3 min 100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 75 (13 mg, 73% yield). LCMS, [M+H]⁺=610.4. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J=5.1 Hz, 1H), 7.37 (s, 65 1H), 7.23-7.10 (m, 3H), 7.02 (t, J=7.9 Hz, 1H), 6.74 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.1 Hz, 1H), 4.46 (t, J=6.3 Hz, 2H), 3.93 (s, 2H), 3.78 (t, J=6.8 Hz, 2H), 3.02 (t, J=6.3 Hz, 2H), 2.75 (t,

20

25

45

173

Example 76

3-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzylamino)-3-oxopropanoic acid

Example 76 was prepared using a procedure analogous to Example 73 except that 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(5-(1-(3-(aminomethyl)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one. LCMS, [M+H]*=595.2. ¹H NMR (400 MHz, MeOD) & 7.59 (s, 1H), 7.45 (s, 1H), 7.37-7.27 (m, 3H), 7.27-7.07 (m, 4H), 6.96 (t, J=7.9 Hz, 1H), 6.70-6.60 (m, 2H), 5.35 (s, 2H), 4.41 (s, 2H), 3.85 (br. s, 2H), 3.78-3.68 (m, 2H), 3.37-3.28 (m, 2H), 2.80 (t, J=6.8 Hz, 2H), 2.46 (br. s, 2H), 2.11 (dt, J=12.5, 6.3 Hz, 2H), 2.03 (s, 3H), 1.84-1.74 (m, 2H), 1.71 (s, 3H). HPLC-1: Rt=10.7 min, purity=97.7%; HPLC-2: Rt=10.9 min, purity=99.4%.

Example 77

1-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzylcarbamoyl)cyclopropanecarboxylic acid

174

Example 77 was prepared using a procedure analogous to Example 76 except that 3-methoxy-3-oxopropanoic acid was replaced with 1-(methoxycarbonyl)cyclopropanecarboxylic acid. LCMS, [M+H]⁺=621.3. ¹H NMR (400 MHz, MeOD) 8 7.57 (br. s, 1H), 7.46 (br. s, 1H), 7.34 (t, J=7.6 Hz, 1H), 7.30-7.07 (m, 6H), 6.95 (t, J=7.9 Hz, 1H), 6.70-6.59 (m, 2H), 5.36 (s, 2H), 4.45 (s, 2H), 3.85 (br. s, 2H), 3.73 (t, J=6.8 Hz, 2H), 2.80 (t, J=6.8 Hz, 2H), 2.45 (br. s, 2H), 2.11 (dt, J=12.5, 6.3 Hz, 2H), 2.01 (s, 3H), 1.82-1.74 (m, 2H), 1.70 (s, 3H), 1.58-1.46 (m, 4H). HPLC-1: Rt=11.7 min, purity=97.2%; HPLC-2: Rt=11.6 min, purity=97.0%.

Example 78

(1-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzylcarbamoyl)cyclopropanecarboxamido) methanesulfonic acid

To a solution of Example 77 (20.0 mg, 0.032 mmol), aminomethanesulfonic acid (10.7 mg, 0.097 mmol) and DIPEA (0.028 mL, 0.161 mmol) in THF (1 mL) was added T3P (50% w/w in EtOAc, 0.038 mL, 0.064 mmol). The reaction mixture was stirred at 50° C. for 16 h and concentrated in vacuo. The resulting residue was purified by preparative HPLC (PHE-NOMENEX® Axia Luna column, 5μ, C18, 30×75 mm; 15 min gradient from 100% A:0% B to 0% A:100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+ 0.1% TFA); detection at 220 nm) to afford Example 78 (14 mg, 60% yield). LCMS, [M+H]⁺=714.3. ¹H NMR (400 MHz, 60 MeOD) δ 7.99 (br. s, 1H), 7.76 (br. s, 1H), 7.39 (s, 1H), 7.37-7.11 (m, 6H), 6.96 (t, J=7.9 Hz, 1H), 6.65 (d, J=7.4 Hz, 2H), 5.50 (s, 2H), 4.41 (s, 2H), 4.36 (s, 2H), 3.86 (br. s, 2H), 3.75 (t, J=6.8 Hz, 2H), 3.34 (s, 2H), 2.80 (t, J=6.9 Hz, 2H), 2.51 (br. s, 2H), 2.11 (dt, J=12.6, 6.4 Hz, 2H), 2.04 (s, 3H), 65 1.87-1.78 (m, 2H), 1.75 (s, 3H), 1.39-1.23 (m, 4H). HPLC-1: Rt=11.9 min, purity=92.0%; HPLC-2: Rt=9.9 min, purity=97.7%.

10

15

40

45

60

2-(1-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)benzylcarbamoyl)cyclopropanecarboxamido) ethanesulfonic acid

Example 79 was prepared using a procedure analogous to Example 78 except that aminomethanesulfonic acid was replaced by 2-aminoethanesulfonic acid. LCMS, [M+H]⁺= 728.3. ¹H NMR (400 MHz, MeOD) δ 7.97 (br. s, 1H), 7.76 (br. s, 1H), 7.41-7.10 (m, 7H), 6.95 (t, J=7.9 Hz, 1H), 6.65 (d, 30 J=7.8 Hz, 2H), 5.50 (s, 2H), 4.40 (s, 2H), 3.86 (br. s, 2H), 3.74 (t, J=6.8 Hz, 2H), 3.64-3.56 (m, 2H), 3.33 (s, 2H), 3.02-2.91 (m, 2H), 2.80 (t, J=6.9 Hz, 2H), 2.50 (br. s, 2H), 2.11 (dt, J=12.6, 6.4 Hz, 2H), 2.03 (s, 3H), 1.90-1.77 (m, 2H), 1.75 (s, 3H), 1.38-1.19 (m, 4H). HPLC-1: Rt=10.2 min, purity=98.8%; HPLC-2: Rt=7.3 min, purity=99.0%.

Example 80

3-(3-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)phenyl)ureido)propanoic acid

176

Step A. tert-Butyl 3-((4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-pyrazol-1-yl)methyl)phenylcarbamate

To a solution of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (0.88 g, 4.54 mmol) in acetonitrile (20 mL) was added cesium carbonate (4.43 g, 13.61 mmol) and tert-butyl 3-(bromomethyl)phenylcarbamate (1.298 g, 4.54 20 mmol). The reaction was stirred at room temperature for 3 h. After this time, the reaction mixture was diluted with ethyl acetate and washed with water and brine. The aqueous phase was extracted with CHCl₃. The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was purified by (0-100% ethyl acetate:hexanes) to afford the title compound (1.06 g, 2.65 mmol, 59% yield) as a colorless oil. LCMS, [M+H]⁺=400.3.

> Step B. 1-(5-(1-(3-Aminobenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analo-50 gous to 1-(5-(1-(3-(aminomethyl)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one except that tert-butyl 3-((4-bromo-1H-pyrazol-1yl)methyl)benzylcarbamate was replaced by 1-(5-bromo-3, 4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)

55 butan-1-one and 4-(2,3-dimethylphenoxy)-1-(5-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinolin-1 (2H)-yl)butan-1-one was replaced by tert-butyl 3-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl) methyl)phenylcarbamate. LCMS, [M+H]⁺=495.4.

Example 80

To a solution of 1-(5-(1-(3-aminobenzyl)-1H-pyrazol-4yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphe-65 noxy)butan-1-one (20 mg, 0.040 mmol) in CH₂Cl₂ (1 mL) was added triethylamine (40.9 mg, 0.404 mmol) and phos-

gene (20% wt in toluene, 200 mg, 0.404 mmol). The reaction

35

40

45

55

was stirred at room temperature for 5 min and concentrated. The resulting residue was re-dissolved in CH₂Cl₂ (1 mL) and added 3-aminopropanoic acid (18 mg, 0.202 mmol) in DMF (0.5 mL). The resulting mixture was stirred at room temperature for 30 min and then heated at 50° C. for 30 min. The 5 reaction mixture was concentrated and purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5u, C18, 30×75 mm; 18 min gradient from 90% A:10% B to 0% A:100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% $H_2O+0.1\%$ TFA); detection at 220 nm) to Example 80 (9.8 mg, 38% yield) as a white powder. LCMS, $[M+H]^+=610.5.$ ¹H NMR (500 MHz, CD_2Cl_2) δ 7.84 (s, 1H), 7.54 (s, 1H), 7.45 (s, 1H), 7.32 (s, 1H), 7.23-7.07 (m, 5H), 6.96 (t, J=7.8 Hz, 1H), 6.83 (d, J=6.9 Hz, 1H), 6.70 (d, J=7.5 Hz, 1H), 6.62 (d, J=8.1 Hz, 1H), 5.96 (br. s, 1H), 5.22 (s, 2H), 3.91 (br. s, 2H), 3.71 (t, J=6.6 Hz, 2H), 3.39 (br. s, 2H), 2.71 (t, J=7.1 Hz, 2H), 2.58 (br. s, 2H), 2.46 (t, J=5.7 Hz, 2H), 2.23-2.06 (m, 5H), 1.94 (s, 3H), 1.86-1.74 (m, 2H). HPLC-1: Rt=9.3 min, purity=95.0%; HPLC-2: Rt=8.5 min, purity=94.7%.

Example 81

(3-(3-(1-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) ethyl)phenyl)ureido)methanesulfonic acid

Step A. tert-Butyl 3-(1-hydroxyethyl)phenylcarbamate

To a solution of 1-(3-aminophenyl)ethanol (5 g, 36.4 mmol) in THF (120 mL) at 0° C. was added triethylamine (5.33 mL, 38.3 mmol) and di-tert-butyldicarbonate (9.21 mL, 60 40.1 mmol). The reaction was allowed to slowly warm to room temperature where it stirred overnight. At the conclusion of this period, the solvent was removed in vacuo. The resulting residue was re-dissolved in ethyl acetate, washed with 0.1N HCl, saturated NaHCO₃, and brine, dried over 65 anhydrous MgSO₄, filtered, and concentrated to afford the title compound (10.01 g, 100% yield) as a yellow oil. ¹H

178

NMR (400 MHz, $CDCl_3$) δ 7.40 (s, 1H), 7.27-7.21 (m, 2H), 7.03 (dt, J=7.2, 1.4 Hz, 1H), 6.47 (s, 1H), 4.85 (qd, J=6.4, 3.7 Hz, 1H), 1.82 (d, J=3.7 Hz, 1H), 1.50 (s, 9H), 1.46 (d, J=6.4 Hz, 3H).

Step B. tert-Butyl 3-(1-bromoethyl)phenylcarbamate

To a solution of tert-butyl 3-(1-hydroxyethyl)phenylcarbamate (5.8 g, 24.44 mmol) in $\mathrm{CH_2Cl_2}$ (30 mL) and THF (20 mL) at 0° C. was added tribromophosphine (1 M solution in $\mathrm{CH_2Cl_2}$, 24.44 mL, 24.44 mmol). The reaction was stirred at 0-10° C. for 1.5 h and then quenched with water. The mixture was extracted with $\mathrm{CH_2Cl_2}$. The organic layer was washed with saturated NaHCO₃ and brine, dried over anhydrous MgSO₄, filtered and concentrated to afford the title compound (5.7 g, 78% yield) as a colorless oil. LCMS, [M+Na]⁺= 322.1.

Step C. 1-(5-(1-(1-(3-Aminophenyl)ethyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analogous to 1-(5-(1-(3-aminobenzyl)-1H-pyrazol-4-yl)-3,4-dihy-50 droquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one except that tert-butyl 3-(bromomethyl)phenylcarbamate was replaced with tert-butyl 3-(1-bromoethyl)phenylcarbamate. LCMS, [M+H]⁺=509.5.

Example 81

Example 81 was prepared using a procedure analogous to Example 80 except that 1-(5-(1-(3-aminobenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(5-(1-(1-(3-aminophenyl)ethyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1 (2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one and 3-aminopropanoic acid was replaced with aminomethanesulfonic acid. LCMS, [M+H] $^+$ =646.5. 1 H NMR (400 MHz, CD₃CN) δ 7.69 (br. s, 1H), 7.53 (s, 1H), 7.41 (s, 1H), 7.30-7.07 (m, 5H), 6.95 (t, J=7.9 Hz, 1H), 6.84 (d, J=7.4 Hz, 1H), 6.65 (t, J=8.7 Hz, 2H), 5.53 (dd, J=14.0, 7.0 Hz, 1H), 4.20 (s,

10

15

20

45

50

55

60

65

Example 82

2-(3-(3-(1-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)ethyl)phenyl)ureido)ethanesulfonic acid

Example 82 was prepared using a procedure analogous to Example 81 except that aminomethanesulfonic acid was replaced with 2-aminoethanesulfonic acid. LCMS, [M+H] $^+$ = 660.5. 1 H NMR (400 MHz, CD $_3$ CN) δ 7.69 (br. s, 1H), 7.53 (s, 1H), 7.39 (s, 1H), 7.28-7.10 (m, 5H), 6.95 (t, J=7.9 Hz, 1H), 6.84 (d, J=7.2 Hz, 1H), 6.65 (t, J=8.3 Hz, 2H), 5.52 (q, J=7.1 Hz, 1H), 3.83 (br. s, 2H), 3.71-3.55 (m, 2H), 3.48 (t, J=6.5 Hz, 2H), 2.90 (t, J=6.5 Hz, 2H), 2.69 (t, J=7.0 Hz, 2H), 2.49 (br. s, 2H), 2.09-1.97 (m, 5H), 1.83 (d, J=7.1 Hz, 3H), 1.80-1.66 (m, 5H). HPLC-1: Rt=11.8 min, purity=99.1%; 40 HPLC-2: Rt=9.1 min, purity=99.7%.

Example 83

2-(3-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)phenyl)ureido)acetic acid

180

Step A. Ethyl 2-(3-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)acetate

The title compound was prepared using a procedure analogous to Example 80 except that 3-aminopropanoic acid was replaced with ethyl 2-aminoacetate. LCMS, [M+H]⁺=624.5.

Example 83

Example 83 was prepared using a procedure analogous to Example 2 except that methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)picolinate was replaced with ethyl 2-(3-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)acetate. LCMS, [M+H]⁺= 596.3. ¹H NMR (500 MHz, CD₂Cl₂) \delta 8.06 (s, 1H), 7.53 (s, 1H), 7.45 (s, 1H), 7.29 (s, 1H), 7.20 (d, J=7.7 Hz, 2H), 7.16-7.05 (m, 4H), 6.95 (t, J=7.8 Hz, 1H), 6.79 (d, J=7.5 Hz, 1H), 6.69 (d, J=7.5 Hz, 1H), 6.62 (d, J=8.1 Hz, 1H), 6.11 (br. s, 1H), 5.19 (s, 2H), 3.90 (br. s, 3H), 3.80 (s, 2H), 3.69 (t, J=6.6 Hz, 2H), 2.70 (t, J=7.1 Hz, 2H), 2.56 (br. s, 2H), 2.22-2.07 (m, 5H), 1.93 (s, 3H), 1.78 (d, J=6.2 Hz, 2H). HPLC-1: Rt=9.1 min, purity=100%; HPLC-2: Rt=8.2 min, purity=100%.

Example 84

2-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzylcarbamoyloxy)acetic acid

Example 84 was prepared using a procedure analogous to Example 83 except that 1-(5-(1-(3-aminobenzyl)-1H-pyra-

zol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(5-(1-(3-(aminomethyl)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1 (2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one and ethyl 2-aminoacetate was replaced with methyl 2-hydroxyacetate. 5 LCMS, [M+H]*=611.2. 1 H NMR (400 MHz, MeOD) δ 7.60 (br. s, 1H), 7.45 (br. s, 1H), 7.36-7.07 (m, 7H), 6.95 (t, J=7.9

 $\begin{array}{l} {\rm Hz,1H),6.71\text{-}6.57\ (m,2H),5.35\ (s,2H),4.54\ (s,2H),4.31\ (s,2H),3.85\ (br.\ s,2H),3.73\ (t,J=6.8\ Hz,2H),2.80\ (t,J=6.8\ Hz,2H),2.46\ (br.\ s,2H),2.11\ (dt,J=12.4,6.3\ Hz,2H),2.02\ (s,3H),1.85\text{-}1.73\ (m,2H),1.71\ (s,3H).\ HPLC-1:\ Rt=11.6\ min,purity=98.8\%;\ HPLC-2:\ Rt=11.1\ min,purity=100\%. \end{array}$

182

The following Examples were prepared in a manner analogous to Example 80.

TABLE 6

		N-N	x O		
Example	Name	Y	LCMS, [M + H] ⁺	1 H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
85	2-(3-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)phenyl) ureido)ethanesulfonic acid	volve HN SO3H	646.5	7.84 (br. s, 1H), 7.70 (s, 1H), 7.44 (s, 1H), 7.34-7.17 (m, 6H), 7.02-6.90 (m, 2H), 6.68 (d, J = 7.2 Hz, 2H), 5.43 (s, 2H), 3.88 (br. s, 2H), 3.77 (t, J = 6.7 Hz, 2H), 3.64 (t, J = 6.1 Hz, 2H), 3.01 (t, J = 6.1 Hz, 2H), 2.82 (t, J = 6.8 Hz, 2H), 2.52 (br. s, 2H), 2.17-2.11 (m, 2H), 2.06 (s, 3H), 1.89-1.81 (m, 2H), 1.77 (s, 3H)*	10.4 min, 99.3% 7.2 min, 98.4%
86	(3-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)phenyl) ureido)methanesulfonic acid	Now HN SO3H	632.4	7.75 (br. s, 1H), 7.64 (br. s, 1H), 7.38 (br. s, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.25-7.12 (m, 4H), 6.96 (t, J = 7.8 Hz, 1H), 6.83 (d, J = 7.4 Hz, 1H), 6.72-6.62 (m, 2H), 5.28 (s, 2H), 4.20 (s, 2H), 3.87 (br. s, 2H), 3.68 (t, J = 6.7 Hz, 2H), 2.70 (t, J = 7.0 Hz, 2H), 2.60-2.49 (m, 2H), 2.14-2.01 (m, 5H), 1.84 (s, 3H), 1.81-1.74 (m, 2H)**	10.5 min, 99.6% 6.9 min, 100%
87	(3-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)benzyl) ureido)methanesulfonic acid	HN O SO ₃ H	646.3	7.60-7.37 (m, 2H), 7.32-7.08 (m, 5H), 7.08-6.83 (m, 3H), 6.70 (d, J = 7.2 Hz, 1H), 6.60 (d, J = 7.7 Hz, 1H), 5.32 (s, 2H), 4.41 (br. s, 2H), 4.29 (br. s, 2H), 3.97-3.82 (m, 2H), 3.78-3.61 (m, 2H), 2.72 (br. s, 2H), 2.45 (br. s, 2H), 2.42-0.20 (m, 5H), 1.97-1.68 (m, 5H)	13.5 min, 98.8% 11.5 min, 99.3%
88	2-(3-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)benzyl) ureido)ethanesulfonic acid	HN SO ₃ H	660.4	7.88 (s, 1H), 7.63-7.42 (m, 2H), 7.35-7.13 (m, 5H), 7.12-6.95 (m, 2H), 6.72 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 5.37 (s, 2H), 4.33 (s, 2H), 3.89 (br. s, 2H), 3.74 (t, J = 6.5 Hz, 2H), 3.59 (br. s, 2H), 3.04 (s, 2H), 2.72 (t, J = 7.0 Hz, 2H), 2.48 (br. s, 2H), 2.24-2.07 (m, 5H), 1.93-1.72 (m, 5H)	11.5 min, 100% 8.7 min, 98.7%

^{*1}H NMR (400 MHz, MeOD).

^{**&}lt;sup>1</sup>H NMR (400 MHz, CD₃CN).

20

45

50

55

Example 89

3-(N-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)phenyl)sulfamoyl)propanoic acid

Example 89 was prepared using a procedure analogous to Example 72 except that 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(5-(1-(3-aminobenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one. LCMS, [M+H] $^+$ =631.5. 1 H NMR (500 MHz, CD₂Cl₂) δ 7.62 (s, 1H), 7.46 (s, 1H), 7.37 (t, 30 J=7.9 Hz, 1H), 7.30 (d, J=8.3 Hz, 1H), 7.25-7.16 (m, 3H), 7.11-7.05 (m, 2H), 7.02-6.95 (m, 2H), 6.72 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.4 Hz, 1H), 5.37 (s, 2H), 3.91 (br. s, 2H), 3.78 (t, J=6.8 Hz, 2H), 3.43 (t, J=6.5 Hz, 2H), 2.83-2.74 (m, 4H), 2.58 (s, 2H), 2.22-2.11 (m, 5H), 1.96-1.81 (m, 5H). HPLC-1: 35 Rt=10.4 min, purity=100%; HPLC-2: Rt=9.6 min, purity=100%.

Example 90

1-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenyl)guanidine

A mixture of 1-(5-(1-(3-aminobenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (20 mg, 0.040 mmol), cyanamide (34 mg, 0.809 mmol), and 12 N HCl (0.05 mL) in EtOAc (7 mL) was heated to reflux for 5 h. The reaction was concentrated and purified 65 by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ , C18, 30×100 mm; 18 min gradient from 100% A:0%

184

B to 0% A:100% B (A=90% $\rm H_2O/10\%$ MeOH+0.1% TFA); (B=90% MeOH/10% $\rm H_2O+0.1\%$ TFA); detection at 220 nm) to afford Example 90 (12.9 mg, 58% yield) as a white powder. LCMS, [M+H]⁺=537.5. $^{1}\rm H$ NMR (500 MHz, MeOD) δ 7.75 (s, 1H), 7.52 (t, J=7.8 Hz, 2H), 7.34-7.18 (m, 6H), 7.01 (t, J=7.9 Hz, 1H), 6.72 (d, J=7.7 Hz, 1H), 6.70 (d, J=8.2 Hz, 1H), 5.45 (s, 2H), 3.91 (br. s, 2H), 3.78 (t, J=6.8 Hz, 2H), 2.85 (t, J=6.8 Hz, 2H), 2.54 (br. s, 2H), 2.21-2.13 (m, 2H), 2.11 (s, 3H), 1.89-1.81 (m, 2H), 1.79 (s, 3H). HPLC-1: Rt=7.3 min, purity=100%; HPLC-2: Rt=8.3 min, purity=100%.

Example 91

1-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzyl)guanidine

Example 91 was prepared using a procedure analogous to Example 90 except that 1-(5-(1-(3-aminobenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(5-(1-(3-(aminomethyl)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1 (2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one. LCMS, [M+H]*=551.3. ¹H NMR (500 MHz, MeOD) & 7.89-7.76 (m, 1H), 7.69-7.57 (m, 1H), 7.47 (s, 1H), 7.41 (t, J=7.5 Hz, 1H), 7.35-7.10 (m, 5H), 6.97 (t, J=7.9 Hz, 1H), 6.75-6.58 (m, 2H), 4.94 (s, 2H), 4.41 (t, J=2.8 Hz, 2H), 3.86 (br. s, 2H), 3.74 (t, J=6.8 Hz, 2H), 2.81 (t, J=6.8 Hz, 2H), 2.48 (br. s, 2H), 2.12 (dt, J=12.4, 6.3 Hz, 2H), 2.04 (s, 3H), 1.88-1.76 (m, 2H), 1.73 (s, 3H). HPLC-1: Rt=8.4 min, purity=97.3%; HPLC-2: Rt=10.4 min, purity=98.2%.

Example 92

2-Cyano-1-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenyl)guanidine

25

30

40

185

A mixture of 1-(5-(1-(3-aminobenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (16 mg, 0.032 mmol), sodium dicyanamide (5.76 mg, 0.065 mmol), and 6 N HCl (10.78 μL, 0.065 mmol) in dioxane (0.5 mL) was heated at 60° C. overnight. The reaction 5 was concentrated and purified by preparative HPLC (PHE-NOMENEX® Axia Luna column, 5u, C18, 30×100 mm; 18 min gradient from 100% A:0% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+ 0.1% TFA); detection at 220 nm) to afford Example 92 (15.1 mg, 83% yield) as a white powder. LCMS, [M+H]+=562.5. ¹H NMR (400 MHz, MeOD) δ 7.66 (s, 1H), 7.54 (s, 1H), 7.46-7.37 (m, 2H), 7.37-7.19 (m, 4H), 7.14 (d, J=7.5 Hz, 1H), 7.03 (t, J=7.9 Hz, 1H), 6.78-6.68 (m, 2H), 5.43 (s, 2H), 3.92 (br. s, 2H), 3.80 (t, J=6.8 Hz, 2H), 2.87 (t, J=6.8 Hz, 2H), 2.55 (br. s, 2H), 2.18 (dt, J=12.9, 6.5 Hz, 2H), 2.11 (s, 3H), 1.87 (dt, J=13.5, 6.7 Hz, 2H), 1.80 (s, 3H). HPLC-1: Rt=9.6 min, purity=98.7%; HPLC-2: Rt=8.7 min, purity=99.1%.

Example 93

(S)-5-((3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino)-2-guanidinopentanoic acid

A mixture of Example 58 (0.068 g, 0.116 mmol), tert-butyl (1H-pyrazol-1-yl)methylenedicarbamate (0.045 g, 0.145 50 mmol) and DIPEA (0.061 mL, 0.347 mmol) in MeOH (1.0 mL) was stirred at room temperature for 16 h. The solvent was removed in vacuo. The resulting residue was dissolved in DCM (1.0 mL) and treated with TFA (0.5 mL, 6.49 mmol). The mixture was stirred at room temperature for 16 h and 55 concentrated to provide a residue. The residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ , C18, 30×100 mm; 18 min gradient from 75% A:25% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); $(B=90\% MeOH/10\% H_2O+0.1\% TFA)$; detection at 220 nm) 60 to afford Example 93 as a white solid. LCMS, [M+H]+= 630.3. ¹H NMR (400 MHz, MeOD) δ 7.40-7.29 (m, 2H), 7.29-7.19 (m, 2H), 7.12 (br. s, 2H), 7.04 (d, J=4.5 Hz, 1H), 6.96 (t, J=7.9 Hz, 1H), 6.70 (d, J=7.5 Hz, 1H), 6.65 (d, J=8.2 Hz, 1H), 5.08 (s, 2H), 4.24 (dd, J=7.6, 4.8 Hz, 1H), 3.87 (br. 65 s, 2H), 3.72 (t, J=7.0 Hz, 2H), 3.19-3.09 (m, 2H), 2.81 (t, J=6.9 Hz, 2H), 2.35 (br. s, 2H), 2.18-2.06 (m, 5H), 2.02-1.88

186

(m, 1H), 1.86-1.68 (m, 6H), 1.64-1.52 (m, 2H). HPLC-1: Rt=11.3 min, purity=96.8%; HPLC-2: Rt=11.8 min, purity=97.3%.

Example 94

2-((2-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)-2-methylpropoxy)carbonylamino)ethanesulfonic acid

Step A. Ethyl 2-(4-bromo-1H-pyrazol-1-yl)-2-methylpropanoate

$$N-N$$
 CO_2Et

The title compound was prepared using a procedure analogous to methyl 3-((4-bromo-1H-pyrazol-1-yl)methyl)benzoate except that methyl 3-(bromomethyl)benzoate was replaced with ethyl 2-bromo-2-methylpropanoate. LCMS, [M+H]⁺=261.0.

Step B. 2-(4-Bromo-1H-pyrazol-1-yl)-2-methylpropan-1-ol

To a solution of ethyl 2-(4-bromo-1H-pyrazol-1-yl)-2-methylpropanoate (0.8 g, 3.06 mmol) in MeOH (10 mL) was added sodium borohydride (0.348 g, 9.19 mmol). The reaction was stirred at room temperature for 3 h and quenched with saturated NH₄Cl solution. The mixture was extracted with ethyl acetate. The organic layer was washed with brine,

20

25

35

40

45

50

187

dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (0.6 g, 89% yield) as a white powder. LCMS, [M+H]⁺=219.0.

Step C. 4-(2,3-Dimethylphenoxy)-1-(5-(1-(1-hydroxy-2-methylpropan-2-yl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one

The title compound was prepared using a procedure analogous to Example 2 except that methyl 4-bromopicolinate was replaced with 2-(4-bromo-1H-pyrazol-1-yl)-2-methylpropan-1-ol. LCMS, [M+H]⁺=462.4.

Step D. 2-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)-2-methylpropyl 4-nitrophenyl carbonate

The title compound was prepared using a procedure analogous to 3-bromobenzyl 4-nitrophenyl carbonate except that (3-bromophenyl)methanol was replaced with 4-(2,3-dimethylphenoxy)-1-(5-(1-(1-hydroxy-2-methylpropan-2-yl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one. LCMS, [M+H]*=627.5.

Example 94

A mixture of 2-aminoethanesulfonic acid (21.6 mg, 0.172 mmol), potassium phosphate (36.6 mg, 0.172 mmol), and 2-(4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)-2-methylpropyl 4-nitrophenyl carbonate (36 mg, 0.057 mmol) in DMSO was heated 65 at 100° C. in a microwave reactor for 10 min. The reaction was concentrated and purified by preparative HPLC (PHENOM-

188

ENEX® Axia Luna column, 5μ, C18, 30×100 mm; 18 min gradient from 95% A:5% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 94 (32 mg, 5 0.052 mmol, 91% yield) as a white powder. LCMS, [M+H]⁺= 613.3. ¹H NMR (400 MHz, MeOD) δ 8.07 (s, 1H), 7.80 (s, 1H), 7.28 (br. s, 3H), 7.00 (t, J=7.8 Hz, 1H), 6.73 (d, J=7.5 Hz, 1H), 6.69 (d, J=8.1 Hz, 1H), 4.36 (s, 2H), 3.91 (br. s, 2H), 3.77 (t, J=6.7 Hz, 2H), 3.47 (t, J=6.7 Hz, 2H), 2.92 (t, J=6.6 Hz, 2H), 2.82 (t, J=6.9 Hz, 2H), 2.57 (s, 2H), 2.22-2.08 (m, 5H), 1.94-1.82 (m, 6H), 1.74 (s, 6H). HPLC-1: Rt=10.9 min, purity=99.1%; HPLC-2: Rt=6.9 min, purity=100%.

Example 95

3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzoic acid

Step A. 1-(5-(1H-Pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analogous to Example 1 except that ethyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)acetate was replaced with tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole-1-carboxylate. LCMS, $[M+H]^+=390.2$.

Example 95

To a solution of 1-(5-(1H-pyrazol-4-yl)-3,4-dihydroquino-lin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (19 mg, 0.05 mmol) in DMF (0.43 mL) at 0° C. was added sodium bis(trimethylsilyl)amide (1.0 M in THF, 55 µL, 0.055 mmol) slowly over 2 min. After 30 min a solution of methyl 3-(bro-

momethyl)benzoate (13 mg, 0.055 mmol) in DMF (0.07 mL) was added quickly. The resulting mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with saturated aq. ammonium chloride (~20 μL), and partitioned between diethyl ether and water. The resulting mixture was stirred vigorously for 15 min. The organic layer was separated, dried over anhydrous Na $_2 SO_4$, filtered, and concentrated. The resulting residue was re-dissolved in THF/H $_2O$ (9:1, 0.5 mL) and treated with 4 M LiOH (125 μL , 0.5 mmol). The reaction was heated at 65° C. for 45 min and cooled to room temperature. The reaction mixture was adjusted to pH~5 with conc. HCl, and partitioned between 5% citric acid and DCM. The mixture was stirred for 15 min. The organic layer was separated, dried over anhy-

drous Na₂SO₄, filtered, and concentrated to provide a residue.

190

The residue was purified by preparative HPLC (PHENOM-ENEX® Axia Luna column, 5µ, C18, 30×75 mm; 15 min gradient from 100% A:0% B to 0% A:100% B and 3 min 100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 95 (14 mg, 53% yield). LCMS, [M+H]⁺=524.2. ¹H NMR (400 MHz, CDCl₃) & 8.11-8.03 (m, 2H), 7.60 (s, 1H), 7.54-7.44 (m, 2H), 7.37 (s, 1H), 7.26 (s, 1H), 7.23-7.10 (m, 2H), 7.00 (t, J=7.8 Hz, 1H), 6.72 (d, J=7.5 Hz, 1H), 6.63 (d, J=8.1 Hz, 1H), 5.41 (s, 2H), 3.92 (t, J=5.3 Hz, 2H), 3.78 (t, J=6.8 Hz, 2H), 2.75 (t, J=7.1 Hz, 2H), 2.58 (s, 2H), 2.25-2.09 (m, 5H), 1.96-1.76 (m, 5H). HPLC-1: Rt=10.6 min, purity=100%; HPLC-2: Rt=9.5 min, purity=100%.

The following Examples were prepared in a manner analogous to Example 95.

TABLE 7

		N-N X			
Ex- am- ple	Name	—X—Y	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
96	4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoic acid	Zoo ₂ H	524.3	8.08 (d, J = 8.2 Hz, 2H), 7.56 (s, 1H), 7.32 (d, J = 8.1 Hz, 2H), 7.31 (s, 1H), 7.24 (s, 1H), 7.20-7.12 (m, 2H), 6.98 (t, J = 7.9 Hz, 1H), 6.70 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 5.41 (s, 2H), 3.91 (t, J = 5.4 Hz, 2H), 3.76 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.55 (br. s, 2H), 2.22-2.10 (m, 5H), 1.87 (s, 3H), 1.86-1.79 (m, 2H)	10.5 min, 99.8% 9.4 min, 99.8%
97	2-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)-5- fluorobenzoic acid	Solve CO ₂ H	542.2	7.70 (d, J = 7.9 Hz, 1H), 7.55 (s, 1H), 7.46 (s, 1H), 7.27-7.05 (m, 5H), 6.99 (t, J = 7.8 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 5.66 (s, 2H), 3.91 (br. s, 2H), 3.76 (t, J = 6.7 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.56 (br. s, 2H), 2.24-2.08 (m, 5H), 1.89 (s, 3H), 1.87- 1.76 (m, 2H)	11.0 min, 99.1% 9.7 min, 98.8%
98	3-Chloro-2-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzoic acid	ZO ₂ H	558.2	7.77 (d, J = 7.7 Hz, 1H), 7.59 (s, 1H), 7.53 (d, J = 7.0 Hz, 1H), 7.48 (s, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.24 (s, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.00 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 5.57 (s, 2H), 3.91 (t, J = 5.2 Hz, 2H), 3.77 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.53 (br. s, 2H), 2.23-2.10 (m, 5H), 1.88 (s, 3H), 1.88-1.78 (m, 2H)	11.4 min, 98.7% 10.0 min, 98.6%

		N-N X			
Ex- am- ple	Name	—X—Y	LCMS, [M + H] ⁺	$^1\mathrm{H}$ NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
99	2-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)-4 methoxybenzoic acid	Solve CO ₂ H OMe	554.3	8.09 (d, J = 8.8 Hz, 1H), 7.58 (s, 1H), 7.47 (s, 1H), 7.24 (s, 1H), 7.16 (d, J = 4.0 Hz, 2H), 6.98 (t, J = 7.9 Hz, 1H), 6.87 (dd, J = 8.8, 2.5 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 6.43 (d, J = 2.5 Hz, 1H), 5.77 (s, 2H), 3.91 (t, J = 5.2 Hz, 2H), 3.82-3.69 (m, 5H), 2.73 (t, J = 7.1 Hz, 2H), 2.59 (s, 2H), 2.24-2.09 (m, 5H), 1.89 (s, 3H), 1.83 (dt, J = 13.2, 6.7 Hz, 2H)	10.8 min, 99.3% 9.5 min, 99.4%
100	5-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)-2- fluorobenzoic acid	Solve CO ₂ H	542.2	8.05 (dd, J = 6.8, 2.3 Hz, 1H), 7.62 (s, 1H), 7.45 (ddd, J = 8.2, 4.3, 2.5 Hz, 1H), 7.37 (s, 1H), 7.24 (s, 1H), 7.19-7.08 (m, 3H), 6.99 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 5.35 (s, 2H), 3.91 (t, J = 5.4 Hz, 2H), 3.77 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.56 (br. s, 2H), 2.22-2.08 (m, 5H), 1.88 (s, 3H), 1.88-1.78 (m, 2H)	10.5 min, 97.4% 9.5 min, 99.9%
101	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)-4- methoxybenzoic acid	Vocation CO ₂ H	554.3	8.17 (d, J = 1.8 Hz, 1H), 8.09 (dd, J = 8.6, 2.0 Hz, 1H), 7.63 (s, 1H), 7.46 (s, 1H), 7.24 (s, 1H), 7.19-7.11 (m, 2H), 6.99 (t, J = 7.8 Hz, 1H), 6.94 (d, J = 8.7 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 5.38 (s, 2H), 3.91 (s, 5H), 3.76 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.2 Hz, 2H), 2.59 (br. s, 2H), 2.24-2.10 (m, 5H), 1.90 (s, 3H), 1.83 (dt, J = 13.3, 6.7 Hz, 2H)	10.7 min, 100% 9.6 min, 99.3%
102	4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)-3- methoxybenzoic acid	MeO CO ₂ H	554.2	8.18 (d, J = 1.9 Hz, 1H), 8.09 (dd, J = 8.5, 2.1 Hz, 1H), 7.64 (s, 1H), 7.47 (s, 1H), 7.24 (s, 1H), 7.19-7.10 (m, 2H), 6.99 (t, J = 7.8 Hz, 1H), 6.94 (d, J = 8.7 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.63 (d, J = 8.2 Hz, 1H), 5.38 (s, 2H), 3.98-3.86 (m, 5H), 3.76 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.59 (br. s, 2H), 2.24-2.10 (m, 5H), 1.90 (s, 3H), 1.83 (dt, J = 13.2, 6.7 Hz, 2H)	10.3 min, 100% 9.1 min, 97.6%
103	2-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)-3- fluorobenzoic acid	Solve F CO ₂ H	542.2	7.70 (d, J = 7.8 Hz, 1H), 7.53 (s, 1H), 7.51-7.41 (m, 2H), 7.30-7.19 (m, 2H), 7.16 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.00 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 5.53 (d, J = 1.8 Hz, 2H), 3.91 (br. s, 2H), 3.76 (t, J = 6.8 Hz, 2H), 2.72 (t, J = 7.1 Hz, 2H), 2.53 (br. s, 2H), 2.72 (t, J = 7.1 Hz, 2H), 2.53 (s, 3H), 1.87-1.77 (m, 2H)	10.7 min, 99.0% 9.4 min, 99.5%

		N-N N			
Ex- am- ple	Name	—X—Y	LCMS, [M + H]*	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
104	2-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) oxazole-4-carboxylic acid	Solve CO ₂ H	515.2	8.29 (s, 1H), 7.56 (s, 1H), 7.46 (s, 1H), 7.26 (s, 1H), 7.19-7.08 (m, 3H), 6.99 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 5.53 (s, 2H), 3.91 (br. s, 2H), 3.77 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.55 (br. s, 2H), 2.26-2.05 (m, 5H), 1.88 (s, 3H), 1.87-1.76 (m, 2H)	9.0 min, 99.6% 8.2 min, 100%
105	5-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) furan-2-carboxylic acid	O CO ₂ H	547.3	7.65 (s, 1H), 7.52 (s, 1H), 7.18-7.10 (m, 2H), 6.99 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.4 Hz, 1H), 6.69 (d, J = 5.9 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 3.91 (d, J = 5.4 Hz, 2H), 3.75 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.55 (br. s, 2H), 2.50 (t, J = 6.0 Hz, 2H), 2.22-2.10 (m, 5H), 1.90 (s, 3H), 1.86 (s, 6H), 1.85-1.79 (m, 2H)	9.3 min, 100% 8.3 min, 100%
106	2-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) furan-3-carboxylic acid	ZO ₂ H	514.2	$\begin{aligned} 7.60 & (s, 1H), 7.50 & (s, 1H), 7.39 & (d, J = 2.0 \text{ Hz}, 1H), 7.20\text{-}7.10 & (m, 2H), 6.99 & (t, J = 7.8 \text{ Hz}, 1H), 6.78 & (d, J = 1.9 \text{ Hz}, 1H), 6.72 & (d, J = 7.5 \text{ Hz}, 1H), 6.62 & (d, J = 8.1 \text{ Hz}, 1H), 5.70 & (s, 2H), 3.91 & (br. s, 2H), 3.76 & (t, J = 6.8 \text{ Hz}, 2H), 2.73 & (t, J = 7.1 \text{ Hz}, 2H), 2.56 & (br. s, 2H), 2.23\text{-}2.09 & (m, 5H), 1.89 & (s, 3H), 1.83 & (dt, J = 13.1, 6.7 \text{ Hz}, 2H) \end{aligned}$	10.0 min, 100% 8.9 min, 100%
107	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) thiophene-2-carboxylic acid	S CO ₂ H	530.1	7.56 (s, 1H), 7.50 (d, J = 5.0 Hz, 1H), 7.45 (s, 1H), 7.24 (s, 1H), 7.19-7.10 (m, 2H), 6.99 (dd, J = 10.3, 5.3 Hz, 1H), 6.88 (d, J = 5.2 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 5.68 (s, 2H), 3.91 (br. s, 2H), 3.76 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.56 (br. s, 2H), 2.23-2.10 (m, 5H), 1.88 (s, 3H), 1.87-1.79 (m, 2H)	10.5 min, 98.4% 9.3 min, 98.2%
108	4- Cyano-3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl) 1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)benzoic acid	Volume CO ₂ H	549.3	8.55 (s, 1H), 8.19 (dd, J = 8.0, 1.3 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.77 (s, 2H), 7.24 (s, 1H), 7.21-7.09 (m, 2H), 7.00 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 8.2 Hz, 1H), 5.60 (s, 2H), 3.93 (t, J = 5.4 Hz, 2H), 3.78 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.2 Hz, 2H), 2.62 (br. s, 2H), 2.26-2.07 (m, 5H), 1.92 (s, 3H), 1.85 (dt, J = 13.2, 6.6 Hz, 2H)	10.3 min, 100% 9.2 min, 100%

Ex- am- ple	Name	—X—Y	LCMS, [M + H] ⁺	¹H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
109	5-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) thiophene-2-carboxylic acid	S CO ₂ H	530.3	7.73 (d, J = 3.8 Hz, 1H), 7.55 (s, 1H), 7.34 (s, 1H), 7.19-7.10 (m, 3H), 7.05 (d, J = 3.7 Hz, 1H), 6.99 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 5.51 (s, 2H), 3.90 (br. s, 2H), 3.76 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.54 (br. s, 2H), 2.24-2.08 (m, 5H), 1.87 (s, 3H), 1.86-1.76 (m, 2H)	9.8 min, 100% 8.6 min, 100%
110	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) (butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)acetic acid	YAYAYA CO2H	538.3	7.53 (s, 1H), 7.35-7.28 (m, 2H), 7.28-7.22 (m, 2H), 7.21 (s, 1H), 7.18-7.09 (m, 3H), 6.98 (t, J = 7.8 Hz, 1H), 6.70 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 8.1 Hz, 1H), 5.32 (s, 2H), 3.90 (t, J = 5.2 Hz, 2H), 3.75 (t, J = 6.8 Hz, 2H), 3.63 (s, 2H), 2.72 (t, J = 7.1 Hz, 2H), 2.54 (br. s, 2H), 2.22-2.07 (m, 5H), 1.88 (s, 3H), 1.81 (dt, J = 13.3, 6.7 Hz, 2H)	10.5 min, 99.0% 9.4 min, 100%
110 A	1-(5-(1-((2- (Dimethylamino)pyrimidin- 4-yl)methyl)-1H-pyrazol-4- yl)-3,4-dihydroquinolin- 1(2H)-yl)-4-(2,3- dimethylphenoxy)butan-1- one	Socool N N	525.3	8.45 (1 H, d, J = 5.94 Hz), 7.63 (1 H, s), 7.45 (1 H, s), 7.14-7.26 (3 H, m), 7.02 (1 H, t, J = 7.81 Hz), 6.75 (1 H, d, J = 7.48 Hz), 6.65 (1 H, d, J = 8.14 Hz), 6.39 (1 H, d, J = 5.94 Hz), 5.40 (2 H, s), 3.94 (2 H, t, J = 5.28 Hz), 3.82 (2 H, t, J = 6.82 Hz), 3.31 (6 H, s), 2.79 (2 H, t, J = 7.15 Hz), 2.59 (2 H, t, J = 5.83 Hz), 2.13-2.27 (5 H, m), 1.83-2.00 (5 H, m)	9.0 min, 94.4% 9.0 min, 93.2%
110B	2-(4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) pyrimidin-2-ylamino)acetic acid	Solve N N N N OH	555.3	8.15 (1 H, br. s.), 7.60 (1 H, s), 7.45 (1 H, s), 7.12-7.25 (3 H, m), 7.01 (1 H, t, J = 7.81 Hz), 6.74 (1 H, d, J = 7.48 Hz), 6.65 (1 H, d, J = 8.14 Hz), 6.25 (1 H, d, J = 5.06 Hz), 5.28 (2 H, s), 4.23 (2 H, d, J = 3.52 Hz), 3.94 (2 H, t, J = 5.61 Hz), 3.79 (2 H, t, J = 6.82 Hz), 2.76 (2 H, t, J = 7.15 Hz), 2.62 (2 H, t, J = 6.16 Hz), 2.13-2.26 (5 H, m), 1.82-1.96 (5 H, m)	8.6 min, 95.2% 8.6 min, 98.3%
110C	2-(4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	No. HN SO ₃ H	631.1	$\begin{array}{l} 7.84 \ (\mathrm{d},\mathrm{J}=8.2\ \mathrm{Hz},\mathrm{2H}),7.79\text{-}7.68 \ (\mathrm{m},\\ 1\mathrm{H}),7.66\text{-}7.51 \ (\mathrm{m},\mathrm{1H}),7.36 \ (\mathrm{d},\mathrm{J}=8.3\ \mathrm{Hz},\mathrm{2H}),7.31\text{-}7.08 \ (\mathrm{m},\mathrm{3H}),6.96 \ (\mathrm{t},\\ \mathrm{J}=7.9\ \mathrm{Hz},\mathrm{1H}),6.72\text{-}6.59 \ (\mathrm{m},\mathrm{2H}),5.48 \ (\mathrm{s},\mathrm{2H}),3.86 \ (\mathrm{s},\mathrm{2H}),3.80 \ (\mathrm{t},\mathrm{J}=6.6\ \mathrm{Hz},\mathrm{2H}),\\ 3.74 \ (\mathrm{t},\mathrm{J}=6.8\ \mathrm{Hz},\mathrm{2H}),3.08 \ (\mathrm{t},\mathrm{J}=6.7\ \mathrm{Hz},\mathrm{2H}),2.81 \ (\mathrm{t},\mathrm{J}=6.8\ \mathrm{Hz},\mathrm{2H}),2.49 \ (\mathrm{s},\mathrm{2H}),2.18\text{-}2.07 \ (\mathrm{m},\mathrm{2H}),2.02 \ (\mathrm{s},\mathrm{3H}),\\ 1.91\text{-}1.60 \ (\mathrm{m},\mathrm{5H})^* \end{array}$	9.3 min, 99.9% 7.0 min, 99.3%

		N-N N-N			
Ex- am- ple	Name	—X—Y	LCMS, [M+ H] ⁺	1 H NMR (400 MHz, CDCl $_{3}$) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
110D	(3-(3-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)ethyl) phenyl)ureido) methanesulfonic acid	NH SO ₃ H	646.5	7.44 (s, 1H), 7.20 (dd, J = 12.1, 8.4 Hz, 3H), 7.14 (d, J = 7.5 Hz, 1H), 7.09 (t, J = 7.8 Hz, 2H), 7.01 (t, J = 7.9 Hz, 1H), 6.98-6.82 (m, 1H), 6.73 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 7.6 Hz, 2H), 4.41 (t, J = 6.6 Hz, 2H), 4.32 (s, 2H), 3.89-3.75 (m, 2H), 3.70 (t, J = 6.8 Hz, 2H), 3.09 (t, J = 6.5 Hz, 2H), 2.04 (s, 3H), 1.78-1.66 (m, 2H), 1.66-1.49 (m, 3H)*	N/A 9.3 min, 99.5%
110E	1-(5-(1-(3- Aminophenethyl)-1H- pyrazol-4-yl)-3,4- dihydroquinolin-1(2H)-yl)- 4-(2,3-dimethylphenoxy) butan-1-one	NH ₂	509.3	7.53 (s, 1H), 7.23-6.93 (m, 6H), 6.74 (d, J = 7.1 Hz, 1H), 6.64 (d, J = 7.4 Hz, 1H), 6.52 (dd, J = 15.1, 7.9 Hz, 2H), 6.41 (s, 1H), 4.43-4.26 (m, 2H), 4.02-3.87 (m, 2H), 3.87-3.70 (m, 2H), 3.70-3.49 (m, 2H), 3.17-3.01 (m, 2H), 2.82-2.66 (m, 2H), 2.59-2.39 (m, 2H), 2.19 (s, 5H), 1.92 (s, 3H), 1.87-1.72 (m, 2H)	
110F	2-(3-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)ethyl) ureido)ethanesulfonic acid	Novor HN SO3H	584.1	7.88-7.64 (m, 2H), 7.35-7.13 (m, 3H), 7.00 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 4.35 (t, J = 5.6 Hz, 2H), 3.94-3.84 (m, 2H), 3.76 (t, J = 6.8 Hz, 2H), 3.62-3.55 (m, 2H), 3.51 (t, J = 6.3 Hz, 2H), 2.96- 2.87 (m, 2H), 2.80 (t, J = 6.9 Hz, 2H), 2.64-2.46 (m, 2H), 2.12 (s, 5H), 1.85 (s, 5H)*	10.6 min, 99.7% 7.1 min, 99.5%
110G	2-(3-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)ethyl) ureido)acetic acid	SO ₃ H	534.1	7.55 (s, 1H), 7.47 (s, 1H), 7.32-7.18 (m, 2H), 7.18-7.05 (m, 1H), 6.99 (t, J = 1.9 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 6.66 (d, J = 8.1 Hz, 1H), 5.49 (s, 1H), 4.26 (t, J = 5.9 Hz, 2H), 3.92-3.83 (m, 3H), 3.74 (t, J = 6.8 Hz, 2H), 3.55 (t, J = 5.9 Hz, 2H), 3.39-3.32 (m, 2H), 2.80 (t, J = 6.9 Hz, 2H), 2.61-2.42 (m, 2H), 2.11 (d, J = 7.9 Hz, 4H), 1.89-1.65 (m, 4H)*	8.9 min, 99.5% 8.7 min, 99.0%
110H	1-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl) ethylcarbamoyl) cyclopropanecarboxylic acid	SONON HIN OH	545.1	7.54-7.36 (m, 2H), 7.33-7.06 (m, 3H), 6.99 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.66 (d, J = 8.1 Hz, 1H), 4.31 (t, J = 5.8 Hz, 2H), 3.86 (s, 2H), 3.80-3.64 (m, 4H), 2.81 (t, J = 6.8 Hz, 2H), 2.58-2.35 (m, 2H), 2.21-2.00 (m, 5H), 1.91-1.60 (m, 5H), 1.58-1.42 (m, 4H)*	10.3 min, 99.6% 9.6 min, 99.3%

Ex- am- ple	Name	—X—Y	LCMS, [M + H] ⁺	1 H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
110J	3-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl) ethylamino)-3- oxopropanoic acid	OH O	519.1	7.55 (s, 1H), 7.47 (s, 1H), 7.36-7.07 (m, 3H), 6.99 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.67 (d, J = 8.1 Hz, 1H), 4.31 (t, J = 5.7 Hz, 2H), 3.94-3.81 (m, 2H), 3.74 (t, J = 6.7 Hz, 2H), 3.64 (t, J = 5.7 Hz, 2H), 3.24 (s, 2H), 2.80 (tp, J = 6.8 Hz, 2H), 2.60-2.44 (m, 2H), 2.21-2.04 (m, 5H), 1.89-1.66 (m, 5H)*	9.3 min, 99.2% 8.9 min, 99.6%
110K	2-(1-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl) ethylcarbamoyl) cyclopropanecarboxamido) ethanesulfonic acid	KNON HN O SO3H	652.1	7.87 (s, 1H), 7.74 (s, 1H), 7.35-7.13 (m, 3H), 6.99 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 4.50-4.39 (m, 2H), 3.97-3.82 (m, 2H), 3.76 (t, J = 6.8 Hz, 2H), 3.72-3.65 (m, 2H), 3.65-3.57 (m, 2H), 3.06-2.96 (m, 2H), 2.81 (t, J = 6.9 Hz, 2H), 2.65-2.46 (m, 2H), 2.21-2.05 (m, 5H), 1.83 (dd, J = 13.6, 6.8 Hz, 5H), 1.37 (dd, J = 6.7, 3.4 Hz, 1H), 1.29-1.17 (m, 3H)*	8.7 min, 100% 6.7 min, 100%
110L	(N-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)sulfamoylamino) methanesulfonic acid	HN-S OH	668.3	7.69 (s, 1H), 7.52 (s, 1H), 7.37-7.27 (m, 3H), 7.27-7.19 (m, 3H), 7.00 (d, J = 7.7 Hz, 1H), 6.96 (d, J = 7.9 Hz, 1H), 6.66 (t, J = 8.9 Hz, 2H), 5.37 (s, 2H), 4.07 (s, 2H), 3.92-3.81 (m, 2H), 3.74 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 6.8 Hz, 2H), 2.59-2.43 (m, 2H), 2.11 (dt, J = 13.0, 6.6 Hz, 2H), 2.05 (s, 3H), 1.88-1.79 (m, 2H), 1.79-1.67 (m, 3H)*	N/A 7.4 min, 93.7%
110M	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzenesulfonic acid	Zyzy OH	560.2	7.86 (s, 1H), 7.84-7.80 (m, 1H), 7.78 (s, 1H), 7.69 (s, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.32-7.13 (m, 3H), 6.97 (t, J = 7.9 Hz, 1H), 6.67 (t, J = 8.2 Hz, 2H), 5.52 (s, 2H), 3.86 (m, 2H), 3.75 (t, J = 6.8 Hz, 2H), 2.81 (t, J = 6.9 Hz, 2H), 2.60-2.42 (m, 2H), 2.12 (dt, J = 12.5, 6.4 Hz, 2H), 2.05 (s, 3H), 1.90-1.64 (m, 5H)*	
110N	3-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)benzoic acid	No. OH	510.0	8.39 (s, 1H), 8.13-8.02 (m, 2H), 7.78 (s, 2H), 7.64 (t, J = 7.9 Hz, 1H), 7.27 (d, J = 3.8 Hz, 2H), 7.23-7.10 (m, 1H), 7.05 (t, J = 7.9 Hz, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 3.92 (s, 2H), 3.83 (t, J = 6.8 Hz, 2H), 2.84 (t, J = 7.0 Hz, 2H), 2.60 (s, 2H), 2.29-2.16 (m, 2H), 2.11 (s, 3H), 2.01-1.70 (m, 5H)	N/A 13.3 min, 100%

Ex- am- ple	Name	—X—Y	LCMS, [M+ H]*	1 H NMR (400 MHz, CDCl $_{3}$) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
110P	2-(3-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)phenyl) acetic acid	No OH	524.1	¹ H NMR (400 MHz, CHLOROFORM-D) δ 7.77 (s, 1H), 7.73 (s, 1H), 7.72-7.68 (m, 1H), 7.64-7.57 (m, 1H), 7.45 (t, J = 7.9 Hz, 1H), 7.30-7.24 (m, 1H), 7.24 7.20 (m, 2H), 7.20-7.06 (m, 1H), 7.02 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 3.93 (s, 2H), 3.80 (t, J = 6.8 Hz, 2H), 3.76 (s, 2H), 2.78 (t, J = 7.1 Hz, 2H), 2.61 (m, 2H), 2.20 (dt, J = 12.9, 6.6 Hz, 2H), 2.14 (s, 3H), 1.97- 1.76 (m, 5H)	N/A 13.1 min, 99.7%
110Q	4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)- 2,3,5,6-tetrafluorobenzoic acid	F F CO ₂ H	596.0	7.69 (s, 1H), 7.46 (s, 1H), 7.33-7.09 (m, 3H), 6.97 (t, J = 7.8 Hz, 1H), 6.68 (d, J = 7.6 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 5.56 (s, 2H), 3.87 (s, 2H), 3.74 (t, J = 6.8 Hz, 2H), 2.80 (t, J = 6.8 Hz, 2H), 2.60-2.40 (m, 2H), 2.19-2.04 (m, 5H), 1.90-1.64 (m, 5H)*	12.0 min, 95.8% 13.1 min, 97.9%
110R	Diethyl 2-(3-(3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido) ethylphosphonate	HN O PO	702.3	7.54 (s, 1H), 7.46 (s, 1H), 7.36 (s, 1H), 7.32-7.21 (m, 3H), 7.15 (s, 2H), 7.00 (t, J = 7.8 Hz, 1H), 6.92-6.85 (m, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 8.2 Hz, 1H), 6.00-5.89 (m, 1H), 5.29 (s, 2H), 4.15-4.02 (m, 4H), 3.93 (t, J = 5.3 Hz, 2H), 3.77 (t, J = 6.8 Hz, 2H), 3.59 (dd, J = 11.8, 5.8 Hz, 1H), 3.55 (dd, J = 11.6, 5.7 Hz, 1H), 2.73 (t, J = 7.2 Hz, 2H), 2.59 (t, J = 5.7 Hz, 2H), 2.22-2.13 (m, 5H), 2.09-2.00 (m, 2H), 1.92 (s, 3H), 1.88-1.80 (m, 2H), 1.31 (t, J = 7.1 Hz, 6H)	10.1 min, 95.7% 9.2 min, 96.4%
110S	(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenylsulfonamido) methanesulfonic acid	Zovovov N. So ³ H	653.2	7.86 (d, J = 7.7 Hz, 1H), 7.81 (s, 1H), 7.67 (s, 1H), 7.56 (t, J = 7.7 Hz, 1H), 7.51 (s, 1H), 7.49 (s, 1H), 7.26 (d, J = 8.2 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.20-7.05 (m, 1H), 6.96 (t, J = 7.9 Hz, 1H), 6.71-6.60 (m, 2H), 5.47 (s, 2H), 3.97 (s, 2H), 3.93 - 3.80 (m, 2H), 3.74 (t, J = 6.8 Hz, 2H), 2.80 (t, J = 6.8 Hz, 2H), 2.60-2.39 (m, 2H), 2.11 (dt, J = 12.4, 6.1 Hz, 2H), 2.05 (s, 3H), 1.91-1.63 (m, 5H)*	10.6 min, 72.2% 8.8 min, 100%

Ex-			LCMS,		HPLC-1: Rt min, purity; HPLC-2:
am- ple	Name	—X—Y	[M + H] ⁺	^1H NMR (400 MHz, CDCl ₃) δ	Rt min, purity
110T	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenylsulfonamido) ethanesulfonic acid	No SO3H	667.2	7.83 (d, J = 7.9 Hz, 1H), 7.78 (s, 1H), 7.69 (s, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 7.9 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.21-7.06 (m, 1H), 6.97 (t, J = 7.9 Hz, 1H), 6.73-6.60 (m, 2H), 5.49 (s, 2H), 3.94-3.80 (m, 2H), 3.75 (t, J = 6.8 Hz, 2H), 3.30-3.24 (m, 2H), 2.95-2.86 (m, 2H), 2.81 (t, J = 6.9 Hz, 2H), 2.61-2.43 (m, 2H), 2.12 (dt, J = 12.5, 6.3 Hz, 2H), 2.06 (s, 3H), 1.89-1.63 (m, 5H)*	11.1 min, 98.1% 7.7 min, 96.4%
110U	2-(3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido) ethylphosphonic acid	HN OH OH	646.2	7.57 (s, 1H), 7.48 (s, 1H), 7.33 (s, 1H), 7.33-7.29 (m, 1H), 7.29-7.20 (m, 3H), 7.20-7.08 (m, 1H), 6.96 (t, J = 7.9 Hz, 1H), 6.91 (d, J = 7.5 Hz, 1H), 6.65 (t, J = 7.4 Hz, 2H), 5.33 (s, 2H), 3.93-3.79 (m, 2H), 3.74 (t, J = 6.8 Hz, 2H), 3.53-3.41 (m, 2H), 2.81 (t, J = 6.8 Hz, 2H), 2.59-2.39 (m, 2H), 2.18-2.08 (m, 2H), 2.04 (s, 3H), 2.02-1.98 (m, 1H), 1.98-1.92 (m, 1H), 1.79 (d, J = 6.4 Hz, 2H), 1.72 (s, 3H)*	8.4 min, 98.9% 8.0 min, 99.0%
110V	Ethyl hydrogen 2-(3-(3-(4- (1-(4-(2,3- dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido) ethylphosphonate	HN HN P-OH	674.3	7.57 (s, 1H), 7.47 (s, 1H), 7.33 (s, 1H), 7.32-7.28 (m, 1H), 7.28-7.17 (m, 3H), 7.18-7.06 (m, 1H), 6.96 (t, J = 7.9 Hz, 1H), 6.90 (d, J = 7.3 Hz, 1H), 6.71-6.59 (m, 2H), 5.33 (s, 2H), 4.06 (dt, J = 14.7, 7.2 Hz, 2H), 3.91-3.78 (m, 2H), 3.73 (t, J = 6.8 Hz, 2H), 3.52-3.40 (m, 2H), 2.81 (t, J = 6.8 Hz, 2H), 2.55-2.39 (m, 2H), 2.11 (dt, J = 12.5, 6.3 Hz, 2H), 1.76-1.58 (m, 3H), 1.30 (t, J = 7.1 Hz, 3H)*	9.3 min, 96.6% 8.4 min, 95.0%
110W	(3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido) methylphosphonic acid	HN HN OH	632.2	7.56 (s, 1H), 7.47 (s, 1H), 7.35 (s, 1H), 7.31 (d, J = 8.3 Hz, 1H), 7.28-7.17 (m, 3H), 7.17-7.03 (m, 1H), 6.95 (t, J = 7.9 Hz, 1H), 6.89 (d, J = 7.3 Hz, 1H), 6.64 (t, J = 7.6 Hz, 2H), 5.31 (s, 2H), 3.90-3.78 (m, 2H), 3.78-3.67 (m, 3H), 3.57 (d, J = 11.7 Hz, 1H), 2.79 (t, J = 6.8 Hz, 2H), 2.52-2.38 (m, 2H), 2.10 (dt, J = 12.5, 6.2 Hz, 2H), 2.01 (s, 3H), 1.83-1.73 (m, 2H), 1.73-1.58 (m, 3H)*	8.7 min, 83.7% 7.8 min, 95.9%

		N-N N-N			
Ex- am- ple	Name	_X—Y	LCMS, [M+ H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
110X	2-(3-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl) benzamido)ethanesulfonic acid	Noward HN SO3H	617.2	$8.24\ (m,1H), 8.18-8.03\ (m,1H), 7.98\\ (dd, J=8.1,1.7\ Hz,1H), 7.80\ (d,J=7.8\ Hz,1H), 7.71\ (s,1H), 7.62\ (t,J=7.9\ Hz,1H), 7.36\ (d,J=7.7\ Hz,1H), 7.27\ (t,J=7.7\ Hz,1H), 7.24-7.10\ (m,1H), 7.00\ (t,J=7.9\ Hz,1H), 6.67\ (t,J=8.3\ Hz,2H), 3.93-3.81\ (m,4H), 3.77\ (t,J=6.8\ Hz,2H), 3.14\ (t,J=6.7\ Hz,2H), 2.83\ (t,J=6.8\ Hz,2H), 2.66-2.45\ (m,2H), 2.13\ (dt,J=12.4,6.3\ Hz,2H), 2.02\ (s,3H), 1.92-1.79\ (m,2H), 1.72\ (s,3H)*$	8.9 min, 82.5% 8.9 min, 98.4%
110 Y	2-(5-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)-2- fluorobenzamido) ethanesulfonic acid	NH SO ₃ H	649.1	7.79 (dd, J = 6.9, 2.3 Hz, 1H), 7.74 (s, 1H), 7.55 (s, 1H), 7.47 (ddd, J = 8.2, 4.6, 2.4 Hz, 1H), 7.31-7.20 (m, 3H), 7.20-7.10 (m, 1H), 6.97 (t, J = 7.9 Hz, 1H), 6.66 (t, J = 7.9 Hz, 2H), 5.43 (s, 2H), 3.93-3.84 (m, 2H), 3.82 (t, J = 6.6 Hz, 2H), 3.74 (t, J = 6.8 Hz, 2H), 3.07 (t, J = 6.6 Hz, 2H), 2.81 (t, J = 6.8 Hz, 2H), 2.57-2.39 (m, 2H), 2.12 (dt, J = 12.4, 6.3 Hz, 2H), 2.04 (s, 3H), 1.88-1.76 (m, 2H), 1.73 (s, 3H)	9.4 min, 98.0% 8.6 min, 99.4%
110Z	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)- 2,4-difluorobenzamido) ethanesulfonic acid	SO ₃ H	667.0	7.90 (dd, J = 15.1, 8.5 Hz, 1H), 7.72 (s, 1H), 7.48 (s, 1H), 7.31-7.09 (m, 4H), 6.96 (t, J = 7.9 Hz, 1H), 6.73-6.60 (m, 2H), 5.52 (s, 2H), 3.93-3.85 (m, 2H), 3.82 (t, J = 6.5 Hz, 2H), 3.74 (t, J = 6.8 Hz, 2H), 3.09 (d, J = 6.5 Hz, 2H), 2.79 (t, J = 6.8 Hz, 2H), 2.57-2.42 (m, 2H), 2.18-2.09 (m, 2H), 2.06 (s, 3H), 1.90-1.65 (m, 5H)*	9.7 min, 93.7% 10.1 min, 94.8%

15

20

25

40

45

(s, 2H), 2.73 (t, J=7.1 Hz, 2H), 2.24 (s, 3H), 2.18 (dt, J=12.9, 6.4 Hz, 2H), 2.05-1.88 (m, 5H).

3-((5-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)-1H-tetrazol-1-yl)methyl) benzoic acid

Step B. 1-(5-(1H-Tetrazol-5-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

Step A. 1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinoline-5-carbonitrile

A solution of 1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinoline-5-carbonitrile (0.020 g, 0.057 mmol), dibutylstannanone (2.86 mg, 0.011 mmol) and TMS-N $_3$ (0.030 mL, 0.230 mmol) in DME (0.3 mL) was stirred at 100° C. for 3 days, and then concentrated in vacuo. The resulting residue was purified by preparative HPLC (PHENOM-ENEX® Axia Luna column, 5 μ , C18, 30×75 mm; 10 min gradient from 75% A:25% B to 0% A:100% B (A=90% H $_2$ O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H $_2$ O+0.1% TFA); detection at 220 nm) to afford the title compound (18.7 mg, 82% yield) as an off-white solid. LCMS, [M+H]⁺= 392.1.

To a degassed solution of 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.330 g, 0.820 mmol) and dicyanozine (0.116 g, 0.984 mmol) in DMF (1.50 mL) was added 1,1'-bis(diphenylphosphino)ferrocene (0.023 g, 0.041 mmol) and Pd₂(dba)₃ (0.038 g, 0.041 mmol). The vial was purged with argon, sealed, and heated at 120° C. for 16 h. The mixture was partitioned between EtOAc and water. The organic layer was washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide the crude material. The crude material was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (0.246 g, 82% yield) as an off-white solid. LCMS, [M+H]⁺=349.1. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J=7.7 Hz, 1H), 7.28-7.17 (m, 65 2H), 7.01 (t, J=7.9 Hz, 1H), 6.75 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.2 Hz, 1H), 3.96 (t, J=5.6 Hz, 2H), 3.82-3.71 (m, 2H), 2.85

Example 111

A solution of 1-(5-(1H-tetrazol-5-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.010 g, 0.026 mmol), methyl 3-(bromomethyl)benzoate (5.85 mg, 0.026 mmol) and potassium carbonate (7.06 mg, 0.051 mmol) in DMF (0.20 mL) was stirred at 80° C. for 16 h. 4 M LiOH (0.064 mL, 0.255 mmol) was added and the mixture was stirred at 80° C. for 5 h. The mixture was diluted with EtOAc, and adjusted to pH 6-7 with 1 N HCl. The organic layer was separated, washed with water and brine, dried over MgSO₄, filtered, and concentrated in vacuo. The resulting residue was purified by preparative HPLC (PHENOM-ENEX® Axia Luna column, 5μ, C18, 30×75 mm; 10 min gradient from 75% A:25% B to 0% A:100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+ 0.1% TFA); detection at 220 nm) to afford Example 111 (1.9 mg, 11% yield). LCMS, [M+H]⁺=526.2. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J=6.7 Hz, 1H), 7.51 (s, 1H), 7.38-7.26 (m, 3H), 7.26-7.15 (m, 1H), 7.01-6.92 (m, 2H), 6.71 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.2 Hz, 1H), 5.42 (s, 2H), 3.97 (t, J=5.6 Hz,

10

15

25

40

45

50

55

60

2H), 3.70-3.60 (m, 2H), 2.76-2.65 (m, 2H), 2.25-2.12 (m, 5H), 2.12-1.98 (m, 5H), 1.65 (dt, J=13.0, 6.5 Hz, 2H).

Example 112

3-((5-(1-(4-(2.3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)-2H-tetrazol-2-yl)methyl) benzoic acid

Example 112 (6.3 mg, 37.5% yield) was obtained as an 1-(5-(1H-tetrazol-5-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2, 3-dimethylphenoxy)butan-1-one. LCMS, [M+H]⁺=526.2. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.10 (d, J=7.8 Hz, 1H), 7.82 (d, J=8.6 Hz, 1H), 7.66 (d, J=7.7 Hz, 1H), 7.51 (t, J=7.7 Hz, 1H), 7.31-7.18 (m, 2H), 6.96 (t, J=7.5 Hz, 1H), 6.67 35 (d, J=7.5 Hz, 1H), 6.61 (d, J=8.1 Hz, 1H), 5.88 (s, 2H), 3.93 (br. s, 2H), 3.80 (t, J=6.6 Hz, 2H), 2.98 (t, J=6.2 Hz, 2H), 2.73 (t, J=7.3 Hz, 2H), 2.24-2.07 (m, 5H), 2.01-1.84 (m, 5H). HPLC-1: Rt=10.8 min, purity=100%; HPLC-2: Rt=9.5 min, purity=100%.

Example 113

2-(5-(3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)benzyl)-1H-tetrazol-1yl)acetic acid

Step A. 2-(3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)phenyl)acetonitrile

The title compound was prepared using a procedure analogous to methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)picolinate except that methyl 4-bromopicolinate was replace with 2-(3-bromophenyl)acetonitrile. LCMS, [M+H]+=439.3.

Example 113

Example 113 was prepared using a procedure analogous to Example 111 except that 1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinoline-5-carbonitrile additional product while synthesizing Example 111 from 30 replaced with 2-(3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1, 2,3,4-tetrahydroquinolin-5-yl)phenyl)acetonitrile. LCMS, $[M+H]^+=540.2.$ ¹H NMR (400 MHz, CDCl₃) δ 7.35 (t, J=7.6 Hz, 2H), 7.22-7.10 (m, 3H), 7.10-7.03 (m, 2H), 6.99 (t, J=7.8 Hz, 1H), 6.73 (d, J=7.6 Hz, 1H), 6.63 (d, J=8.1 Hz, 1H), 4.89 (s, 2H), 4.32 (s, 2H), 3.92 (br. s, 2H), 3.74 (t, J=7.0 Hz, 2H), 2.76 (t, J=7.3 Hz, 2H), 2.42 (t, J=6.4 Hz, 2H), 2.19 (s, 3H), 2.18-2.11 (m, 2H), 1.95 (s, 3H), 1.84-1.73 (m, 2H). HPLC-1: Rt=10.3 min, purity=97.4%; HPLC-2: Rt=10.2 min, purity=100%.

Example 114

2-(5-(3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)benzyl)-2H-tetrazol-2yl)acetic acid

Example 114 was obtained as an additional product while synthesizing Example 113 from 2-(3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)phe-65 nyl)acetonitrile. LCMS, [M+H]⁺=540.2. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.28 (m, 3H), 7.18 (d, J=7.6 Hz, 1H), 7.16-7.08 (m, 2H), 7.05 (s, 1H), 6.99 (t, J=7.9 Hz, 1H), 6.73

15

20

25

35

40

(d, J=7.5 Hz, 1H), 6.63 (d, J=8.1 Hz, 1H), 5.36 (s, 2H), 4.32 (s, 2H), 3.93 (t, J=5.7 Hz, 2H), 3.75 (t, J=7.0 Hz, 2H), 2.74 (t, J=7.3 Hz, 2H), 2.41 (t, J=6.4 Hz, 2H), 2.19 (s, 3H), 2.17-2.10 (m, 2H), 1.94 (s, 3H), 1.76 (dt, J=13.6, 6.7 Hz, 2H). HPLC-1: Rt=10.7 min, purity=97.7%; HPLC-2: Rt=10.6 min, 5 purity=98.7%.

Example 115

2-(3-(3-((5-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-2H-tetrazol-2-yl) methyl)phenyl)ureido)ethanesulfonic acid

Step A. tert-Butyl 3-((5-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-2H-tetrazol-2-yl)methyl)phenylcarbamate

A mixture of 1-(5-(1H-tetrazol-5-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.16 g, $_{60}$ 0.409 mmol), tert-butyl 3-(bromomethyl)phenylcarbamate (0.152 g, 0.531 mmol) and K₂CO₃ (0.113 g, 0.817 mmol) in DMF (1 mL) was stirred at 80° C. for 16 h. The mixture was partitioned between EtOAc and water. The organic layer was separated, washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide the crude material. The crude material was purified by flash chro-

matography (0-50% ethyl acetate:hexanes) to afford the title compound (96 mg, 40% yield). LCMS, [M+H]⁺=597.4.

Step B. 1-(5-(2-(3-Aminobenzyl)-2H-tetrazol-5-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analogous to 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one except that tert-butyl 3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-30 tetrahydroquinolin-5-yl)benzylcarbamate was replaced with tert-butyl 3-((5-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-2H-tetrazol-2-yl)methyl)phenylcarbamate. LCMS, [M+H]⁺=497.3.

Example 115

To a solution of 1-(5-(2-(3-aminobenzyl)-2H-tetrazol-5yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.03 g, 0.060 mmol), DIPEA (0.042 mL, 0.242 mmol) and DMAP (1.476 mg, 0.012 mmol) in DCM (1 45 mL) was added diphosgene (8.02 μL, 0.066 mmol) dropwise at room temperature. The reaction was stirred at room temperature for 30 min and concentrated in vacuo. The resulting residue was dissolved in DMF (1 mL) and treated with DIPEA (0.042 mL, 0.242 mmol) and taurine (0.015 g, 0.121 50 mmol). The resulting mixture was stirred at 80° C. for 16 h. After cooling to room temperature, the mixture was partitioned between EtOAc and water. The organic layer was washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide a residue. The residue was purified by preparative HPLC (PHENOM-ENEX® Axia Luna column, 5µ, C18, 30×75 mm; 10 min gradient from 75% A:25% B to 0% A:100% B and 3 min 100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 115 (3.1 mg, 7.5% yield). LCMS, [M+H]⁺=648.4. 1 H NMR (400 MHz, MeOD) δ 7.83 (d, J=7.7 Hz, 1H), 7.55 (s, 1H), 7.44-7.25 (m, 4H), 7.04 (d, J=7.6 Hz, 1H), 6.95-6.84 (m, 1H), 6.62 (d, J=7.9 Hz, 1H), 6.56 (d, J=6.7 Hz, 1H), 5.87 (s, 2H), 3.89 (br. s, 2H), 3.77 (t, J=6.6 Hz, 2H), 3.68-3.58 (m, 2H), 3.37-3.26 (m, 2H), 3.04-2.95 (m, 2H), 2.91-2.74 (m, 5H), 2.11 (dd, J=12.4, 6.3 Hz, 2H), 1.98 (s, 3H), 1.91-1.80 (m,

15

20

25

55

Example 116

(3-(3-((4-(3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a, 2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)methanesulfonic acid

Step A. 1-(7-(1-(3-Aminobenzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa[c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analogous to 1-(5-(1-(3-(aminomethyl)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one except that Example 3 was replaced by 1-(7-bromo-1a,2-dihydro-1H-cyclopropa[c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one. LCMS, [M+H]⁺= 507.4.

Example 116

Example 116 was prepared using a procedure analogous to Example 115 except that 1-(5-(2-(3-aminobenzyl)-2H-tetrazol-5-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(7-(1-(3-aminobenzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa [c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one and taurine was replaced with aminomethanesulfonic acid. LCMS, [M+H]⁺=644.4. ¹H NMR (400 MHz, MeOD) 8 65 7.97 (br. s, 1H), 7.80 (br. s, 1H), 7.47 (s, 1H), 7.43-7.27 (m, 3H), 7.27-7.19 (m, 1H), 7.18-7.07 (m, 1H), 7.06-6.92 (m,

214

2H), 6.80-6.64 (m, 2H), 5.45 (s, 2H), 4.35 (s, 2H), 4.07-3.94 (m, 1H), 3.94-3.80 (m, 1H), 2.94-2.66 (m, 4H), 2.15 (s, 6H), 1.82 (s, 4H), 1.01-0.88 (m, 1H), 0.59-0.42 (m, 1H). HPLC-1: Rt=10.3 min, purity=97.7%; HPLC-2: Rt=10.3 min, purity=97.8%.

Example 117

2-(3-(3-((4-(3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)ethanesulfonic acid

Example 117 was prepared using a procedure analogous to Example 115 except that 1-(5-(2-(3-aminobenzyl)-2H-tetrazol-5-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(7-(1-(3-aminobenzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa ₃₅ [c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1one. LCMS, $[M+H]^{+}=658.5$. ¹H NMR (500 MHz, CD₃CN) δ 7.85-7.78 (m, 1H), 7.65 (s, 1H), 7.40 (s, 1H), 7.30-7.18 (m, 3H), 7.12 (t, J=7.8 Hz, 1H), 7.02 (br. s, 1H), 6.96 (t, J=7.6 Hz, 1H), 6.86 (d, J=7.2 Hz, 1H), 6.68 (d, J=7.6 Hz, 1H), 6.64 (d, J=8.1 Hz, 1H), 5.28 (s, 2H), 4.84 (br. s, 1H), 3.91 (br. s, 2H), 3.78 (br. s, 1H), 3.48 (t, J=6.4 Hz, 2H), 2.88 (t, J=6.5 Hz, 2H), 2.71-2.62 (m, 2H), 2.57 (br. s, 1H), 2.15-2.05 (m, 5H), 1.76 (s, 3H), 1.73-1.66 (m, 1H), 0.94-0.82 (m, 1H), 0.46-0.35 (m, 1H). HPLC-1: Rt=14.3 min, purity=100%; HPLC-2: Rt=11.5 min, purity=95.1%.

Example 118

2-(4-(3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)benzylcarbamoyl)piperazin-1-yl)ethanesulfonic acid

35

40

45

50

55

Example 118 was prepared using a procedure analogous to Example 115 except that 1-(5-(2-(3-aminobenzyl)-2H-tetrazol-5-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3dimethylphenoxy)butan-1-one and taurine was replaced with 2-(piperazin-1-vl)ethanesulfonic acid. LCMS, [M+H]⁺= 649.3. ¹H NMR (400 MHz, MeOD) δ 7.48-7.30 (m, 4H), 7.28-7.17 (m, 2H), 7.13-7.00 (m, 2H), 6.79 (d, J=7.5 Hz, 1H), 6.75 (d, J=8.2 Hz, 1H), 4.48 (s, 2H), 4.28 (br. s, 2H), 3.99 (t, J=5.2 Hz, 2H), 3.83 (t, J=7.0 Hz, 2H), 3.72 (br. s, 2H), 3.62 (t, J=6.9 Hz, 2H), 3.43-3.38 (m, 2H), 3.29 (t, J=6.9 Hz, 2H), 3.20 (br. s, 2H), 2.89 (t, J=7.0 Hz, 2H), 2.49 (t, J=6.1 Hz, 2H), 2.31-2.15 (m, 5H), 1.94 (s, 3H), 1.90-1.80 (m, 2H). HPLC-1: 15 Rt=10.5 min, purity=99.3%; HPLC-2: Rt=10.4 min, purity=100%.

Example 119

2-(3-(3-((4-(3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)acetic acid

Step A. Ethyl 2-(3-(3-((4-(2,3-dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl) ureido)acetate

The title compound was prepared using a procedure analogous to Example 116 except that aminomethanesulfonic acid was replaced with ethyl 2-aminoacetate. LCMS, [M+H]⁺= 636.4.

Example 119

Example 119 was prepared using a procedure analogous to 10 Example 2 except that methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)picolinate was replaced with ethyl 2-(3-(4-(3-(4-(2,3-dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)acetate. LCMS, [M+H]⁺=608.4. ¹H NMR (500 MHz, CD₃CN) δ 7.79 (s, 1H), 7.66 (s, 1H), 7.47-7.40 (m, 2H), 7.28-7.18 (m, 3H), 7.13 (t, J=7.8 Hz, 1H), 7.04 (br. s, 1H), 6.98 (t, J=7.9 Hz, 1H), 6.91 (d, J=6.7 Hz, 1H), 6.71 (d, J=7.5 Hz, 1H), 6.67 (d, J=7.3 Hz, 1H), 5.52 (br. s, 1H), 5.31 (s, 2H), 3.99-3.91 (m, 20 1H), 3.86 (s, 2H), 2.74-2.65 (m, 2H), 2.54 (br. s, 1H), 2.15 (s, 3H), 2.09-1.99 (m, 2H), 1.96-1.90 (m, 2H), 1.85 (s, 3H), 1.72 (br. s, 1H), 0.95-0.86 (m, 1H), 0.51-0.41 (m, 1H). HPLC-1: Rt=13.0 min, purity=99.1%; HPLC-2: Rt=13.1 min, purity=99.0%.

Example 120

3-(3-(4-(4-(3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)propanoic acid

Example 120 was prepared using a procedure analogous to Example 119 except that ethyl 2-aminoacetate was replaced with methyl 3-aminopropanoate. LCMS, [M+H]*=622.5. ¹H NMR (500 MHz, CD₃CN) δ ¹H NMR (500 MHz, CD₃CN) δ 7.76 (s, 1H), 7.63 (s, 1H), 7.40 (s, 1H), 7.26-7.17 (m, 4H),
 7.12 (t, J=7.8 Hz, 1H), 7.03 (s, 1H), 6.97 (t, J=7.8 Hz, 1H), 6.88 (d, J=6.7 Hz, 1H), 6.70 (d, J=7.5 Hz, 1H), 6.66 (d, J=7.9

Hz, 1H), 5.45-5.39 (m, 1H), 5.29 (s, 2H), 4.89 (br. s, 1H),

25

30

35

40

45

50

55

3.99-3.90 (m, 1H), 3.89-3.78 (m, 1H), 3.38 (t, J=6.3 Hz, 2H), 2.74-2.64 (m, 2H), 2.58-2.51 (m, 1H), 2.48 (t, J=6.3 Hz, 2H), 2.14 (s, 3H), 2.07-1.99 (m, 2H), 1.85 (s, 3H), 1.75-1.66 (m, 1H), 0.94-0.84 (m, 1H), 0.51-0.41 (m, 1H). HPLC-1: Rt=13.1 min, purity=100%; HPLC-2: Rt=13.2 min, purity=100%.

Example 121

2-(3-(3-((4-(3-((2-(3-Chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)ethanesulfonic acid

Step A. 2-(3-Chloro-2-methylphenoxy)ethyl 7-bromo-1a,2-dihydro-1H-cyclopropa[c]quinoline-3 (7bH)-carboxylate

The title compound was prepared using a procedure analogous to 2-(2,3-dimethylphenoxy)ethyl 5-bromo-3,4-dihydro-quinoline-1(2H)-carboxylate except that 5-bromo-1,2,3,4-tetrahydroquinoline, HCl salt was replaced with bromo-1a,2, 3,7b-tetrahydro-1H-cyclopropa[c]quinoline, and 2,3-dimethylphenol was replaced with 3-chloro-2-methylphenol. LCMS, [M+Na]⁺=460.0.

Example 121 was prepared using a procedure analogous to Example 117 except that 1-(5-(2-(3-aminobenzyl)-2H-tetrazol-5-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 2-(3-chloro-2-methylphenoxy)ethyl 7-bromo-1a,2-dihydro-1H-cyclopropa[c] quinoline-3(7bH)-carboxylate. LCMS, [M+H]⁺=666.3. ¹H NMR (400 MHz, MeOD) δ 7.95 (s, 1H), 7.76 (s, 1H), 7.44 (s, 1H), 7.42-7.36 (m, 1H), 7.36-7.28 (m, 1H), 7.29-7.23 (m, 1H), 7.23-7.17 (m, 1H), 7.17-7.09 (m, 2H), 7.04 (s, 1H), 7.02-6.96 (m, 1H), 6.95-6.89 (m, 1H), 5.43 (s, 2H), 4.67-4.59 (m, 1H), 4.58-4.50 (m, 2H), 4.38 (s, 2H), 4.30 (br. s, 2H), 3.11 (d, J=12.3 Hz, 1H), 2.95-2.71 (m, 2H), 2.28 (s, 3H), 2.27-2.19 (m, 1H), 1.94-1.84 (m, 1H), 1.16-1.07 (m, 1H), 0.74-0.63 (m, 1H). HPLC-1: Rt=11.9 min, purity=98.6%; HPLC-2: Rt=11.9 min, purity=100%.

Example 122

(3-(3-((4-(3-((2-(3-Fluoro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ure-ido)methanesulfonic acid

Example 122 was prepared using a procedure analogous to Example 121 except that 3-chloro-2-methylphenol was replaced with 3-fluoro-2-methylphenol and taurine was replaced with aminomethanesulfonic acid. LCMS, [M+H]⁺= 650.3. ¹H NMR (400 MHz, MeOD) δ 8.19 (s, 1H), 8.03 (s, 1H), 7.52 (br. s, 1H), 7.40-7.26 (m, 3H), 7.26-7.09 (m, 3H), 6.99 (d, J=6.4 Hz, 1H), 6.78 (d, J=8.4 Hz, 1H), 6.72 (t, J=8.7 Hz, 1H), 5.51 (s, 2H), 4.65-4.50 (m, 2H), 4.37 (s, 2H), 4.30 (d, J=3.6 Hz, 2H), 3.16-3.04 (m, 1H), 2.28-2.08 (m, 5H), 1.98-1.83 (m, 1H), 1.21-1.05 (m, 1H), 0.79-0.63 (m, 1H). HPLC-1: Rt=14.8 min, purity=100%; HPLC-2: Rt=12.1 min, purity=100%.

25

30

35

40

219

Example 123

3-((6-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)pyridin-3-yloxy)methyl) benzoic acid

Step A. Methyl 3-((6-bromopyridin-3-yloxy)methyl)benzoate

$$CO_2Me$$

$$A5$$

$$Br$$

$$50$$

To a solution of 6-bromopyridin-3-ol (0.500 g, 2.87 mmol) in DMF (3.0 mL) at 0° C. was added NaH (60% in mineral oil, $_{55}$ 0.149 g, 3.74 mmol) portion-wise over a period of 10 min. The mixture was warmed to room temperature, stirred for 30 min, and methyl 3-(bromomethyl)benzoate (0.790 g, 3.45 mmol) was added in one portion. The reaction was stirred at room temperature for 16 h. The mixture was partitioned 60 between EtOAc and water. The organic layer was separated, washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide the crude material. The crude material was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound 65 (0.726 g, 78% yield) as an off-white solid. LCMS, $[M+H]^+=$ 322.0.

220

Example 123

Example 123 was prepared using a procedure analogous to Example 2 except that methyl 4-bromopicolinate was replaced with methyl 3-((6-bromopyridin-3-yloxy)methyl) benzoate. LCMS, [M+H]⁺=551.2. ¹H NMR (400 MHz, $CDCl_3$) δ 8.96 (s, 1H), 8.20 (s, 1H), 8.11 (d, J=7.7 Hz, 1H), 7.78 (d, J=7.8 Hz, 1H), 7.71 (d, J=7.5 Hz, 1H), 7.53 (t, J=7.7 Hz, 1H), 7.41-7.25 (m, 3H), 7.01 (t, J=7.8 Hz, 1H), 6.73 (d, ¹⁰ J=7.5 Hz, 2H), 6.65 (d, J=8.1 Hz, 1H), 5.36 (s, 2H), 3.93 (br. s, 2H), 3.80 (t, J=6.6 Hz, 2H), 2.76 (t, J=7.0 Hz, 2H), 2.49 (br. s, 2H), 2.30-2.08 (m, 5H), 2.05-1.79 (m, 5H). HPLC-1: Rt=9.3 min, purity=100%; HPLC-2: Rt=9.1 min, purity=100%.

Example 124

2-(5-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4tetrahydroquinolin-5-yl)pyrimidin-2-yloxy)acetic acid, TFA salt

Step A. Ethyl 2-(5-bromopyrimidin-2-yloxy)acetate

To a solution of ethyl 2-hydroxyacetate (0.081 g, 0.775 mmol) in toluene (1.0 mL) was added NaH (60% in mineral oil, 0.037 g, 0.931 mmol) at room temperature. The mixture

40

45

50

55

222

was stirred for 30 min and a solution of 5-bromo-2-chloropyrimidine (0.100 g, 0.517 mmol) in toluene (0.5 mL) was added. The reaction mixture was stirred at 60° C. for 16 h. The mixture was diluted with EtOAc and slowly quenched with water. The organic layer was separated, washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide the crude material. The crude material was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (82 mg, 61% yield) as a clear colorless oil. LCMS, [M+H]⁺=260.9.

Example 124

Example 124 was prepared using a procedure analogous to Example 2 except that methyl 4-bromopicolinate was replaced with ethyl 2-(5-bromopyrimidin-2-yloxy)acetate. LCMS, [M+H]*=476.1. ¹H NMR (400 MHz, CDCl₃) 8 8.38 (s, 2H), 7.35-7.17 (m, 2H), 7.07 (d, J=8.2 Hz, 1H), 7.01 (t, J=7.9 Hz, 1H), 6.75 (d, J=7.5 Hz, 1H), 6.63 (d, J=8.2 Hz, 1H), 5.07 (d, J=14.1 Hz, 2H), 3.99-3.86 (m, 2H), 3.79 (t, J=6.9 Hz, 2H), 2.78 (t, J=7.2 Hz, 2H), 2.50-2.35 (m, 2H), 2.28-2.09 (m, 5H), 1.98-1.76 (m, 5H). HPLC-1: Rt=8.2 min, purity=95.5%; HPLC-2: Rt=7.3 min, purity=98.5%.

Example 125

3-((5-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)-2-oxopyridin-1(2H)-yl) methyl)benzoic acid

Step A. Methyl 3-((5-bromo-2-oxopyridin-1(2H)-yl) methyl)benzoate

To a solution of 5-bromopyridin-2-ol (0.250 g, 1.437 mmol) in DMF (1.50 mL) at 0° C., was added NaH (60% in

mineral oil, 0.075 g, 1.868 mmol) portion-wise over a period of 10 min. The mixture was warmed to room temperature and stirred for 30 min. To the mixture was added methyl 3-(bromomethyl)benzoate (0.395 g, 1.724 mmol) in one portion.

The reaction was stirred at room temperature for 16 h and partitioned between EtOAc and water. The organic layer was washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide the crude material. The crude material was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (0.274 g, 59% yield) as clear pale-yellow oil. LCMS, [M+H]⁺=322.0. ¹H NMR (400 MHz, CDCl₃) 8 7.98 (d, J=7.7 Hz, 1H), 7.95 (s, 1H), 7.51 (d, J=7.7 Hz, 1H), 7.43 (t, J=7.7 Hz, 1H), 7.37 (d, J=2.7 Hz, 1H), 7.33 (dd, J=9.7, 2.7 Hz, 1H), 5.52 (d, J=9.7 Hz, 1H), 5.11 (s, 2H), 3.90 (s, 3H).

Example 125

Example 125 was prepared using a procedure analogous to Example 2 except that methyl 4-bromopicolinate was replaced with methyl 3-((5-bromo-2-oxopyridin-1(2H)-yl) methyl)benzoate. LCMS, [M+H]⁺=551.2. ¹H NMR (400 MHz, CDCl₃) & 8.38 (s, 2H), 7.35-7.17 (m, 2H), 7.07 (d, J=8.2 Hz, 1H), 7.01 (t, J=7.9 Hz, 1H), 6.75 (d, J=7.5 Hz, 1H), 6.63 (d, J=8.2 Hz, 1H), 5.07 (d, J=14.1 Hz, 2H), 3.99-3.86 (m, 2H), 3.79 (t, J=6.9 Hz, 2H), 2.78 (t, J=7.2 Hz, 2H), 2.50-2.35 (m, 2H), 2.28-2.09 (m, 5H), 1.98-1.76 (m, 5H). HPLC-1: Rt=9.6 min, purity=97.2%; HPLC-2: Rt=8.6 min, purity=99.3%.

Example 126

2-(2-(4-(1-(4-(2,3-Dmethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetamido)acetic acid

To a solution of Example 1 (15 mg, 0.034 mmol), methyl 2-aminoacetate hydrochloride (6.3 mg, 0.05 mmol), and Hunig's base (20 μ L, 0.117 mmol) in ethyl acetate (0.3 mL) was added a 50% w/w solution of T3P (30 μ L, 0.05 mmol) in Et₂O dropwise. The reaction was stirred at room temperature for 16 h and partitioned between DCM and water. The resulting mixture was stirred vigorously for 15 min. The organic layer was separated, washed with saturated NaHCO₃, water, 5% aq. citric acid, and brine. The solution was dried over

30

35

40

45

anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was re-dissolved in THF/H₂O (9:1, 0.5 mL) and added 4 M LiOH (85 µL, 0.34 mmol) and stirred at room temperature overnight. The reaction mixture was adjusted to pH~5 with conc. HCl, partitioned between 5% citric acid and DCM, and stirred for 15 min. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated to provide a residue. The residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5µ, 10 C18, 30×75 mm; 15 min gradient from 80% A:20% B to 40% A:60% B and 3 min 100% B (A=90% H₂O/10% MeCN+ 0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 126 (4 mg, 24% yield). 15 LCMS, [M+H]⁺=505.2. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.37 (s, 1H), 7.23-7.12 (m, 2H), 7.04-6.98 (m, 1H), 6.95 (s, 1H), 6.75 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.2 Hz, 1H), 4.92 (s, 2H), 4.11 (d, J=5.2 Hz, 2H), 3.93 (s, 2H), 3.79 (t, J=6.9 Hz, 2H), 2.75 (t, J=7.1 Hz, 2H), 2.56 (s, 2H), 2.24-2.11 (m, 5H), 1.97-1.81 (m, 5H). HPLC-1: Rt=8.6 min, purity=100%; HPLC-2: Rt=8.0 min, purity=100%.

(s, 1H), 6.96 (t, J=7.9 Hz, 1H), 6.66 (d, J=7.3 Hz, 1H), 6.65 (d, J=7.9 Hz, 1H), 5.43 (s, 2H), 4.13-4.02 (m, 2H), 3.86 (br. s, 2H), 3.74 (t, J=6.8 Hz, 2H), 3.69-3.58 (m, 2H), 2.81 (t, J=6.8 Hz, 2H), 2.48 (br. s, 2H), 2.19-2.06 (m, 4H), 2.03 (s, 3H), 1.84-1.76 (m, 2H), 1.72 (s, 3H), 1.30 (t, J=7.0 Hz, 3H). HPLC-1: Rt=9.9 min, purity=97.7%; HPLC-2: Rt=10.0 min, purity=98.0%.

Example 128

3-(4-((3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonyl) piperazin-1-yl)-3-oxopropanoic acid

Example 127

Ethyl hydrogen 2-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzamido)ethylphosphonate

Example 127 was prepared using a procedure analogous to Example 126 except that Example 1 was replaced with Example 95 and methyl 2-aminoacetate hydrochloride was replaced with diethyl 2-aminoethylphosphonate. LCMS, 65 [M+H]⁺=659.3. ¹H NMR (400 MHz, MeOD) & 7.83-7.73 (m, 2H), 7.65 (s, 1H), 7.55-7.41 (m, 3H), 7.29-7.19 (m, 2H), 7.16

Example 128 was prepared using a procedure analogous to
Example 126 except that Example 1 was replaced with
3-methoxy-3-oxopropanoic acid and methyl 2-aminoacetate
hydrochloride was replaced with 3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyl piperazine-1-carboxylate. LCMS, [M+H]⁺=628.3. ¹H NMR

55 (400 MHz, MeOD) δ 7.54-7.42 (m, 2H), 7.41-7.31 (m, 2H),
7.30-7.14 (m, 3H), 7.06 (t, J=7.9 Hz, 1H), 6.79 (d, J=7.5 Hz,
1H), 6.75 (d, J=8.1 Hz, 1H), 5.25 (s, 2H), 3.97 (br, s, 2H), 3.83
(t, J=7.0 Hz, 2H), 3.74-3.55 (m, 8H), 2.90 (t, J=6.9 Hz, 2H),
60 2.46 (br. s, 2H), 2.31-2.16 (m, 5H), 1.91 (s, 3H), 1.85 (dt,
J=13.3, 6.8 Hz, 2H), 1.37 (s, 2H). HPLC-1: Rt=10.8 min,
purity=95.0%; HPLC-2: Rt=10.9 min, purity=93.1%.

The following Examples were prepared in a manner analogous to Example 126.

TABLE 8

		11 1151	JL 0				
A R_{5b} R_{5b}							
Ex- ample	Name	XY	present	R_{5b}	LCMS [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
129	2-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)-2- methylpropanamido) acetic acid	N-N CO ₂ H	No	Me	533.2	7.66 (s, 1H), 7.58 (s, 1H), 7.23-7.15 (m, 2H), 7.01 (t, J = 7.9 Hz, 1H), 6.82 (t, J = 5.2 Hz, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 8.2 Hz, 1H), 4.02 (d, J = 5.3 Hz, 2H), 3.93 (t, J = 5.2 Hz, 2H), 3.78 (t, J = 6.8 Hz, 2H), 2.76 (t, J = 7.1 Hz, 2H), 2.88 (s, 2H), 2.25- 2.12 (m, 5H), 1.96-1.80 (m, 11H)	9.1 min, 99.7% 8.1 min, 99.7%
130	2-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)-N- methylacetamido)acetic acid	N—N O	No	Me	519.2	7.54 (d, J = 9.1 Hz, 1H), 7.47 (d, J = 9.6 Hz, 1H), 7.24 (s, 1H), 7.21-7.10 (m, 2H), 7.00 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 5.26, 5.19 (2 s, 2H), 4.18, 4.10 (2 s, 2H), 3.92 (t, J = 5.3 Hz, 2H), 3.76 (t, J = 6.7 Hz, 2H), 3.16, 3.04 (2 s, 3H), 2.73 (t, J = 7.1 Hz, 2H), 2.59 (br. s, 2H), 2.24- 2.10 (m, 5H), 1.91 (s, 3H), 1.89-1.79 (m, 2H)	8.5 min, 100% 7.8 min, 100%
131	2-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1- yl)acetamido)propanoic acid	N—N O	No	Me	519.2	7.59 (s, 1H), 7.39 (s, 1H), 7.21-7.10 (m, 2H), 7.04-6.94 (m, 2H), 6.73 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 4.98 (d, J = 16.2 Hz, 1H), 4.83 (d, J = 16.2 Hz, 1H), 4.63-4.52 (m, 1H), 3.90 (br. s, 2H), 3.83-3.69 (m, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.54 (br. s, 2H), 2.22-2.09 (m, 5H), 1.93-1.77 (m, 5H), 1.44 (d, J = 7.1 Hz, 3H)	8.6 min, 100% 7.8 min, 100%
132	2-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)- N,2- dimethylpropanamido) acetic acid	N-N O	No	Ме	547.3	7.58 (s, 2H), 7.24 (s, 1H), 7.21-7.10 (m, 2H), 6.99 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 4.14 (br. s, 2H), 3.92 (t, J = 5.2 Hz, 2H), 3.77 (t, J = 6.7 Hz, 2H), 2.73 (t, J = 7.2 Hz, 2H), 2.65-2.49 (m, 4H), 2.24- 2.09 (m, 5H), 1.98-1.77 (m, 9H)	9.4 min, 100% 8.3 min, 100%

	TABLE 8-continued						
	$\begin{array}{c} Y \\ X \\ A \\ \end{array}$						
Ex- ample	Name	XY	present	R_{5b}	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (400 MHz, CDCl ₃) δ	Rt min, purity; HPLC-2: Rt min, purity
133	2-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)-2- methylpropanamido) propanoic acid	N—N O	No	Me	547.3	7.64 (s, 1H), 7.55 (s, 1H), 7.22-7.07 (m, 2H), 6.99 (t, J = 7.8 Hz, 1H), 6.82 (d, J = 6.9 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 4.52-4.39 (m, 1H), 3.91 (br. s, 2H), 3.84- 3.69 (m, 2H), 2.74 (t, J = 7.1 Hz, 2H), 2.55 (br. s, 2H), 2.25-2.09 (m, 5H), 2.02-1.75 (m, 11H), 1.37 (d, J = 7.2 Hz, 3H)	9.6 min, 100% 8.5 min, 100%
134	3-(2-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)-2- methylpropanamido) propanoic acid	HN CO ₂ H	No	Me	547.3	7.65 (s, 1H), 7.52 (s, 1H), 7.24 (s, 1H), 7.18-7.08 (m, 3H), 6.99 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.4 Hz, 1H), 6.62 (d, J = 5.9 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 3.91 (t, J = 5.3 Hz, 2H), 3.75 (t, J = 6.8 Hz, 2H), 3.43 (dd, J = 12.0, 6.0 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.55 (br. s, 2H), 2.50 (t, J = 6.0 Hz, 2H), 2.91, 2.23-2.08 (m, 5H), 1.90 (s, 3H), 1.86 (s, 6H), 1.87-1.77 (m, 2H)	9.3 min, 100% 8.3 min, 100%
135	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl) methyl)benzamido) acetic acid	N-N CO ₂ H	No	Me	581.4	7.88 (d, J = 7.7 Hz, 1H), 7.83 (s, 1H), 7.54 (s, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 7.9 Hz, 1H), 7.37 (s, 1H), 7.22-7.07 (m, 3H), 6.99 (t, J = 7.9 Hz, 1H), 6.70 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 5.39 (s, 2H), 4.23 (d, J = 5.1 Hz, 2H), 3.90 (t, J = 5.1 Hz, 2H), 3.76 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.52 (br. s, 2H), 2.21- 2.06 (m, 5H), 1.93-1.76 (m, 5H)	9.2 min, 100% 8.5 min, 100%

		Т	ABLE 8-co	ntinued				
$ \begin{array}{c} Y \\ X \\ A \end{array} $ $ \begin{array}{c} R_{5b} \\ O \end{array} $								
Ex- ample	Name	——(A)——X—Y		present	R_{5b}	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
136	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl) methyl)benzamido) propanoic acid	N-N N	\sim CO ₂ H	No	Me	595.3	7.85 (d, J = 7.6 Hz, 1H), 7.78 (s, 1H), 7.55 (s, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 6.3 Hz, 1H), 7.37 (s, 1H), 7.23-7.08 (m, 3H), 6.99 (t, J = 7.9 Hz, 1H), 6.70 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 5.44 (d, J = 15.2 Hz, 1H), 5.34 (d, J = 15.2 Hz, 1H), 4.86-4.74 (m, 1H), 3.90 (br. s, 2H), 3.76 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.53 (br. s, 2H), 2.22-2.07 (m, 5H), 1.92- 1.77 (m, 5H), 1.45 (d, J = 7.2 Hz, 3H)	9.8 min, 98.9% 8.9 min, 100%
137	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1- yl)methyl)-N- methylbenzamido)acetic acid	N-N N	CO ₂ H	No	Me	595.4	7.55 (s, 1H), 7.46-7.27 (m, 4H), 7.24 (s, 2H), 7.20-7.08 (m, 2H), 6.98 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 8.1 Hz, 1H), 5.36 (s, 2H), 4.28 (s, 1H), 3.92 (br. s, 3H), 3.75 (t, J = 6.8 Hz, 2H), 3.10 (s, 1H), 3.03 (br. s, 2H), 2.72 (t, J = 7.1 Hz, 2H), 2.55 (br. s, 2H), 2.22-2.05 (m, 5H), 1.96-1.75 (m, 5H)	9.6 min, 99.9% 8.8 min, 99.8%
138	2-(3-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)benzamido)acetic acid		°CO₂H	No	Me	501.3	7.78 (d, J = 7.7 Hz, 1H), 7.70 (s, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.29-7.19 (m, 1H), 7.11 (d, J = 8.0 Hz, 1H), 7.00 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 6.69 (br. s, 1H), 6.64 (d, J = 8.2 Hz, 1H), 4.29 (d, J = 4.9 Hz, 2H), 4.00-3.89 (m, 2H), 3.78 (t, J = 6.9 Hz, 2H), 2.77 (t, J = 7.3 Hz, 2H), 2.50-2.40 (m, 2H), 2.3-2.16 (m, 5H), 1.96 (s, 3H), 1.86-1.76 (m, 2H)	9.9 min, 100% 8.9 min, 100%

		Y X A	Ω_{5b}				
		o N	\ _	.0			
Ex- ample	Name		present	R_{5b}	LCMS, [M+ H] ⁺	$^{1}\text{H NMR }(400\ \text{MHz},\ \text{CDCl}_{3})\delta$	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
138A	2-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy)) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	NH SO ₃ H	Yes	Cl	663.4	7.86 (s, 1H), 7.82-7.71 (m, 2H), 7.68 (s, 1H), 7.50-7.40 (m, 2H), 7.29 (d, J = 7.4 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 6.7 Hz, 2H), 6.90 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.2 Hz, 1H), 5.46 (s, 2H), 4.05-3.92 (m, 2H), 3.90-3.82 (m, 2H), 3.08 (t, J = 6.7 Hz, 2H), 3.08 (t, J = 6.5 Hz, 2H), 3.06-2.99 (m, 2H), 2.82-2.65 (m, 2H), 2.17-1.98 (m, 4H), 1.90-1.83 (m, 3H), 1.81-1.65 (m, 2H), 1.29 (s, 6H), 0.87-0.69 (m, 1H), 0.42-0.27 (m, 1H)*	N/A 9.6 min, 97.7%
138B	2-(3-((4-((1aS,7bR)-3-(4-(3-Chloro-2-methylphenoxy)) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	NH SO ₃ H	Yes	Cl	663.4	7.86 (s, 1H), 7.82-7.71 (m, 2H), 7.68 (s, 1H), 7.50-7.40 (m, 2H), 7.29 (d, J = 7.4 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 6.7 Hz, 2H), 6.90 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.2 Hz, 1H), 5.46 (s, 2H), 4.05-3.92 (m, 2H), 3.90-3.82 (m, 2H), 3.08 (t, J = 6.7 Hz, 2H), 3.08 (t, J = 6.7 Hz, 2H), 3.06-2.99 (m, 2H), 2.82-2.65 (m, 2H), 2.17-1.98 (m, 4H), 1.90-1.83 (m, 3H), 1.81-1.65 (m, 2H), 1.29 (s, 6H), 0.87-0.69 (m, 1H), 0.42-0.27 (m, 1H)*	N/A 9.6 min, 99.8%
138C	3-((4-(1-(4-(3- Cyclopropyl-2- methylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl) methyl)benzoic acid	Transfer CO ₂ H	No	Cyclo- propyl	550.1	8.14-8.00 (m, 2H), 7.60 (s, 1H), 7.56-7.43 (m, 2H), 7.37 (s, 1H), 7.23-7.08 (m, 3H), 7.01 (t, J = 7.9 Hz, 1H), 6.60 (d, J = 8.2 Hz, 1H), 6.60 (d, J = 7.7 Hz, 1H), 5.42 (s, 2H), 3.93 (t, J = 5.5 Hz, 2H), 3.79 (t, J = 6.8 Hz, 2H), 2.77 (t, J = 7.1 Hz, 2H), 2.18 (dt, J = 12.9, 6.5 Hz, 2H), 2.08 (s, 3H), 1.86 (dt, J = 13.6, 6.8 Hz, 2H), 1.78 (ddd, J = 13.6, 8.5, 5.5 Hz, 1H), 0.90-0.79 (m, 2H), 0.60-0.49 (m, 2H)	10.3 min, 95% 10.6 min, 96.8%

3-(3-((4-(5-(4-(2,3-Dimethylphenoxy)butanoyl)-2,3, 4,5-tetrahydrobenzo[b][1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido)propanoic acid

A mixture of Example 13 (20 mg, 0.037 mmol), tert-butyl 3-aminopropanoate hydrochloride (13.47 mg, 0.074 mmol), DIPEA (0.019 mL, 0.111 mmol) and BOP (18.03 mg, 0.041

234

mmol) in DMF (1.0 mL) was stirred at room temperature for 60 min. The crude product was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5µ, C18, 30×100 mm; 25 min gradient from 80% A:20% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/ 10% H₂O+0.1% TFA); detection at 220 nm) to give the ester. The ester was dissolved in DCM (3.0 mL) and treated with TFA (0.857 mL, 11.12 mmol). The mixture was stirred at room temperature for 30 min and concentrated. The resulting residue was purified by prep-HPLC preparative HPLC (PHE-NOMENEX® Axia Luna column, 5μ, C18, 30×100 mm; 25 min gradient from 80% A:20% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+ 0.1% TFA); detection at 220 nm) to afford Example 139 (12.2) mg, 51% yield) as a white powder. LCMS, [M+H]+=611.2. ¹H NMR (400 MHz, MeOD) δ 8.03 (s, 1H), 7.94 (s, 1H), 7.81 (s, 1H), 7.80-7.76 (m, 1H), 7.66 (dd, J=6.1, 3.4 Hz, 1H), 7.52-7.45 (m, 2H), 7.16 (d, J=2.7 Hz, 1H), 7.15 (s, 1H), 6.93 (t, J=7.8 Hz, 1H), 6.65 (d, J=4.1 Hz, 1H), 6.63 (d, J=5.0 Hz, 1H), 5.45 (s, 2H), 4.79 (dt, J=13.2, 3.4 Hz, 1H), 4.48 (dt, J=6.1, 3.3 Hz, 1H), 3.93-3.80 (m, 2H), 3.65 (t, J=6.9 Hz, 2H), 3.59 (td, J=11.7, 1.5 Hz, 1H), 2.91-2.81 (m, 1H), 2.66 (t, J=6.9 Hz, 2H), 2.50-2.37 (m, 2H), 2.34-2.23 (m, 1H), 2.11 (s, 3H), 2.09-2.01 (m, 2H), 1.83 (s, 3H), 1.82-1.75 (m, 1H). HPLC-1: Rt=8.2 min, purity=94.1%; HPLC-2: Rt=7.9 min, purity=93.9%.

The following Examples were prepared in a manner analogous to Example 139.

TABLE 9

Ex- ample	Name	Formula I	LCMS, [M+ H] ⁺	$^{1}\text{H NMR}$ (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
140	2-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) benzamido)acetic acid	N-N O-NH O-NH O-NH O-NH	597.2	8.03 (s, 1H), 7.94 (s, 1H), 7.89-7.82 (m, 2H), 7.66 (dd, J = 6.1, 3.4 Hz, 1H), 7.55-7.47 (m, 2H), 7.20-7.12 (m, 2H), 6.93 (t, J = 7.9 Hz, 1H), 6.66 (d, J = 6.3 Hz, 1H), 6.64 (d, J = 7.5 Hz, 1H), 5.46 (s, 2H), 4.83-4.74 (m, 1H), 4.51-4.43 (m, 1H), 4.12 (s, 2H), 3.94-3.79 (m, 2H), 3.64-3.54 (m, 1H), 2.91-2.80 (m, 1H), 2.51-2.36 (m, 2H), 2.35-2.19 (m, 1H), 2.11 (s, 3H), 2.09-2.01 (m, 2H), 1.83 (s, 3H), 1.82-1.75 (m, 1H)	8.2 min, 98.8% 7.9 min, 98.6%

141 2-(4-((4-(5-(4-(2,3-Dimethylphenoxy) butanoyl)-2,3,4,5tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1Hpyrazol-1-yl)methyl) benzamido)acetic acid

 $\begin{array}{l} 597.3 & 8.08 \ (s, 1H), 8.06 \ (s, 1H), 8.04 \ (d, J=8.3 \\ Hz, 2H), 7.73 \ (dd, J=7.7, 1.7 \ Hz, 1H), \\ 7.50 \ (d, J=8.3 \ Hz, 2H), 7.30 \ (t, J=7.7 \ Hz, 1H), 7.12 \ (t, J=7.9 \ Hz, 1H), 6.85 \ (d, J=7.5 \ Hz, 1H), \\ 6.78 \ (d, J=8.2 \ Hz, 1H), 5.61 \ (d, J=15.6 \ Hz, 1H), 5.57 \ (d, J=15.6 \ Hz, 1H), 4.98-4.93 \ (m, 1H), 4.66-4.60 \ (m, 1H), 4.23 \ (s, 2H), 4.07 \ (dt, J=11.1, 5.6 \ Hz, 1H), 4.03-3.97 \ (m, 1H), 3.77 \ (td, J=11.7, 1.5 \ Hz, 1H), 3.04-2.96 \ (m, 1H), 2.65-2.42 \ (m, 3H), 2.32 \ (s, 3H), 2.27-2.18 \ (m, 2H), 2.05 \ (s, 3H), 1.96 \ (d, J=14.8 \ Hz, 1H) \end{array}$

142 3-(4-((4-(5-(4-(2,3-Dimethylphenoxy) butanoyl)-2,3,4,5tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1Hpyrazol-1-yl)methyl) benzamido)propanoic acid

 $\begin{aligned} 611.3 & 8.09 \ (s, 1H), \, 8.07 \ (s, 1H), \, 7.99 \ (d, \, J = 8.3 \\ & Hz, \, 2H), \, 7.74 \ (dd, \, J = 7.7, \, 1.7 \ Hz, \, 1H), \\ & 7.50 \ (d, \, J = 8.3 \ Hz, \, 2H), \, 7.31 \ (t, \, J = 7.7 \ Hz, \, 1H), \, 7.27 \ (dd, \, J = 8.8, \, 1.7 \ Hz, \, 1H), \, 7.13 \ (t, \, J = 7.9 \ Hz, \, 1H), \, 6.86 \ (d, \, J = 7.5 \ Hz, \, 1H), \\ & 6.79 \ (d, \, J = 8.2 \ Hz, \, 1H), \, 5.61 \ (d, \, J = 15.6 \ Hz, \, 1H), \, 5.57 \ (d, \, J = 15.5 \ Hz, \, 1H), \, 5.00- \\ & 4.94 \ (m, \, 1H), \, 4.66-4.61 \ (m, \, 1H), \, 4.08 \ (dt, \, J = 11.1, \, 5.6 \ Hz, \, 1H), \, 4.04-3.98 \ (m, \, 1H), \\ & 3.83 \ (t, \, J = 6.6 \ Hz, \, 2H), \, 3.78 \ (t, \, J = 11.0 \ Hz, \, 1H), \, 3.05-2.97 \ (m, \, 1H), \, 2.81 \ (t, \, J = 6.6 \ Hz, \, 2H), \, 2.67-2.43 \ (m, \, 3H), \, 2.33 \ (s, \, 3H), \, 2.28-2.18 \ (m, \, 2H), \, 2.06 \ (s, \, 3H), \, 1.98 \ (d, \, J = 14.9 \ Hz, \, 1H) \end{aligned}$

143 2-(4-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-2,3,4,5tetrahydro-1H-benzo[b] azepin-6-yl)-1H-pyrazol-1-yl)methyl)benzamido) acetic acid

595.4 8.06 (d, J = 8.3 Hz, 2H), 7.73 (s, 1H), 7.72 (s, 1H), 7.52 (d, J = 8.3 Hz, 2H), 7.47 (dd, J = 7.7, 1.2 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.27 (dd, J = 7.7, 1.2 Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 5.63 (s, 2H), 4.83-4.79 (m, 1H), 4.28 (s, 2H), 4.15-4.03 (m, 2H), 3.14 (dd, J = 14.1, 6.1 Hz, 1H), 2.99-2.90 (m, 1H), 2.67 (ddd, J = 15.6, 7.6, 6.6 Hz, 1H), 2.59 (t, J = 12.8 Hz, 1H), 2.52-2.45 (m, 1H), 2.55 (s, 3H), 2.27 (td, J = 13.3, 6.4 Hz, 2H), 2.17-2.09 (m, 2H), 2.07 (s, 3H), 2.00-1.93 (m, 1H), 1.61-1.53 (m, 1H)

		TABLE 9-continue	ed		
Ex- ample	Name	Formula I	LCMS, [M + H] ⁺	1 H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
144	3-(4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydro-1H-benzo[b] azepin-6-yl)-1H-pyrazol- 1-yl)methyl)benzamido) propanoic acid	N-N OH HN OH	609.4	$\begin{array}{l} 8.00 \ (\mathrm{d},\mathrm{J}=8.3 \ \mathrm{Hz},2\mathrm{H}),7.72 \ (\mathrm{s},1\mathrm{H}),7.71 \\ (\mathrm{s},1\mathrm{H}),7.51 \ (\mathrm{d},\mathrm{J}=8.3 \ \mathrm{Hz},2\mathrm{H}),7.46 \ (\mathrm{dd},\mathrm{J}=7.7 \ \mathrm{L}.2 \ \mathrm{Hz},1\mathrm{H}),7.40 \ (\mathrm{t},\mathrm{J}=7.7 \ \mathrm{Hz},1\mathrm{H}),7.27 \ (\mathrm{dd},\mathrm{J}=7.6,1.1 \ \mathrm{Hz},1\mathrm{H}),7.16 \ (\mathrm{t},\mathrm{J}=7.9 \ \mathrm{Hz},1\mathrm{H}),6.89 \ (\mathrm{d},\mathrm{J}=7.5 \ \mathrm{Hz},1\mathrm{H}),6.81 \ (\mathrm{d},\mathrm{J}=8.2 \ \mathrm{Hz},1\mathrm{H}),5.62 \ (\mathrm{s},2\mathrm{H}),4.84 \\ 4.78 \ (\mathrm{m},1\mathrm{H}),4.14 \\ 4.02 \ (\mathrm{m},2\mathrm{H}),3.83 \ (\mathrm{t},\mathrm{J}=6.6 \ \mathrm{Hz},2\mathrm{H}),3.14 \ (\mathrm{dd},\mathrm{J}=14.1,6.1 \ \mathrm{Hz},1\mathrm{Hz}),2.98 \\ 2.90 \ (\mathrm{m},1\mathrm{H}),2.82 \ (\mathrm{t},\mathrm{J}=6.6 \ \mathrm{Hz},2\mathrm{H}),2.71 \\ 2.55 \ (\mathrm{m},2\mathrm{H}),2.53 \\ 2.45 \ (\mathrm{m},1\mathrm{H}),2.34 \ (\mathrm{s},3\mathrm{H}),2.32 \\ 2.17 \\ 2.08 \ (\mathrm{m},2\mathrm{H}),2.07 \ (\mathrm{s},3\mathrm{H}),2.01 \\ 1.92 \ (\mathrm{m},1\mathrm{H}),1.64 \\ 1.51 \ (\mathrm{m},1\mathrm{H}) \end{array}$	
145	2-(3-((4-(5-(4-(2,3- Dimethylpenoxy) butanoyl)-2-methyl- 2,3,4,5-tetrahydrobenzo [b][1,4]oxazepin-9-yl)- 1H-pyrazol-1-yl)methyl) benzamido)acetic acid	N-N O	611.3	8.04 (s, 1H), 8.03 (s, 1H), 8.01 (d, $J=7.7$ Hz, 1H), 7.94 (s, 1H), 7.68 (dd, $J=7.7$, 1.6 Hz, 1H), 7.64 (t, $J=7.7$ Hz, 1H), 7.58 (d, $J=7.9$ Hz, 1H), 7.29 (t, $J=7.7$ Hz, 1H), 7.24 (dd, $J=7.7$, 1.6 Hz, 1H), 7.16 (t, $J=8.0$ Hz, 1H), 6.89 (d, $J=7.5$ Hz, 1H), 6.82 (d, $J=8.2$ Hz, 1H), 5.96 (d, $J=15.1$ Hz, 1H), 5.54 (d, $J=15.1$ Hz, 1H), 4.93-4.89 (m, 1H), 4.22 (s, 2H), 4.11-3.98 (m, 2H), 3.92-3.83 (m, 1H), 2.96 (t, $J=12.1$ Hz, 1H), 2.63-2.51 (m, 2H), 2.31 (s, 3H), 2.28-2.21 (m, 2H), 2.03 (s, 3H), 1.90 (d, $J=13.3$ Hz, 1H), 1.41 (d, $J=6.2$ Hz, 3H), 1.14 (d, $J=6.4$ Hz, 1H)	
146	3-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2-methyl- 2,3,4,5-tetrahydrobenzo [b][1,4]oxazepin-9-yl)- 1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	N-N N-N	625.3	$8.02 (s, 1H), 7.97 (s, 1H), 7.94 (d, J = 7.8 \\ Hz, 1H), 7.93 (s, 1H), 7.68 (dd, J = 7.7, 1.6 \\ Hz, 1H), 7.62 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.24 (dd, J = 7.7, 1.7 Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 5.58 (d, J = 15.0 Hz, 1H), 5.52 (d, J = 15.0 Hz, 1H), 4.93-4.89 (m, 1H), 4.13-3.96 (m, 2H), 3.91-3.85 (m, 1H), 3.83 (t, J = 6.6 Hz, 2H), 3.03-2.93 (m, 1H), 2.79 (t, J = 6.6 Hz, 2H), 2.62-2.51 (m, 2H), 2.03 (s, 3H), 1.90 (d, J = 14.4 Hz, 1H), 1.40 (d, J = 6.2 Hz, 3H), 1.13 (d, J = 6.4 Hz, 1H)$	

Ex- ample	Name	Formula I	LCMS [M + H] ⁺	, ¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
146A	3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-4,5-dihydro- 2H-spiro[benzo[b][1,4] oxazepine-3,1'- cyclopropane]-9-yl)-1H- pyrazol-1-yl)methyl) benzoic acid	OH OH	566.3	7.98 (d, J = 6.0 Hz, 2H), 7.91 (d, J = 13.8 Hz, 2H), 7.65 (d, J = 7.5 Hz, 1H), 7.49 (dt, J = 15.2, 7.6 Hz, 2H), 7.21-7.04 (m, 2H), 6.90 (t, J = 7.9 Hz, 1H), 6.62 (dd, J = 7.8, 4.3 Hz, 2H), 5.43 (s, 2H), 4.35 (d, J = 13.5 Hz, 1H), 3.93-3.81 (m, 2H), 3.72 (s, 2H), 3.04 (d, J = 13.7 Hz, 1H), 2.52 (dt, J = 15.1, 7.5 Hz, 1H), 2.44-2.31 (m, 1H), 2.06 (s, 3H), 2.05-1.97 (m, 2H), 1.79 (s, 3H), 1.04-0.91 (m, 1H), 0.71-0.61 (m, 1H), 0.54-0.44 (m, 1H), 0.42-0.31 (m, 1H)*	9.8 min, 98.6% 9.0 min, 92.8%
146B	2-(3-((4-(5-(4-(2,3-Dimethylphenoxy)) butanoyl)-4,5-dihydro-2H-spiro[benzo[b][1,4] oxazepine-3,1'-cyclopropane]-9-yl)-1H-pyrazol-1-yl)methyl) benzamido) ethanesulfonic acid	NH NH OH	673.3	8.07 (s, 1H), 7.95 (s, 1H), 7.81-7.72 (m, 2H), 7.64 (dd, J = 7.5, 1.9 Hz, 1H), 7.45 (d, J = 7.7 Hz, 2H), 7.20-7.05 (m, 2H), 6.89 (t, J = 7.9 Hz, 1H), 6.61 (t, J = 6.9 Hz, 2H), 5.44 (s, 2H), 4.93-4.86 (m, 1H), 4.34 (d, J = 13.6 Hz, 1H), 3.92-3.82 (m, 2H), 3.78 (s, 4H), 3.05 (dd, J = 16.4, 9.9 Hz, 3H), 2.57-2.45 (m, 1H), 2.41-2.31 (m, 1H), 2.05 (s, 3H), 2.04-1.97 (m, 2H), 1.77 (s, 3H), 0.96 (s, 1H), 0.67 (s, 1H), 0.47 (d, J = 8.9 Hz, 1H), 0.40 (s, 1H)*	10.4 min, 99.0% 7.1 min, 92.4%
146C	3-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) benzamido)propane-1- sulfonic acid	N-N N-N O	661.4	8.19 (s, 1H), 8.06 (d, J = 0.6 Hz, 1H), 7.85-7.76 (m, 2H), 7.64 (dd, J = 6.4, 3.1 Hz, 1H), 7.53-7.43 (m, 2H), 7.15 (m, 2H), 6.88 (t, J = 7.9 Hz, 1H), 6.60 (d, J = 2.3 Hz, 1H), 6.58 (s, 1H), 5.50 (s, 2H), 4.75 (dt, J = 13.3, 2.9 Hz, 1H), 4.46 (dt, J = 10.7, 3.0 Hz, 1H), 3.89-3.75 (m, 2H), 3.57 (td, J = 11.7, 1.8 Hz, 1H), 3.50 (t, J = 6.7 Hz, 2H), 2.90 (dd, J = 8.3, 6.7 Hz, 2H), 2.86-2.76 (m, 1H), 2.45 (dt, J = 15.0, 7.5 Hz, 1H), 2.40-2.32 (m, 1H), 2.32-2.18 (m, 1H), 1.77 (s, 3H)	9.1 min, 98.1% 6.8 min, 95.3%

		TABLE 9-continue	ed		
Ex- ample	Name	Formula I	LCMS, [M+ H]+	$^{1}\text{H NMR (500 MHz, MeOD)}\delta$	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
146D	4-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) benzamido)butanoic acid	N-N O N-N O	625.3	8.01 (s, 1H), 7.91 (s, 1H), 7.79-7.77 (m, 1H), 7.76-7.73 (m, 1H), 7.62 (dd, J = 6.1, 3.4 Hz, 1H), 7.51-7.40 (m, 2H), 7.13 (d, J = 2.8 Hz, 1H), 7.12 (s, 1H), 6.88 (d, J = 7.9 Hz, 1H), 6.62 (d, J = 4.3 Hz, 1H), 6.60 (d, J = 5.1 Hz, 1H), 5.42 (s, 2H), 4.75 (dt, J = 13.3, 3.3 Hz, 1H), 4.44 (dt, J = 5.9, 3.2 Hz, 1H), 3.90-3.76 (m, 2H), 3.55 (td, J = 11.7, 1.5 Hz, 1H), 3.41 (t, J = 7.0 Hz, 2H), 2.89-2.77 (m, 1H), 2.48-2.33 (m, 4H), 2.32-2.18 (m, 1H), 2.07 (s, 3H), 2.06-1.96 (m, 2H), 1.96-1.86 (m, 2H), 1.80 (s, 3H), 1.79-1.71 (m, 1H)	8.3 min, 99.2% 8.0 min, 97.2%
146E	3-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-4,5-dihydro- 2H-spiro[benzo[b][1,4] oxazepine-3,1'- cyclopropane]-9-yl)-1H- pyrazol-1-yl)methyl) benzamido)propanoic acid	N-N ON ON ON ON ON ON ON ON ON ON ON ON ON	637.3	7.97 (s, 1H), 7.89 (s, 1H), 7.80-7.70 (m, 2H), 7.64 (dd, $J = 7.7$, 1.8 Hz, 1H), 7.49-7.38 (m, 2H), 7.14 (t, $J = 7.7$ Hz, 1H), 7.09 (dd, $J = 7.8$, 1.8 Hz, 1H), 6.90 (t, $J = 7.8$ Hz, 1H), 6.66-6.58 (m, 2H), 5.40 (s, 2H), 4.35 (d, $J = 13.4$ Hz, 1H), 3.96-3.80 (m, 2H), 3.73 (s, 2H), 3.61 (t, $J = 6.9$ Hz, 2H), 3.04 (d, $J = 13.6$ Hz, 1H), 2.62 (t, $J = 6.9$ Hz, 2H), 2.50 (dt, $J = 15.0$, 7.5 Hz, 1H), 2.44-2.30 (m, 1H), 2.06 (s, 3H), 2.05-1.97 (m, 2H), 1.80 (s, 3H), 0.97 (dt, $J = 10.5$, 5.4 Hz, 1H), 0.66 (dt, $J = 9.6$, 4.9 Hz, 1H), 0.48 (dt, $J = 9.1$, 5.4 Hz, 1H), 0.38 (dt, $J = 10.8$, 5.6 Hz, 1H)	8.3 min, 96.1% 8.8 min, 99.2%
146F	(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-4,5-dihydro- 2H-spiro[benzo[b][1,4] oxazepine-3,1'- cyclopropane]-9-yl)-1H- pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	N-N N-N N-N	659.3	8.14 (s, 1H), 8.01 (s, 1H), 7.92-7.82 (m, 2H), 7.66 (dd, J = 7.2, 2.2 Hz, 1H), 7.55-7.40 (m, 2H), 7.21-7.09 (m, 2H), 6.91 (t, J = 7.9 Hz, 1H), 6.63 (d, J = 5.1 Hz, 1H), 6.61 (d, J = 4.4 Hz, 1H), 5.48 (s, 2H), 4.52 (s, 2H), 4.36 (d, J = 13.7 Hz, 1H), 3.87 (m, 2H), 3.82-3.70 (m, 2H), 3.04 (d, J = 13.5 Hz, 1H), 2.52 (dt, J = 14.9, 7.4 Hz, 1H), 2.43-2.32 (m, 1H), 2.07 (s, 3H), 2.06-1.94 (m, 2H), 1.79 (s, 3H), 1.04-0.92 (m, 1H), 0.74-0.63 (m, 1H), 0.49 (dt, J = 9.1, 5.4 Hz, 1H)	10.5 min, 98.5% 7.1 min, 95.4%

		TABLE 9-continue	ed		
Ex- ample	Name	Formula I	LCMS, [M + H] ⁺	· ¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
146G	2-(3-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) phenyl)ureido) ethanesulfonic acid	N-N HN O O O O O O O O O O O O O O O O O O	662.2	8.02 (s, 1H), 7.94 (s, 1H), 7.62 (dd, J = 5.5, 4.0 Hz, 1H), 7.37-7.28 (m, 2H), 7.24 (t, J = 7.8 Hz, 1H), 7.13 (d, J = 1.5 Hz, 1H), 7.12 (s, 1H), 6.93-6.85 (m, 2H), 6.61 (d, J = 2.9 Hz, 1H), 6.59 (d, J = 4.1 Hz, 1H), 5.34 (s, 2H), 4.80-4.69 (m, 1H), 4.44 (d, J = 12.4 Hz, 1H), 3.92-3.75 (m, 2H), 3.61 (m, 2H), 3.59-3.50 (m, 1H), 3.02-2.92 (m, 2H), 2.88-2.76 (m, 1H), 2.39 (qd, J = 15.0, 6.9 Hz, 2H), 2.32-2.17 (m, 1H), 2.07 (s, 3H), 2.05-1.97 (m, 2H), 1.79 (s, 3H), 1.78-1.68 (m, 1H)	9.5 min, 99.6% 6.9 min, 92.7%
146H	2-(2-(3-((4-(5-(4-(2,3-Dimethylphenoxy))butanoyl)-4,5-dihydro-2H-spiro[benzo[b][1,4] oxazepine-3,1'-cyclopropane]-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)acetia acid	N-N N-N O	680.4	7.97 (s, 1H), 7.88 (d, J = 0.5 Hz, 1H), 7.85-7.77 (m, 2H), 7.63 (dd, J = 7.7, 1.8 Hz, 1H), 7.51-7.41 (m, 2H), 7.13 (t, J = 7.7 Hz, 1H), 7.08 (dd, J = 7.8, 1.8 Hz, 1H), 6.90 (t, J = 7.9 Hz, 1H), 6.62 (d, J = 7.9 Hz, 2H), 5.41 (s, 2H), 4.33 (d, J = 13.6 Hz, 1H), 4.08 (s, 2H), 3.94 (s, 2H), 3.92-3.79 (m, 2H), 3.78-3.64 (m, 2H), 3.03 (d, J = 13.8 Hz, 1H), 2.49 (dt, J = 15.0, 7.6 Hz, 1H), 2.43-2.32 (m, 1H), 2.06 (s, 3H), 2.05-1.97 (m, 2H), 1.79 (s, 3H), 1.02-0.90 (m, 1H), 0.69-0.60 (m, 1H), 0.47 (dt, J = 8.7, 5.4 Hz, 1H), 0.37 (dt, J = 9.4, 5.7 Hz, 1H)	8.2 min, 97.7% 7.9 min, 93.7%
146Ј	2-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-4,5-dihydro- 2H-spiro[benzo[b][1,4] oxazepine-3,1'- cyclopropane]-9-yl)-1H- pyrazol-1-yl)methyl) benzamido)acetic acid	N-N N-N O	623.3	7.97 (s, 1H), 7.89 (s, 1H), 7.85-7.75 (m, 2H), 7.64 (dd, J = 7.6, 1.8 Hz, 1H), 7.47 (dd, J = 9.3, 5.2 Hz, 2H), 7.14 (t, J = 7.7 Hz, 1H), 7.09 (dd, J = 7.8, 1.8 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.62 (d, J = 8.0 Hz, 2H), 5.41 (s, 2H), 4.34 (d, J = 13.5 Hz, 1H), 4.07 (s, 2H), 3.94-3.80 (m, 2H), 3.78-3.66 (m, 2H), 3.03 (d, J = 13.5 Hz, 1H), 2.49 (dt, J = 15.1, 7.6 Hz, 1H), 2.43-2.31 (m, 1H), 2.06 (s, 3H), 2.05-1.96 (m, 2H), 1.79 (s, 3H), 1.01-0.91 (m, 1H), 0.66 (dt, J = 9.8, 5.0 Hz, 1H), 0.47 (dt, J = 9.3, 5.8 Hz, 1H), 0.37 (dt, J = 9.4, 5.3 Hz, 1H)	8.8 min, 98.8% 8.3 min, 94.8%

Ex- ample	Name	Formula I	LCMS, [M + H] ⁺	, ¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
146M	3-(3-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) phenyl)ureido)propanoic acid	N-N OH OH	626.2	7.95 (s, 1H), 7.88 (s, 1H), 7.61 (dd, J = 6.4, 3.1 Hz, 1H), 7.30 (m, 2H), 7.23 (dd, J = 8.6, 7.5 Hz, 1H), 7.17-7.06 (m, 2H), 6.94-6.84 (m, 2H), 6.61 (t, J = 7.2 Hz, 2H), 5.31 (s, 2H), 4.75 (dt, J = 7.5, 3.4 Hz, 1H), 4.43 (dt, J = 5.9, 3.2 Hz, 1H), 3.91-3.75 (m, 2H), 3.55 (td, J = 11.9, 1.9 Hz, 1H), 3.42 (t, J = 6.4 Hz, 2H), 2.89-2.75 (m, 1H), 2.57-2.33 (m, 4H), 2.32-2.18 (m, 1H), 2.07 (s, 3H), 2.06-1.96 (m, 2H), 1.80 (s, 3H), 1.79-1.69 (m, 1H)	8.4 min, 97.8% 8.1 min, 96.0%
146N	2-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-4,5-dihydro- 2H-spiro[benzo[b][1,4] oxazepine-3,1'- cyclopropane]-9-yl)-1H- pyrazol-1-yl)methyl) benzamido)-N,N,N- trimethylethanaminium, TFA	N-N NH TFA	651.4	8.01 (s, 1H), 7.90 (s, 1H), 7.83-7.72 (m, 2H), 7.64 (dd, J = 7.6, 1.9 Hz, 1H), 7.48 (d, J = 5.2 Hz, 2H), 7.14 (t, J = 7.7 Hz, 1H), 7.10 (dd, J = 7.8, 1.9 Hz, 1H), 6.89 (t, J = 7.9 Hz, 1H), 6.63 (d, J = 4.6 Hz, 1H), 6.61 (d, J = 4.0 Hz, 1H), 5.42 (s, 2H), 4.35 (d, J = 13.7 Hz, 1H), 3.93-3.80 (m, 4H), 3.73 (t, J = 8.7 Hz, 2H), 3.55 (t, J = 6.7 Hz, 2H), 3.18 (d, J = 21.8 Hz, 9H), 3.04 (d, J = 13.6 Hz, 1H), 2.48 (dt, J = 15.1, 7.5 Hz, 1H), 2.43-2.33 (m, 1H), 2.06 (s, 3H), 2.05-1.96 (m, 2H), 1.80 (s, 3H), 0.97 (dt, J = 9.8, 5.0 Hz, 1H), 0.71-0.59 (m, 1H), 0.49 (dt, J = 9.0, 5.5 Hz, 1H), 0.37 (dt, J = 9.2, 5.5 Hz, 1H)	6.6 min, 99.8% 7.8 min, 97.9%
146P	2-(3-((4-(5-(4-(2,3-Dimethylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)-NN,N-trimethylethanaminium, TFA	N-N TFA	625.4	8.03 (s, 1H), 7.91 (s, 1H), 7.85-7.73 (m, 2H), 7.62 (dd, J = 5.3, 4.2 Hz, 1H), 7.49 (d, J = 5.1 Hz, 2H), 7.18-7.09 (m, 2H), 6.89 (t, J = 7.9 Hz, 1H), 6.61 (dd, J = 7.8, 2.9 Hz, 2H), 5.43 (s, 2H), 4.81-4.69 (m, 1H), 4.51-4.39 (m, 1H), 3.94-3.74 (m, 4H), 3.64-3.49 (m, 3H), 3.21 (s, 9H), 2.90-2.77 (m, 1H), 2.40 (td, J = 7.1, 2.4 Hz, 2H), 2.32-2.18 (m, 1H), 2.07 (s, 3H), 2.05-1.96 (m, 2H), 1.80 (s, 3H), 1.79-1.72 (m, 1H)	6.2 min, 99.4% 7.3 min, 98.4%

		TABLE 9-continue	a		
Ex- ample	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
146Q	3-((4-(5-(4-(3-Chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzoic acid	N-N OOOOOOH OOOOCI	561.2	8.01 (d, J = 0.4 Hz, 1H), 7.99-7.93 (m, 2H), 7.89 (d, J = 0.6 Hz, 1H), 7.61 (dd, J = 6.6, 2.9 Hz, 1H), 7.55-7.49 (m, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.18-7.07 (m, 2H), 6.94 (t, J = 8.2 Hz, 1H), 6.78 (d, J = 7.5 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 5.43 (s, 2H), 4.74 (dt, J = 6.8, 3.2 Hz, 1H), 4.44 (dt, J = 11.5, 2.9 Hz, 1H), 3.95-3.79 (m, 2H), 3.54 (td, J = 11.8, 1.9 Hz, 1H), 2.87-2.75 (m, 1H), 2.46 (dt, J = 15.1, 7.5 Hz, 1H), 2.35 (dt, J = 15.1, 6.5 Hz, 1H), 2.30-2.16 (m, 1H), 2.09-1.96 (m, 2H), 1.90 (s, 3H), 1.81-1.69 (m, 1H)	9.6 min, 98.3% 8.9 min, 97.2%
146R	(3-((4-(5-(4-(3-Chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	N-N ON ON O	655.1	8.20 (s, 1H), 8.06 (s, 1H), 7.92-7.82 (m, 2H), 7.65 (dd, J = 6.0, 3.5 Hz, 1H), 7.54-7.44 (m, 2H), 7.22-7.11 (m, 2H), 6.97 (s, 1H), 6.79 (d, J = 8.1 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 5.51 (s, 2H), 4.80-4.70 (m, 1H), 4.52 (s, 2H), 4.50-4.41 (m, 1H), 3.96-3.79 (m, 2H), 3.57 (td, J = 11.4, 1.4 Hz, 1H), 2.89-2.76 (m, 1H), 2.48 (dt, J = 15.1, 7.6 Hz, 1H), 2.40-2.30 (m, 1H), 2.30-2.17 (m, 1H), 2.13-1.94 (m, 2H), 1.89 (s, 3H), 1.83-1.73 (m, 1H)	10.0 min, 97.6% 7.0 min, 94.9%
1468	2-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy)) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido) ethanesulfonic acid	N-N N-N	669.3	8.22 (s, 1H), 8.08 (s, 1H), 7.85-7.77 (m, 2H), 7.65 (dd, J = 6.1, 3.4 Hz, 1H), 7.55-7.44 (m, 2H), 7.22-7.12 (m, 2H), 6.96 (t, J = 8.2 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 6.71 (d, J = 8.2 Hz, 1H), 5.52 (s, 2H), 4.81-4.70 (m, 1H), 4.52-4.41 (m, 1H), 3.94-3.83 (m, 2H), 3.79 (t, J = 6.6 Hz, 2H), 3.58 (td, J = 11.6, 1.4 Hz, 1H), 3.07 (t, J = 6.6 Hz, 2H), 2.87-2.76 (m, 1H), 2.55-2.42 (m, 1H), 2.34 (dt, J = 15.0, 6.3 Hz, 1H), 2.30-2.17 (m, 1H), 2.13-1.95 (m, 2H), 1.88 (s, 3H), 1.83-1.72 (m, 1H)	9.9 min, 99.2% 7.0 min, 97.6%

		TABLE 9-continue	u		
Ex- ample	Name	Formula I	LCMS, [M + H] ⁺	1 H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
146T	3-(3-((4-(5-(4-(3-Chloro- 2-methylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) benzamido)propane-1- sulfonic acid	N-N N-N O	683.0	8.19 (s, 1H), 8.04 (d, J = 0.6 Hz, 1H), 7.87-7.75 (m, 2H), 7.65 (dd, J = 5.6, 4.0 Hz, 1H), 7.53-7.42 (m, 2H), 7.21-7.09 (m, 2H), 6.96 (t, J = 8.1 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 6.71 (d, J = 8.3 Hz, 1H), 5.50 (s, 2H), 4.75 (dt, J = 13.5, 3.4 Hz, 1H), 4.46 (dt, J = 12.1, 3.1 Hz, 1H), 3.95-3.79 (m, 2H), 3.57 (td, J = 11.7, 1.7 Hz, 1H), 3.51 (t, J = 6.7 Hz, 2H), 2.90 (dd, J = 8.2, 6.8 Hz, 2H), 2.87-2.76 (m, 1H), 2.54-2.42 (m, 1H), 2.40-2.30 (m, 1H), 2.30-2.15 (m, 1H), 2.16-1.95 (m, 4H), 1.88 (s, 3H), 1.83-1.72 (m, 1H)	9.5 min, 98.8% 6.9 min, 96.6%
146U	3-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-IH-pyrazol-1-yl)methyl) benzamido)propanoic acid	N-N O NH O O CI	632.2	8.00 (s, 1H), 7.89 (d, J = 0.5 Hz, 1H), 7.77 (s, 1H), 7.76-7.71 (m, 1H), 7.61 (dd, J = 6.5, 3.0 Hz, 1H), 7.50-7.40 (m, 2H), 7.18-7.08 (m, 2H), 6.94 (t, J = 8.1 Hz, 1H), 6.79 (d, J = 7.5 Hz, 1H), 6.70 (d, J = 8.3 Hz, 1H), 5.41 (d, J = 1.3 Hz, 2H), 4.79-4.69 (m, 1H), 4.50-4.38 (m, 1H), 3.94-3.79 (m, 2H), 3.61 (t, J = 6.9 Hz, 2H), 3.55 (td, J = 11.7, 1.8 Hz, 1H), 2.88-2.75 (m, 1H), 2.62 (t, J = 6.9 Hz, 2H), 2.45 (dt, J = 15.1, 7.6 Hz, 1H), 2.35 (dt, J = 15.1, 6.5 Hz, 1H), 2.30-2.16 (m, 1H), 2.10-1.95 (m, 2H), 1.91 (s, 3H), 1.83-1.70 (m, 1H)	8.5 min, 97.7% 8.2 min, 95.4%
146W	4-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)butanoic acid	N-N OH	646.3	$8.01 \ (s, 1H), 7.89 \ (s, 1H), 7.78 \ (s, 1H), \\ 7.75 \ (dt, J = 6.7, 2.0 \ Hz, 1H), 7.61 \ (dd, J = 6.8, 2.7 \ Hz, 1H), 7.45 \ (d, J = 6.7 \ Hz, 2H), 7.17-7.08 \ (m, 2H), 6.94 \ (t, J = 8.1 \ Hz, 1H), 6.79 \ (d, J = 7.8 \ Hz, 1H), 6.70 \ (d, J = 8.3 \ Hz, 1H), 5.42 \ (d, J = 2.4 \ Hz, 2H), 4.75 \ (dt, J = 13.6, 3.3 \ Hz, 1H), 4.44 \ (dt, J = 6.4, 2.8 \ Hz, 1H), 3.96-3.81 \ (m, 2H), 3.55 \ (td, J = 11.7, 1.7 \ Hz, 1H), 3.41 \ (t, J = 7.0 \ Hz, 2H), 2.86-2.75 \ (m, 1H), 2.45 \ (dt, J = 15.1, 7.5 \ Hz, 1H), 2.41-2.31 \ (m, 3H), 2.31-2.17 \ (m, 1H), 2.08-1.96 \ (m, 2H), 1.96-1.86 \ (m, 5H), 1.82-1.70 \ (m, 1H)$	8.6 min, 97.9% 8.2 min, 95.4%

Ex- ample Name	Formula I	LCMS [M + H] ⁺	, ¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
146X 2-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)-N,N,N-trimethylethanaminium, TFA	N-N TFA- CI	646.3	8.04 (s, 1H), 7.90 (d, J = 0.4 Hz, 1H), 7.81 (s, 1H), 7.80-7.75 (m, 1H), 7.62 (dd, J = 6.2, 3.2 Hz, 1H), 7.53-7.47 (m, 2H), 7.18-7.10 (m, 2H), 6.94 (t, J = 8.2 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 5.44 (d, J = 2.5 Hz, 2H), 4.75 (dt, J = 6.0, 3.3 Hz, 1H), 4.45 (dt, J = 11.9, 2.8 Hz, 1H), 3.95-3.79 (m, 4H), 3.61-3.51 (m, 3H), 3.22 (s, 9H), 2.87-2.76 (m, 1H), 2.44 (dt, J = 15.1, 7.5 Hz, 1H), 2.40-2.31 (m, 1H), 2.31-2.18 (m, 1H), 2.09-1.96 (m, 2H), 1.91 (s, 3H), 1.84-1.72 (m, 1H)	6.3 min, 93.1% 7.5 min, 93.4%

45

50

55

 $*^{1}$ H NMR (400 MHz, MeOD) δ .

Example 146Y

2-(2-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)-2-methylpropanamido)ethanesulfonic acid

A solution of ethyl 1,2-dihydro-2-ethoxy-1-quinolinecarboxylate (52.0 mg, 0.210 mmol) in 95% ethanol (0.4 mL) and a solution of taurine (15.79 mg, 0.126 mmol) in 1 N NaOH 60 (0.1 mL) were added to a stirring solution of Example 65 (10 mg, 0.021 mmol) in 95% ethanol (0.4 mL). The reaction mixture was heat at 140° C. in a microwave reactor for 40 min. The reaction was concentrated and purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5 μ , C18, 65 30×100 mm; 18 min gradient from 80% A:20% B to 40% A:60% B and 3 min 100% B (A=90% H₂O/10% MeOH+

0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 146 (8.2 mg, 66% yield) as a white powder. LCMS, [M+H]⁺=583.5. ¹H NMR (500 MHz, MeOD) δ 7.93 (s, 1H), 7.68 (s, 1H), 7.32 (d, J=7.9 Hz, 1H), 7.25 (t, J=7.6 Hz, 1H), 7.21 (br. s, 1H), 6.99 (t, J=7.9 Hz, 1H), 6.72 (d, J=7.5 Hz, 1H), 6.68 (d, J=8.1 Hz, 1H), 3.89 (br. s, 2H), 3.76 (t, J=6.8 Hz, 2H), 3.62 (t, J=6.3 Hz, 2H), 2.96 (t, J=6.3 Hz, 2H), 2.82 (t, J=6.9 Hz, 2H), 2.58 (br. s, 2H), 2.19-2.08 (m, 5H), 1.89 (s, 6H), 1.88-1.74 (m, 5H). HPLC-1:
40 Rt=9.9 min, purity=100%; HPLC-2: Rt=6.7 min, purity=100%.

Example 147

1-(5-(1-((1H-Tetrazol-5-yl)methyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

To a partial suspension of Example 1 (100 mg, 0.223 mmol), 3-aminopropanenitrile (23 mg, 0.335 mmol), and Hunig's base (0.117 mL, 0.67 mmol) in ethyl acetate (2.2 mL) was added a solution of T3P (107 mg, 0.335 mmol) in THF $^{\,\,25}$ dropwise. The reaction was stirred at room temperature for 16 h and water was added. The resulting mixture was stirred vigorously for 15 min. The organic layer was separated, washed with saturated NaHCO₃, followed by water, 5% citric 30 acid and brine. The solution was dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (108 mg, 96% yield) as white foam. LCMS, [M+H]⁺=500.2. ¹H NMR (400 MHz, $CDCl_3$) δ 7.65 (s, 1H), 7.32 (s, 1H), 7.19 (dt, J=15.9, 7.9 Hz, 2H), 7.02 (dd, J=13.7, 6.0 Hz, 2H), 6.75 (d, J=7.5 Hz, 1H), 6.65 (d, J=8.1 Hz, 1H), 4.85 (s, 2H), 3.93 (s, 2H), 3.79 (t, J=6.8 Hz, 2H), 3.55 (dd, J=12.7, 6.4 Hz, 2H), 2.75 (t, $J=7.1^{-40}$ Hz, 2H), 2.64 (t, J=6.5 Hz, 2H), 2.56 (s, 2H), 2.25-2.11 (m, 5H), 1.95-1.79 (m, 5H).

Step B. 3-(5-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-1H-tetrazol-1-yl)propanenitrile

60

254

To a solution of N-(2-cyanoethyl)-2-(4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1Hpyrazol-1-yl)acetamide (20 mg, 0.04 mmol) and pyridine (19 μL, 0.24 mmol) in DCM (0.4 mL) under argon was added PCl₅ (13 mg, 0.06 mmol) in one portion, and the resulting mixture was heated to reflux for 3 h. The reaction was cooled to room temperature and trimethylsilyl azide (18 mg, 0.16 mmol) was added. The resulting mixture was stirred at room 10 temperature overnight and carefully quenched with saturated aqueous NaHCO3. The resulting mixture was stirred vigorously for 15 min. The organic phase was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated. The resulting 15 residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (17 mg, 81% yield) as white foam. LCMS, [M+H]⁺=525.2. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.47 (s, 1H), 7.30-7.16 (m, 2H), 7.10 (d, J=8.7 Hz, 1H), 7.03 (t, J=7.9 Hz, 1H), 6.76 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.2 Hz, 1H), 5.74 (s, 2H), 4.95 (t, J=6.9 Hz, 2H), 3.93 (s, 2H), 3.78 (t, J=6.8 Hz, 2H), 3.06 (t, J=6.9 Hz, 2H), 2.74 (t, J=7.1 Hz, 2H), 2.52 (s, 2H), 2.24-2.11 (m, 5H), 1.96-1.78 (m, 5H).

Example 147

To a solution of the 3-(5-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1yl)methyl)-1H-tetrazol-1-yl)propanenitrile (14.4 mg, 0.027 mmol) in THF (0.3 mL) under argon was added 1 N NaOH 45 (82 μL, 0.082 mmol). The resulting mixture stirred vigorously at room temperature for 1 h. The reaction mixture was adjusted to pH 3 with 5% aq. citric acid, and extracted with DCM (3 times). The combined organic layer was dried over anhydrous Na2SO4, filtered, and concentrated to afford Example 147 (11.8 mg, 90% yield). LCMS, [M+H]⁺=472.1. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.44 (s, 1H), 7.22-7.06 (m, 3H), 7.01 (t, J=7.9 Hz, 1H), 6.75 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.1 Hz, 1H), 5.72 (s, 2H), 3.92 (s, 2H), 3.78 (t, J=7.0 Hz, 2H), 2.77 (t, J=7.1 Hz, 2H), 2.53 (s, 2H), 2.26-2.07 (m, 5H), 1.95-1.75 (m, 5H), 1.25 (s, 1H). HPLC-1: Rt=8.9 min, purity=99.7%; HPLC-2: Rt=7.9 min, purity=100%.

The following Examples were prepared in a manner analogous to N-(2-cyanoethyl)-2-(4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetamide.

TABLE 10

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	1 H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;
148	2-(3-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzamido) ethanesulfonic acid	SO ₃ H	551.3	$7.82 \text{ (d, J} = 7.8 \text{ Hz, 1H), } 7.74 \text{ (s, 1H),} \\ 7.48 \text{ (t, J} = 7.7 \text{ Hz, 1H), } 7.35\text{-}7.15 \text{ (m,} \\ 4\text{H), } 7.00 \text{ (t, J} = 7.9 \text{ Hz, 1H), } 6.73 \text{ (d, J} = \\ 7.6 \text{ Hz, 1H), } 6.69 \text{ (d, J} = 8.2 \text{ Hz, 1H),} \\ 3.92 \text{ (br. s, 2H), } 3.83 \text{ (t, J} = 6.5 \text{ Hz, 2H),} \\ 3.77 \text{ (t, J} = 7.0 \text{ Hz, 2H), } 3.10 \text{ (t, J} = \\ 6.5 \text{ Hz, 2H), } 2.84 \text{ (t, J} = 7.0 \text{ Hz, 2H), } 2.43 \text{ (br. s, 2H), } 2.22\text{-}2.08 \text{ (m, 5H), } 1.93\text{-} \\ 1.75 \text{ (m, 5H)*} $	10.9 min, 99.9% 7.2 min, 99.95
149	(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) 1H-pyrazol-1-yl) methyl)benzamido) methanesulfonic acid	N-N SO ₃ H	617.3	9.05 (br. s, 1H), 8.08 (s, 1H), 7.98 (s, 1H), 7.85 (br. s, 1H), 7.51 (d, J = 6.2 Hz, 1H), 7.27-7.20 (m, 2H), 7.17 (t, J = 7.7 Hz, 1H), 7.12 (t, J = 6.5 Hz, 1H), 7.06 (d, J = 6.5 Hz, 1H), 6.08 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 8.1 Hz, 1H), 5.58 (s, 2H), 4.69 (br. s, 2H), 3.90 (s, 2H), 3.72 (t, J = 6.1 Hz, 2H), 2.71 (t, J = 7.0 Hz, 2H), 2.49 (br. s, 2H), 2.23-2.05 (m, 5H), 1.91 (s, 3H), 1.87-1.78 (m, 2H)	14.0 min, 100% 11.4 min, 100%
150	(3-((4-(3-(4-(2,3- Dimethylphenoxy) butanoyl)-1a,2,3,7b- tetrahydro-1H- cyclopropa[c]quinolin-7- yl)-1H-pyrazol-1-yl) methyl)benzamido) methanesulfonic acid	N-N SO ₃ H	629.4	7.94-7.79 (m, 3H), 7.63 (s, 1H), 7.53-7.40 (m, 2H), 7.27 (d, J = 7.4 Hz, 1H), 7.16 (t, J = 7.7 Hz, 1H), 7.05 (d, J = 7.7 Hz, 1H), 6.95 (t, J = 7.8 Hz, 1H), 6.67 (d, J = 7.3 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 5.46 (s, 2H), 4.52 (s, 2H), 4.00-3.87 (m, 1H), 3.85-3.74 (m, 1H), 3.07-2.95 (m, 2H, 2.73 (br. s, 2H), 2.09 (br. s, 5H), 1.75 (s, 3H), 1.35-1.21 (m, 2H), 0.84 (br. s, 1H), 0.42 (br. s, 1H)*	14.4 min, 96.4% 11.8 min, 98.4%
151	2-(3-((4-(3-(4-(2,3- Dimethylphenoxy) butanoyl)-1a,2,3,7b- tetrahydro-1H- cyclopropa[c]quinolin-7- yl)-1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	N-N SO ₃ H	643.4	8.25 (br. s, 1H), 8.08-7.83 (m, 2H), 7.72 (s, 1H), 7.33-7.25 (m, 2H), 7.09 (br. s, 2H), 7.05-6.86 (m, 2H), 6.69 (d, J = 7.3 Hz, 1H), 6.59 (d, J = 7.1 Hz, 1H), 5.57 (s, 2H), 3.96 (br. s, 4H), 3.80 (br. s, 2H), 3.18 (s, 2H), 2.25-2.03 (m, 2H), 2.51 (br. s, 1H), 2.25-2.01 (m, 5H), 1.88 (s, 3H), 1.71 (br. s, 1H), 1.04-0.89 (m, 1H), 0.57 (br. s, 1H)	14.2 min, 98.3% 11.8 min, 99.5%

		TABLE 10-contin	ued		
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR (400 MHz, CDCl}_{3})}\delta$	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;
152	2-(3-((4-(3-(4-(3- Chloro-2- methylphenoxy) butanoyl)-1a,2,3,7b- tetrahydro-1H- cyclopropa[c]quinolin-7- yl)-1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	N-N SO ₃ H	66.34	8.05 (s, 1H), 7.94-7.79 (m, 3H), 7.57-7.47 (m, 2H), 7.35 (d, J = 1.2 Hz, 1H), 7.25 (t, J = 7.8 Hz, 1H), 7.15 (s, 1H), 7.14-7.06 (m, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 5.58 (s, 2H), 4.12-3.99 (m, 1H), 3.97-3.89 (m, 1H), 3.86 (t, J = 6.4 Hz, 2H), 3.14 (t, J = 6.4 Hz, 2H), 2.79 (t, J = 6.0 Hz, 2H), 2.17 (br. s, 2H), 2.13-2.04 (m, 1H), 1.94 (s, 3H), 1.87-1.74 (m, 1H), 1.55-1.43 (m, 1H), 1.42-1.28 (m, 1H), 0.99-0.81 (m, 1H), 0.51-0.35 (m, 1H)*	12.0 min, 98.3% 10.1 min, 99.4%
153	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- 1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	N-N SO ₃ H	631.3	8.28 (s, 1H), 7.98 (s, 1H), 7.82 (s, 1H), 7.74 (s, 2H), 7.37-7.23 (m, 2H), 7.20-7.12 (m, 1H), 7.08 (s, 1H), 6.99 (t, J = 7.8 Hz, 1H), 6.71 (d, J = 7.6 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 5.55 (s, 2H), 3.90 (s, 2H), 3.77-3.68 (m, 2H), 3.50 (s, 2H), 2.13 (t, J = 7.0 Hz, 2H), 2.49 (s, 2H), 2.24-2.04 (m, 5H), 1.90 (s, 3H), 1.86-1.74 (m, 2H)	9.9 min, 100% 6.8 min, 99.8%
154	(3-((3-(3-((2-(3-Fluoro-2-methylphenoxy)) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)benzyloxy) carbonylamino) propanamido) methanesulfonic	O SO ₃ H N N H	656.3	7.52-7.35 (m, 4H), 7.31 (d, J = 7.2 Hz, 1H), 7.22-7.05 (m, 3H), 6.78 (d, J = 8.2 Hz, 1H), 6.72 (t, J = 8.7 Hz, 1H), 5.18 (s, 2H), 4.69-4.57 (m, 2H), 4.52 (dt, J 11.9, 4.1 Hz, 1H), 4.35 (s, 2H), 4.30 (t, J = 4.3 Hz, 2H), 3.47 (t, J = 6.6 Hz, 2H), 3.01 (d, J = 12.7 Hz, 1H), 2.52 (t, J = 6.5 Hz, 2H), 2.13 (s, 3H), 1.95 (td, J = 8.6, 4.6 Hz, 1H), 1.88-1.77 (m, 1H), 0.99 (td, J = 8.3, 5.0 Hz, 1H), 0.71 (dd, J = 9.4, 4.6 Hz, 1H)*	14.9 min, 100% 12.4 min, = 99.2%
155	(3-((4-(3-((2-(3-Fluoro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl) methyl)benzamido) methanesulfonic acid	N-N F	635.3	7.99 (s, 1H), 7.97-7.86 (m, 2H), 7.77 (s, 1H), 7.54 (d, J = 5.6 Hz, 2H), 7.31-7.23 (m, 1H), 7.22-7.08 (m, 3H), 6.79 (d, J = 9.0 Hz, 1H), 6.73 (t, J = 8.7 Hz, 1H), 5.53 (s, 2H), 4.65-4.49 (m, SH), 4.30 (t, J = 4.1 Hz, 2H), 3.10 (d, J = 12.2 Hz, 1H), 2.22 (td, J = 8.6, 4.6 Hz, 1H), 2.14 (s, 3H), 1.94-1.83 (m, 1H), 1.10 (td, J = 7.7, 4.5 Hz, 1H), 0.70 (dd, J = 9.5, 4.6 Hz, 1H)*	14.4 min, 100% 12.0 min, 100%

		HIBEE TO COMM	aca		
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR } (400 \text{ MHz}, \text{CDCl}_{3}) \delta$	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;
156	2-(3-(4-((3-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonyl) piperazin-1-yl) propanamido) ethanesulfonic acid	SO ₃ H N N N N N N N N N N N	721.3	7.54-7.44 (m, 2H), 7.43-7.33 (m, 2H), 7.31-7.21 (m, 2H), 7.19 (br. s, 1H), 7.07 (t, J = 7.9 Hz, 1H), 6.81 (d, J = 7.5 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 5.27 (s, 2H), 4.34 (br. s, 2H), 3.99 (br. s, 2H), 3.84 (t, J = 7.0 Hz, 2H), 3.74-3.67 (m, 2H), 3.57-3.50 (m, 2H), 3.46-3.39 (m, 4H), 3.10 (dd, J = 6.7, 5.6 Hz, 4H), 2.91 (t, J = 6.9 Hz, 2H), 2.77 (t, J = 6.3 Hz, 2H), 2.47 (br. s, 2H), 2.32-2.18 (m, 5H), 1.93 (s, 3H), 1.86 (dt, J = 13.2, 6.5 Hz, 2H)*	10.9 min, 95.0% 11.0 min, 95.0%
157	(3-(5-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) thiazol-2-yloxy) benzamido) methanesulfonic acid	SO ₃ H	636.4	7.81-7.76 (m, 2H), 7.56 (t, J = 8.2 Hz, 1H), 7.50-7.45 (m, 1H), 7.27 (br. s, 1H), 7.22-7.18 (m, 2H), 7.01 (s, 1H), 6.94 (t, J = 7.9 Hz, 1H), 6.71-6.61 (m, 2H), 4.40 (s, 2H), 3.84 (t, J = 5.4 Hz, 2H), 3.65 (t, J = 6.7 Hz, 2H), 2.68 (t, J = 7.1 Hz, 2H), 2.55 (t, J = 6.0 Hz, 2H), 2.10 (s, 3H), 2.01 (dt, J = 13.1, 6.6 Hz, 2H), 1.89-1.72 (m, 5H)**	9.7 min, 98.4% (HPLC- 2)
158	(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydro-1H-benzo[b] azepin-6-yl)-1H- pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	N-N ON NH SO ₃ H	631.3	7.93 (s, 1H), 7.90 (dt, J = 7.4, 1.7 Hz, 1H), 7.87 (s, 1H), 7.65 (s, 1H), 7.56-7.47 (m, 2H), 7.36 (dd, J = 7.7, 1.3 Hz, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.16 (dd, J = 7.7, 1.2 Hz, 1H), 6.69 (d, J = 8.1 Hz, 1H), 6.67 (d, J = 8.5 Hz, 1H), 5.52 (s, 2H), 4.65 (dt, J = 12.7, 3.7 Hz, 1H), 4.57 (s, 2H), 3.98-3.84 (m, 2H), 2.91 (dd, J = 14.4, 6.4 Hz, 1H), 2.81-2.72 (m, 1H), 2.53-2.33 (m, 3H), 2.13 (s, 3H), 2.12-2.05 (m, 2H), 1.98-1.88 (m, 2H), 1.86 (s, 3H), 1.82-1.73 (m, 1H), 1.48-1.32 (m, 1H)*	10.0 min, 99.2% 6.9 min, 99.0%
159	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydro-1H-benzo[b] azepin-6-yl)-1H- pyrazol-1-yl)methyl) benzamido) ethanesulfonic acid	N-N SO ₃ H	645.3	7.88 (s, 1H), 7.86-7.80 (m, 2H), 7.67 (s, 1H), 7.55-7.46 (m, 2H), 7.37 (dd, J = 7.7, 1.2 Hz, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.17 (dd, J = 7.1, 1.1 Hz, 1H), 6.97 (t, J = 7.8 Hz, 1H), 6.67 (t, J = 8.1 Hz, 2H), 5.53 (s, 2H), 4.65 (dt, J = 7.1, 3.2 Hz, 1H), 3.98-3.86 (m, 2H), 3.84 (t, J = 6.6 Hz, 2H), 3.12 (t, J = 6.6 Hz, 2H), 2.90 (dd, J = 13.6, 6.0 Hz, 1H), 2.81-2.71 (m, 1H), 2.52-2.33 (m, 3H), 2.11 (s, 3H), 2.08 (dd, J = 13.1, 6.2 Hz, 2H), 1.98-1.87 (m, 2H), 1.85 (s, 3H), 1.82-1.73 (m, 1H), 1.49-1.31 (m, 1H)*	9.8 min, 100% 6.8 min, 100%

	Z 1	01		202		
	TABLE 10-continued					
Ex- am- ple	Name	Formula I	LCMS, [M + H]*	$^{1}\text{H NMR}$ (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;	
160	(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	N-N O NH SO ₃ H	633.2	8.04 (s, 1H), 7.96-7.85 (m, 3H), 7.66 (dd, J = 6.5, 3.0 Hz, 1H), 7.53-7.45 (m, 2H), 7.20-7.11 (m, 2H), 6.94 (t, J = 7.9 Hz, 1H), 6.66 (t, J = 8.0 Hz, 2H), 5.46 (s, 2H), 4.83-4.74 (m, 1H), 4.56 (s, 2H), 4.53-4.43 (m, 1H), 3.95-3.80 (m, 2H), 3.65-3.55 (m, 1H), 2.92-2.80 (m, 1H), 2.52-2.38 (m, 2H), 2.35-2.19 (m, 1H), 2.12 (s, 3H), 2.10-2.01 (m, 2H), 1.84 (s, 3H), 1.84-1.76 (m, 1H)*	8.5 min, 89.8% 6.7 min, 88.0%	
161	2-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b][1,4]	N-N SO ₃ H	647.2	8.18 (s, 1H), 8.05 (d, J = 0.4 Hz, 1H), 7.86-7.79 (m, 2H), 7.67 (dd, J = 5.8, 3.7 Hz, 1H), 7.55-7.47 (m, 2H), 7.22- 7.13 (m, 2H), 6.92 (t, J = 7.9 Hz, 1H), 6.33 (d, L = 7.9 Hz, 2H), 5.52 (c, 2H)	8.7 min, 100% 6.6 min, 100%	

oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido) ethanesulfonic acid

6.63 (d, J = 7.9 Hz, 2H), 5.52 (s, 2H), 4.79 (dt, J = 13.2, 3.5 Hz, 1H), 4.49 (dt, J = 11.8, 3.0 Hz, 1H), 3.93-3.84 (m, 2H), 3.82 (t, J = 6.7 Hz, 2H), 3.61 (td, J = 11.7, 1.8 Hz, 1H), 3.10 (t, J = 6.6 Hz, 2H), 2.92-2.80 (m, 1H), 2.54-2.35 (m, 2H), 2.35-2.21 (m, 1H), 2.09 (s, 3H), 2.07-1.99 (m, 2H), 1.87-1.77 (m, 4H)*

2-(4-((4-(5-(4-(2,3-Dimethylphenoxy) butanoyl)-2,3,4,5tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido) ethanesulfonic acid

 $\begin{array}{l} 8.08\ (s,\,1H),\,8.05\ (s,\,1H),\,8.00\ (d,\,J=8.3\ Hz,\,2H),\,7.73\ (dd,\,J=7.7,\,1.6\ Hz,\,1H),\,7.48\ (d,\,J=8.3\ Hz,\,2H),\,7.29\ (t,\,J=7.7\ Hz,\,1H),\,7.25\ (dd,\,J=7.7,\,1.6\ Hz,\,1H),\,7.12\ (t,\,J=7.9\ Hz,\,1H),\,6.85\ (d,\,J=7.5\ Hz,\,1H),\,6.79\ (d,\,J=8.2\ Hz,\,1H),\,5.60\ (d,\,J=15.5\ Hz,\,1H),\,5.56\ (d,\,J=15.6\ Hz,\,1H),\,4.98-4.93\ (m,\,1H),\,4.65-4.59\ (m,\,1H),\,4.07\ (dt,\,J=11.0,\,5.6\ Hz,\,1H),\,4.02-3.99\ (m,\,2H),\,3.77\ (t,\,J=11.0\ Hz,\,1H),\,3.29-3.23\ (m,\,2H),\,3.04-2.96\ (m,\,1H),\,2.67-2.42\ (m,\,3H),\,2.32\ (s,\,3H),\,2.28-2.18\ (m,\,2H),\,2.05\ (s,\,3H),\,1.97\ (d,\,J=14.8\ Hz,\,1H),\,1.50\ (d,\,J=8.1\ Hz,\,1H)^* \end{array}$ 8.08 (s, 1H), 8.05 (s, 1H), 8.00 (d, J =

		TABLE 10-continu	ued		
Ex- am- ple	Name	Formula I	LCMS, [M + H]*	1 H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;
163	(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2-methyl- 2,3,4,5-tetrahydrobenzo [b][1,4]oxazepin-9-yl)- 1H-pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	N-N SO ₃ H	647.5	7.96 (s, 1H), 7.95 (s, 1H), 7.93-7.86 (m, 2H), 7.61 (dd, J = 5.3, 4.2 Hz, 1H), 7.56-7.47 (m, 2H), 7.18 (d, J = 1.2 Hz, 1H), 7.17 (s, 1H), 6.99 (t, J = 7.9 Hz, 1H), 6.69 (t, J = 8.3 Hz, 2H), 5.52 (d, J = 15.1 Hz, 1H), 5.47 (d, J = 15.2 Hz, 1H), 4.72 (dt, J = 13.6, 3.6 Hz, 1H), 4.56 (s, 2H), 3.87 (dq, J = 9.4, 5.1 Hz, 2H), 3.76-3.65 (m, 1H), 2.83 (dd, J = 19.7, 7.9 Hz, 1H), 2.56-2.44 (m, 1H), 2.43-2.31 (m, 1H), 2.09 (s, 3H), 2.06-1.96 (m, 2H), 1.79 (s, 3H), 1.78-1.72 (m, 1H), 1.22 (d, J = 6.2 Hz, 3H), 0.91 (d, J = 6.3 Hz, 1H)*	9.9 min, 99.3% 6.9 min, 98.3%
164	2-(3-((4-(5-(4-(2,3-Dimethylphenoxy) butanoyl)-2-methyl-2,3,4,5-tetrahydrobenzo [b][1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido) ethanesulfonic acid	N-N SO ₃ H	661.4	7.96 (s, 1H), 7.95 (s, 1H), 7.87-7.80 (m, 2H), 7.61 (dd, J = 5.3, 4.2 Hz, 1H), 7.56-7.48 (m, 2H), 7.19 (d, J = 1.2 Hz, 1H), 7.18 (s, 1H), 6.99 (t, J = 7.9 Hz, 1H), 6.69 (d, J = 6.5 Hz, 1H), 6.68 (d, J = 7.3 Hz, 1H), 5.52 (d, J = 15.1 Hz, 1H), 5.48 (d, J = 15.1 Hz, 1H), 3.91-3.80 (m, 4H), 3.74-3.67 (m, 1H), 3.11 (t, J = 6.6 Hz, 2H), 2.87-2.77 (m, 1H), 2.56-2.46 (m, 1H), 2.40-2.31 (m, 1H), 2.07 (s, 3H), 2.06-1.99 (m, 2H), 1.78 (s, 3H), 1.76-1.72 (m, 1H), 1.21 (d, J = 6.2 Hz, 3H), 0.90 (d, J = 6.5 Hz, 1H)*	9.8 min, 100% 6.8 min, 99.6%
165	(4-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	N-N O SO ₃ H	633.1	8.09 (s, 1H), 8.07 (d, J = 7.7 Hz, 2H), 8.07 (s, 1H), 7.74 (dd, J= 7.7, 1.7 Hz, 1H), 7.50 (d, J = 8.3 Hz, 2H), 7.30 (t, J = 7.7 Hz, 1H), 7.26 (dd, J = 7.7, 1.7 Hz, 1H), 7.13 (t, J = 7.9 Hz, 1H), 6.86 (d, J = 7.5 Hz, 1H), 6.79 (d, J = 8.2 Hz, 1H), 5.62 (d, J = 15.6 Hz, 1H), 5.58 (d, J = 15.6 Hz, 1H), 4.96 (dt, J = 13.1, 3.1 Hz, 1H), 4.73 (s, 2H), 4.66-4.61 (m, 1H), 4.11-4.05 (m, 1H), 4.04-3.98 (m, 1H), 3.81-3.75 (m, 1H), 3.05-2.97 (m, 1H), 2.67-2.44 (m, 3H), 2.33 (s, 3H), 2.28-2.18 (m, 2H), 2.06 (s, 3H), 1.98 (d, J = 14.8 Hz, 1H)*	

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;
166	(4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydro-1H-benzo[b] azepin-6-yl)-1H- pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	N-N O SO ₃ H	631.2	8.10 (s, 1H), 8.08 (s, 1H), 7.72 (d, J = 7.7 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 7.46 (dd, J = 7.8, 1.2 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.27 (dd, J = 7.7, 1.0 Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 5.63 (s, 2H), 4.84-4.78 (m, 1H), 4.74 (s, 1H), 4.48 (s, 2H), 4.15-4.03 (m, 2H), 3.15 (dd, J = 14.0, 6.1 Hz, 1H), 2.98-2.90 (m, 1H), 2.72-2.45 (m, 3H), 2.35 (s, 3H), 2.27 (td, J = 13.4, 7.2 Hz, 2H), 2.16-2.09 (m, 2H), 2.08 (s, 3H), 1.99-1.93 (m, 1H), 1.62-1.54 (m, 1H)*	
167	2-(4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydro-1H-benzo[b] azepin-6-yl)-1H- pyrazol-1-yl)methyl) benzamido) ethanesulfonic acid	N-N SO ₃ H	645.2	8.02 (d, J = 8.3 Hz, 2H), 7.71 (s, 2H), 7.50 (d, J = 8.3 Hz, 2H), 7.46 (dd, J = 7.7, 1.2 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.26 (dd, J = 7.7, 1.1 Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 5.61 (s, 2H), 4.81 (dt, J = 6.5, 3.5 Hz, 1H), 4.48 (s, 2H), 4.14 (dd, J = 14.0, 6.2 Hz, 1H), 2.99-2.90 (m, 1H), 2.72-2.55 (m, 2H), 2.53-2.44 (m, 1H), 2.35 (s, 3H), 2.31-2.21 (m, 2H), 2.17-2.09 (m, 1H), 2.07 (s, 3H), 2.00-1.92 (m, 1H), 1.62-1.51 (m, 1H)*	
168	2-(3-((4-(1-(4-(2- Methyl-3- (trifluoromethyl) (phenoxy)butanoyl)- 1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	N-N N-N O N-N O N-N O F F F	685.3	7.89 (s, 1H), 7.86-7.79 (m, 2H), 7.67 (s, 1H), 7.55-7.45 (m, 2H), 7.34-7.21 (m, 4H), 7.17 (d, J = 7.6 Hz, 1H), 7.13 (d, J = 8.3 Hz, 1H), 5.51 (s, 2H), 4.02 (br. s, 2H), 3.87-3.75 (m, 4H), 3.11 (t, J = 6.6 Hz, 2H), 2.84 (t, J = 7.0 Hz, 2H), 2.65 (br. s, 2H), 2.23-2.14 (m, 2H), 2.07 (br. s, 3H), 1.94-1.83 (m, 2H)*	11.3 min, 97.9% 7.2 min, 98.1%
168A	4-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) pyridin-2-ylamino) benzoic acid	OH OH	536.3	8.06-8.12 (2 H, m), 8.02 (1 H, d, J = 6.38 Hz), 7.40 (2 H, d, J = 8.80 Hz), 7.26-7.33 (2 H, m), 7.10 (1 H, s), 7.06 (1 H, d, J = 8.14 Hz), 7.00 (1 H, t, J = 7.92 Hz), 6.73 (1 H, d, J = 7.70 Hz), 6.71 (1 H, br. s.), 6.64 (1 H, d, J = 8.14 Hz), 3.95 (2 H, t, J = 5.39 Hz), 3.79 (2 H, t, J = 6.93 Hz), 2.63-2.90 (11 H, m), 2.49 (2 H, t, J = 6.05 Hz), 2.12-2.28 (5 H, m), 1.79-2.03 (5 H, m)	8.2 min, 93.3% 8.6 min, 93.2%

		17 IBEE 19 COMM	aca		
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{\rm I}{\rm H}$ NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;
168B	(S)-2-Amino-3-((3-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy) carbonylamino) propanoic acid	ON O	560.2	7.23 (d, J = 7.2 Hz, 1H), 7.21-7.04 (m, 5H), 7.03-6.99 (m, 1H), 6.97 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 8.1 Hz, 1H), 5.11-4.89 (m, 4H), 4.13-4.00 (m, 1H), 3.96-3.83 (m, 2H), 3.77-3.61 (m, 3H), 3.61-3.39 (m, 2H), 2.72 (t, J = 7.1 Hz, 2H), 2.40 (s, 2H), 2.17 (s, 3H), 2.16-2.06 (m, 2H), 1.96 (s, 3H), 1.77-1.62 (m, 2H)	10.7 min, 97% 10.8 min, 98%
168C	2-(4-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonyl) piperazin-1-yl) ethanesulfonic acid	SO ₃ H	650.2	7.43 (d, J = 8.0 Hz, 2H), 7.35-7.24 (m, 2H), 7.14 (d, J = 5.6 Hz, 3H), 7.00 (t, J = 7.9 Hz, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.69 (d, J = 8.1 Hz, 1H), 5.22 (s, 2H), 4.41-4.25 (m, 2H), 3.96-3.86 (m, 2H), 3.82-3.71 (m, 2H), 3.71-3.61 (m, 2H), 3.58 (s, 2H), 3.40-3.35 (m, 1H), 3.25 (t, J = 7.0 Hz, 3H), 3.22-3.08 (m, 2H), 2.84 (t, J = 6.9 Hz, 2H), 2.45-2.30 (m, 2H), 2.23-2.08 (m, 5H), 1.91-1.69 (m, 5H)*	10.7 min, 100% 10.9 min, 99.1%
168D	2-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy) carbonylamino) ethanesulfonic acid	SO ₃ H	581.1	7.38 (d, J = 7.8 Hz, 2H), 7.33-7.20 (m, 2H), 7.16 (d, J = 7.4 Hz, 1H), 7.11 (d, J = 7.0 Hz, 2H), 7.00 (t, J = 7.9 Hz, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 5.13 (s, 2H), 3.96-3.81 (m, 2H), 3.75 (t, J = 7.0 Hz, 2H), 3.57 (t, J = 7.0 Hz, 2H), 3.57 (t, J = 7.0 Hz, 2H), 2.45-2.30 (m, 2H), 2.15 (s, 5H), 1.93-1.66 (m, 5H)*	10.5 min, 97.3% 10.5 min, 97.5%
16 8 E	(2S,4S)-1-((3-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonyl)-4- hydroxypyrrolidine-2- carboxylic acid	O CO ₂ H	587.1	7.36 (s, 2H), 7.21 (d, J = 36.8 Hz, 5H), 7.02 (t, J = 7.7 Hz, 1H), 6.76 (d, J = 7.4 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 5.31-5.10 (m, 2H), 4.59-4.43 (m, 2H), 4.03-3.89 (m, 2H), 3.81 (t, J = 6.6 Hz, 2H), 3.73-3.51 (m, 2H), 2.89-2.75 (m, 2H), 2.55-2.45 (m, 3H), 2.39-2.27 (m, 2H), 2.27-2.11 (m, 5H), 1.95 (s, 3H), 1.89-1.72 (m, 2H)	10.4 min, 99.3% 10.6 min, 100%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	1 H NMR (400 MHz, CDCl $_{3}$) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;
168F	(S)-3-((3-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy) carbonylamino)-2- guanidinopropanoic acid	O N O OH H HN NH2	602.1	7.36-6.92 (m, 8H), 6.72 (d, J = 7.4 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 5.05 (s, 2H), 4.32-4.17 (m, 1H), 4.00-3.86 (m, 2H), 3.71 (m, 2H), 3.54-3.31 (m, 2H), 2.75 (t, J = 7.0 Hz, 2H), 2.43 (s, 2H), 2.24-2.08 (m, 5H), 1.97 (m, 3H), 1.83-1.64 (m, 2H)	
168G	(S)-3-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyl-3- hydroxypyrrolidine-1- carboxylate	OH ON ON OH	543.1	7.46-7.34 (m, 2H), 7.31-7.21 (m, 3H), 7.21-7.11 (m, 2H), 7.02 (t, J = 7.9 Hz, 1H), 6.76 (d, J = 7.5 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 5.20 (s, 2H), 4.03-3.90 (m, 3H), 3.82 (t, J = 7.0 Hz, 2H), 3.77-3.64 (m, 1H), 3.64-3.41 (m, 3H), 2.82 (t, J = 7.3 Hz, 2H), 2.56-2.41 (m, 2H), 2.32-2.13 (m, 6H), 2.08-1.89 (m, 4H), 1.89-1.76 (m, 2H)	14.7 min, 97% N/A
168H	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 3-methyl-1H-pyrazol-1- yl)methyl)benzamido) ethanesulfonic acid	N-N S-OH	645.3	7.83 (dt, J = 7.1, 1.8 Hz, 1H), 7.81-7.77 (m, 1H), 7.76 (s, 1H), 7.52 (d, J = 6.9 Hz, 2H), 7.41-7.30 (m, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.16 (d, J = 8.2 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.68 (s, 1H), 6.66 (s, 1H), 5.51 (s, 2H), 3.91 (t, J = 4.7 Hz, 2H), 3.80 (t, J = 5.3 Hz, 2H), 3.77 (t, J = 5.6 Hz, 2H), 3.07 (t, J = 6.5 Hz, 2H), 2.80 (t, J = 7.1 Hz, 2H), 2.43 (t, J = 5.9 Hz, 2H), 2.20 (s, 3H), 2.14 (s, 3H), 2.13-2.07 (m, 2H), 1.96-1.79 (m, 5H)*	10.6 min, 97.5% 7.1 min, 96.9%
168J	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 5-methyl-1H-pyrazol-1- yl)methyl)benzamido) ethanesulfonic acid	N-N N N N N N N N N N N N N N N N N N N	645.3	7.82 (d, J = 7.8 Hz, 1H), 7.70 (s, 1H), 7.67-7.57 (m, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.37-7.33 (m, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 8.6 Hz, 1H), 7.00 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H), 6.70 (d, J = 8.3 Hz, 1H), 5.58 (s, 2H), 4.01-3.89 m, 2H), 3.88-3.76 (m, 4H), 3.11 (t, J = 6.5 Hz, 2H), 2.84 (t, J = 7.0 Hz, 2H), 2.44 (t, J = 5.8 Hz, 2H), 2.21 (s, 3H), 2.19 (s, 3H), 2.18-2.10 (m, 2H), 1.88 (dd, J = 16.7, 10.0 Hz, 5H)*	10.8 min, 99.6% 7.1 min, 96.1%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;
168K	(S)-4-Carboxy-4-((3-(1-(4-(2,3-dimethylphenoxy)) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy) carbonylamino)-N,N,N-trimethylbutan-1-aminium, TFA	O CO ₂ H N TFA	631.3	7.39 (m, 2H), 7.33-7.23 (m, 2H), 7.20 (s, 1H), 7.18-7.12 (m, 1H), 7.12-7.04 (m, 1H), 6.99 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 5.15 (s, 2H), 4.26 (dd, J = 9.0, 3.8 Hz, 1H), 3.92 (t, J = 5.2 Hz, 2H), 3.76 (t, J = 7.0 Hz, 2H), 3.43-3.33 (m, 2H), 3.09 (s, 9H), 2.83 (t, J = 6.9 Hz, 2H), 2.40 (t, J = 5.6 Hz, 2H), 2.16 (s, 3H), 2.15-2.09 (m, 2H), 2.00-1.83 (m, 6H), 1.83-1.67 (m, 3H)*	13.1 min, 98.3% N/A
168L	1-(5-(3-(3- Aminophenoxy)phenyl)- 3,4-dihydroquinolin- 1(2H)-yl)-4-(2,3- dimethylphenoxy)butan- 1-one	O NH ₂ NH ₂ O O O O O O O O O O O O O O O O O O O	507.2	7.34 (t, J = 7.9 Hz, 1H), 7.21 (t, J = 7.6 Hz, 2H), 7.11 (t, J = 8.0 Hz, 2H), 7.01 (t, J = 7.7 Hz, 2H), 6.97-6.89 (m, 2H), 6.74 (d, J = 7.5 Hz, 1H), 6.66 (d, J = 8.2 Hz, 1H), 6.48-6.41 (m, 2H), 6.38 (t, J = 2.1 Hz, 1H), 3.96 (t, J = 5.2 Hz, 2H), 3.78 (t, J = 6.9 Hz, 2H), 3.70 (s, 2H), 2.76 (t, J = 12 Hz, 2H), 2.50 (t, J = 6.1 Hz, 2H), 2.22 (s, 3H), 2.20-2.13 (m, 2H), 1.98 (s, 3H), 1.89-1.75 (m, 2H)	
168M	3-((3-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrrol-1-yl) methyl)benzoic acid	OH	523.1	7.95 (d, J= 7.4 Hz, 1H), 7.85 (s, 2H), 7.46 (t, J= 7.5 Hz, 1H), 7.42 (d, J= 7.7 Hz, 1H), 7.38-7.22 (m, 1H), 7.16 (d, J= 7.6 Hz, 1H), 6.98 (d, J= 7.9 Hz, 1H), 6.94 (d, J= 8.3 Hz, 1H), 6.73 (t, J= 2.3 Hz, 1H), 6.66 (d, J= 7.6 Hz, 1H), 6.60 (s, 1H), 5.15 (s, 2H), 4.02-3.90 (m, 1H), 3.90-3.79 (m, 2H), 3.20-2.98 (m, 1H), 2.88 (dd, J= 13.2, 6.2 Hz, 1H), 2.24 (,, 2H), 2.04 (s, 3H), 2.00-1.89 (m, 2H), 1.84-1.59 (m, 3H), 1.58-1.43 (m, 2H)*	12.7 min, 98.9% 11.7 min, 98.9%
168N	2-(3-((3-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- 1H-pyrrol-1-yl) methyl)benzamido) ethanesulfonic acid	SO ₃ H		7.78-7.71 (m, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.59 (s, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.40-7.21 (m, 3H), 7.19 (d, J = 7.7 Hz, 1H), 7.04-6.92 (m, 2H), 6.67 (d, J = 7.6 Hz, 2H), 6.60-6.43 (m, 1H), 5.15 (s, 2H), 4.03-3.78 (m, 5H), 3.75 (t, J = 6.7 Hz, 2H), 3.10 (t, J = 6.8 Hz, 2H), 3.04 (t, J = 6.7 Hz, 2H), 2.89 (dd, J = 13.2, 6.1 Hz, 1H), 2.36-2.13 (m, 2H), 2.05 (s, 3H), 1.84-1.58 (m, 4H), 1.58-1.44 (m, 1H)*	N/A 7.7 min, 97.2%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR (400 MHz, CDCl}_{3})~\delta$	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity;
168P	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- 1H-imidazol-1-yl) methyl)benzoic acid	OH N N N	524.1	9.19 (d, J = 0.9 Hz, 1H), 8.15-8.05 (m, 2H), 7.72 (d, J = 7.7 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.57-7.41 (m, 2H), 7.41-7.28 (m, 2H), 6.93 (t, J = 7.9 Hz, 1H), 6.66 (d, J = 8.1 Hz, 1H), 6.61 (d, J = 7.4 Hz, 1H), 5.56 (s, 2H), 3.98-3.84 (m, 2H), 3.77 (t, J = 6.7 Hz, 2H), 2.80 (t, J = 7.0 Hz, 2H), 2.62-2.44 (m, 2H), 2.13 (dt, J = 12.9, 6.5 Hz, 2H), 2.06 (s, 3H), 1.97-1.63 (m, 5H)*	7.3 min, 96.7% 9.3 min, 99.0%

35

40

45

Example 169

3-(3-((4-(4-((2-(2,3-Dimethylphenoxy)ethoxy)carbonyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-yl)-1H-pyrazol-1-yl)methyl)benzamido)propanoic acid

To a mixture of Example 29 (13 mg, 0.025 mmol), tertbutyl 3-aminopropanoate hydrochloride (4.92 mg, 0.027 mmol), and HATU (10.31 mg, 0.027 mmol) in DMF (0.5 mL) was added DIPEA (8.61 μ L, 0.049 mmol). The reaction was stirred at room temperature for 1 h and diluted with DCM. The solution was washed with water and saturated NaHCO₃, dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was dissolved in DCM and treated with TFA (0.5 mL). The reaction was stirred at room temperature for 1.5 h and concentrated to provide a residue. The residue was purified by preparative ĤPLC (PHENOMENEX® Axia Luna column, 5µ, C18, 30×100 mm; 10 min gradient from 100% A:0% B to 40% A:60% B and 3 min 100% B (A=90% H₂O/ 10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 169 (13 mg, 85% yield) as a light yellow solid. LCMS, [M+H]⁺=599.2. ¹H NMR (500 MHz, MeOD) δ 8.16 (s, 1H), 7.94 (s, 1H), 7.71-7.77 (m, 2H), 7.66 (d, J=7.3 Hz, 1H), 7.38-7.48 (m, 2H), 7.32 (dd, J=7.7, 1.5 Hz, 1H), 7.00 (t, J=7.8 Hz, 1H), 6.83 (t, J=8.0 Hz, 1H), 6.76 (t, J=7.2 Hz, 2H), 5.42 (s, 2H), 4.57 (dd, J=5.4,

3.9 Hz, 2H), 4.30-4.36 (m, 2H), 4.25 (dd, J=5.4, 3.6 Hz, 2H), 3.89-3.94 (m, 2H), 3.62 (t, J=6.9 Hz, 2H), 2.63 (t, J=6.8 Hz, 2H), 2.23 (s, 3H), 2.12 (s, 3H). HPLC-1: Rt=10.1 min, purity=96.2%; HPLC-2: Rt=9.5 min, purity=96.3%.

Example 170

(S)-2-Amino-5-(3-chloro-4-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) pentanoic acid, TFA salt

Example 170 was prepared using a procedure analogous to Example 169 except that Example 29 was replaced with Example 68 and tert-butyl 3-aminopropanoate hydrochloride was replaced with (S)-tert-butyl 5-amino-2-(tert-butoxycarbonylamino)pentanoate hydrochloride. LCMS, [M+H]*= 690.3. $^1\mathrm{H}$ NMR (400 MHz, MeOD) δ 7.81 (d, J=1.3 Hz, 1H), 7.64 (dd, J=9.9, 1.5 Hz, 2H), 7.43 (s, 1H), 7.22 (d, J=4.4 Hz, 2H), 7.17 (br. s, 1H), 6.96 (t, J=7.9 Hz, 1H), 6.66 (t, J=7.2 Hz, 2H), 5.59 (s, 2H), 4.02 (t, J=6.4 Hz, 1H), 3.83-3.90 (m, 2H), 3.74 (t, J=6.7 Hz, 2H), 3.38-3.52 (m, 3H), 2.81 (t, J=6.8 Hz, 2H), 2.46 (br. s, 2H), 2.08-2.17 (m, 2H), 2.05 (s, 3H), 1.87-2.03 (m, 2H), 1.69-1.87 (m, 6H). HPLC-1: Rt=7.4 min, purity=98.4%; HPLC-2: Rt=8.4 min, purity=98.3%.

^{*&}lt;sup>1</sup>H NMR (400 MHz, CD₃OD) δ.

^{**} 1 H NMR (400 MHz, CD₃CN) δ .

(S)-5-(3-Chloro-4-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)-2-guanidinopentanoic acid, TFA salt

276

Example 171 was prepared using a procedure analogous to Example 93 except that Example 170 was replaced with Example 58. LCMS, [M+H]⁺=732.4. ¹H NMR (500 MHz, MeOD) δ 7.86 (s, 1H), 7.68 (dd, J=9.9, 1.6 Hz, 1H), 7.66 (s, 1H), 7.48 (s, 1H), 7.26 (d, J=4.6 Hz, 2H), 7.21 (s, 1H), 7.01 (t, J=7.9 Hz, 1H), 6.70 (t, J=7.9 Hz, 2H), 5.63 (s, 2H), 4.35 (dd, J=7.5, 5.0 Hz, 1H), 3.91 (br. s, 2H), 3.78 (t, J=6.8 Hz, 2H), 3.54-3.42 (m, 2H), 2.85 (t, J=6.8 Hz, 2H), 2.50 (br. s, 2H), 2.21-2.13 (m, 2H), 2.13-2.01 (m, 5H), 1.94-1.66 (m, 7H). HPLC-1: Rt=7.5 min, purity=98.7%; HPLC-2: Rt=8.7 min, purity=98.2%.

The following Examples were prepared in a manner analogous to Example 169.

TABLE 11

15

20

X X
$\bigcap_{i \in \mathcal{A}} \mathbb{R}_{3}$
R_{6b}

Ex- ample	Name	—X—Y	Q	R_3	R_{6b}	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
172	2-(3-((4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)acetic acid	NH CO ₂ H	0	Н	Н	583.3	7.98 (s, 1H), 7.94 (s, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.79 (s, 1H), 7.44 (ddd, J = 15.7, 7.8, 7.7 Hz, 2H), 7.34 (d, J = 7.5 Hz, 1H), 6.98-7.04 (m, 1H), 6.91 (t, J = 7.9 Hz, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.66 (d, J = 8.1 Hz, 1H), 5.44 (s, 2H), 4.23 (d, J = 5.1 Hz, 2H), 4.23 (d, J = 5.1 Hz, 2H), 3.97-4.02 (m, 2H), 2.87 (t, J = 7.0 Hz, 2H), 2.87 (t, J = 7.0 Hz, 2H), 2.18-2.26 (m, 5H), 2.03 (s, 3H)*	9.7 min, 99.1% 9.2 min, 99.2%

R_{6b} R_{6b} R_{6b} R_{6b} R_{6b}									
Ex- ample	Name	_X_Y		Q	R ₃ R ₆	LCMS, [M+	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	
173	3-(3-((4-(4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)propanoic acid	2000 N	NH CO ₂ H	0	н н	597.3	7.95 (s, 1H), 7.89 (s, 1H), 7.69-7.74 (m, 2H), 7.39-7.45 (m, 2H), 7.34 (d, J = 13.2 Hz, 1H), 6.98-7.05 (m, 1H), 6.87-6.96 (m, 2H), 6.74 (d, J = 8.8 Hz, 1H), 5.40 (s, 2H), 4.33-4.38 (m, 2H), 3.96-4.03 (m, 4H), 3.69-3.77 (m, 2H), 2.83-2.90 (m, 2H), 2.71 (t, J = 5.7 Hz, 2H), 2.19-2.26 (m, 5H), 2.02 (br. s, 3H)*	9.7 min, 95.5% 9.2 min, 95.6%	
174	3-(3-((4-(4-(4-(2,3- Dimethylphenoxy) butanoyl)-2-methyl-3,4- dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)propanoic acid	No N	NH CO ₂ H	O	Ме Н	611.4	8.02 (s, 1H), 7.91 (s, 1H), 7.77 (s, 1H), 7.74 (ddd, J = 6.5, 2.1, 1.9 Hz, 1H), 7.40-7.47 (m, 2H), 7.38 (dd, J = 7.8, 1.4 Hz, 1H), 7.26 (br. s, 1H), 6.85-6.95 (m, 2H), 6.65 (d, J = 8.1 Hz, 2H), 5.40 (s, 2H), 4.24-4.38 (m, 2H), 3.91-4.02 (m, 2H), 3.17-3.26 (m, 1H), 2.88-2.98 (m, 1H), 2.62 (t, J = 6.9 Hz, 2H), 2.14 (dt, J = 13.0, 6.5 Hz, 2H), 2.10 (s, 3H), 1.91 (s, 3H), 1.30 (d, J = 6.1 Hz, 3H)	10.1 min, 98.0% 9.5 min, 97.8%	
175	2-(3-((4-(4-(4-(2,3- Dimethylphenoxy) butanoyl)-2-methyl-3,4- dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)acetic acid	To T	$\bigcap_{\mathrm{CO_2H}}$	O	Ме Н	597.3	8.03 (s, 1H), 7.92 (s, 1H), 7.78-7.86 (m, 2H), 7.43-7.50 (m, 2H), 7.39 (dd, J = 7.8, 1.4 Hz, 1H), 7.27 (br. s, 1H), 6.86-6.96 (m, 2H), 6.66 (d, J = 8.05 Hz, 2H), 5.42 (s, 2H), 4.26-4.38 (m, 2H), 4.09 (s, 2H), 3.92-4.02 (m, 2H), 3.18-3.26 (m, 1H), 2.89-2.98 m, 1H), 2.81-2.88 (m, 1H), 2.15 (dq, J = 6.7, 6.5 Hz, 2H), 2.11 (s, 3H), 1.92 (s, 3H), 1.31 (d, J = 6.1 Hz, 3H)	10.1 min, 96.2% 9.5 min, 96.2%	

TABLE 11-continued

6.35 Hz), 2.11 (3 H, s), 1.93

(3 H, s)

		R_{6b} $N-N$ $N-N$ R_{6b} R_{3}						
Ex- ample	Name	—X—Y	Q	R_3	R_{6b}	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
177H	3-Chloro-4-((4-(4-(4-(2,3-dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	TO OH	0	Н	Н	580.1	8.00 (1 H, s), 7.93 (1 H, s), 7.83 (1 H, s), 7.74 (1 H, dd, J = 9.71, 1.39 Hz), 7.37 (1 H, dd, J = 7.77, 1.39 Hz), 7.26 (1 H, br. s.), 6.86- 6.95 (2 H, m), 6.65 (2 H, t, J = 7.91 Hz), 5.58 (2 H, d, J = 1.39 Hz), 4.27 (2 H, t, J = 4.99 Hz), 3.95 (4 H, dt, J = 8.95, 5.38 Hz), 2.89 (2 H, t, J = 6.94 Hz), 2.12- 2.18 (2 H, m), 2.09 (3 H, s), 1.91 (3 H, s)	11.6 min, 99.1% 10.6 min, 98.6%
177J	(3-Chloro-4-((4-(4-(4-(2,3-dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) methanesulfonic acid	SO ₃ H O	O	Н	Н	671.2	7.99 (1 H, s), 7.88 (1 H, s), 7.86 (1 H, s), 7.69 (1 H, dd, J = 9.85, 1.53 Hz), 7.36 (1 H, dd, J = 7.77, 1.39 Hz), 7.27 (1 H, br. s.), 6.86- 6.95 (2 H, m), 6.65 (2 H, dd, J = 7.63, 3.19 Hz), 5.58 (2 H, d, J = 1.39 Hz), 4.50 (2 H, s), 4.27 (2 H, t, J = 4.86 Hz), 3.95 (4 H, dt, J = 10.61, 5.38 Hz), 2.84-2.91 (2 H, m), 2.15 (2 H, dq, J = 6.66, 6.47 Hz), 2.10 (3 H, s), 1.91 (3 H, s)	12.4 min, 99.2% 8.3 min, 97.6%
177K	2-(3-Chloro-4-((4-(4-(4-(2,3-dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-JH-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	HN SO ₃ H	O	Н	Н	686.2	7.96 (s, 1H), 7.83 (s, 1H), 7.80 (s, 1H), 7.62 (dd, J = 10.5, 1.1 Hz, 1H), 7.36 (dd, J = 7.7, 1.2 Hz, 1H), 7.35 (dd, J = 7.7, 1.2 Hz, 1H), 6.92 (t, J = 8.2 Hz, 1H), 6.88 (t, J = 7.9 Hz, 1H), 6.70-6.62 (m, 2H), 5.56 (d, J = 1.5 Hz, 2H), 4.26 (t, J = 4.5 Hz, 2H), 4.00-3.90 (m, 4H), 3.80 (t, J = 6.5 Hz, 2H), 3.07 (t, J = 6.6 Hz, 2H), 2.88 (t, J = 7.0 Hz, 2H), 2.19-2.12 (m, 2H), 2.10 (s, 3H), 1.91 (s, 3H)	12.4 min, 98.2% 8.3 min, 98.3%

	TABLE 11-continued							
		R_{6b} N		\				
Ex- ample	Name	—X—Y	Q	R ₃	R_{6b}	LCMS [M + H] ⁺	1 H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
177L	3-(3-Chloro-4-((4-(4-(4-(2,3-dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) propanoic acid	CI HN OH	0	Н	Н	650.1	7.99 (1 H, s), 7.83 (1 H, s), 7.78 (1 H, s), 7.60 (1 H, dd, J = 9.85, 1.53 Hz), 7.36 (1 H, dd, J = 7.77, 1.66 Hz), 7.26 (1 H, br. s.), 6.86- 6.96 (2 H, m), 6.65 (2 H, t, J = 7.07 Hz), 5.57 (2 H, d, J = 1.66 Hz), 4.26 (2 H, t, J = 4.86 Hz), 3.95 (4 H, ddd, J = 9.99, 5.41, 5.13 Hz), 3.63 (2 H, t, J = 6.80 Hz), 2.89 (2 H, t, J = 7.07 Hz), 2.60-2.67 (2 H, m), 2.12-2.19 (2 H, m), 2.10 (3 H, s), 1.91 (3 H, s)	10.5 min, 97.5% 9.8 min, 96.5%
177M	2-(3-Chloro-4-((4-(4-(4-(2,3-dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	CI HN OH	0	Н	Н	636.3	8.00 (1 H, s), 7.84 (2 H, s), 7.65 (1 H, dd, J = 9.85, 1.53 Hz), 7.37 (1 H, dd, J = 7.77, 1.39 Hz), 7.27 (1 H, br. s.), 6.85-6.95 (2 H, m), 6.62-6.68 (2 H, m), 5.58 (2 H, d, J = 1.39 Hz), 4.27 (2 H, t, J = 4.86 Hz), 4.10 (2 H, s), 3.91-3.99 (4 H, m), 2.89 (2 H, t, J = 7.07 Hz), 2.12-2.18 (2 H, m), 2.09 (3 H, s), 1.91 (3 H, s)	10.5 min, 98.3% 9.8 min, 97.4%
177N	2-(3-(3-((4-(4-(4-(2,3-Dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido) ethanesulfonic acid	Associated by the second secon	0	Н	Н	648.2	8.17 (1 H, s), 8.04 (1 H, s), 7.41 (1 H, dd, J = 7.77, 1.39 Hz), 7.36 (1 H, s), 7.27-7.34 (2 H, m), 7.24 (1 H, t, J = 7.77 Hz), 6.88- 6.95 (3 H, m), 6.66 (2 H, dd, J = 7.77, 4.99 Hz), 5.38 (2 H, s), 4.28-4.32 (2 H, m), 3.93-3.98 (5 H, m), 3.61- 3.65 (2 H, m), 2.98 (2 H, t, J = 6.10 Hz), 2.85-2.90 (2 H, m), 2.15 (2 H, quin, J = 6.59 Hz), 2.11 (3 H, s), 1.93 (3 H, s)	11.2 min, 92.9% 8.0 min, 93.3%

		TABLE 11-contin	ued					
		R_{6b} N						
Ex- ample	Name	_X—Y	Q	R_3	R_{6b}	LCMS, [M+ H]+	$^{1}\text{H NMR}$ (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
177P	2-(3-Chloro-4-((4-(4-(4-(2,3-dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)-N,N,N-trimethylethanaminium, TFA	HN TFA-	O	Н	Н	664.3	8.11 (1 H, s), 7.88 (1 H, s), 7.86 (1 H, s), 7.86 (1 H, s), 7.86 (1 H, dd, J = 9.79, 1.65 Hz), 7.43 (1 H, d, J = 7.48 Hz), 7.21 (1 H, br. s.), 6.90-7.00 (2 H, m), 6.62-6.73 (2 H, m), 5.62 (2 H, d, J = 1.32 Hz), 4.27 (2 H, br. s.), 3.93-4.02 (4 H, m), 3.88 (2 H, t, J = 6.60 Hz), 3.60 (2 H, t, J = 6.71 Hz), 3.26 (9 H, s), 2.94 (2 H, t, J = 6.71 Hz), 2.14-2.24 (2 H, m, J = 6.60, 6.38, 6.27, 6.27 Hz), 2.00-2.14 (3 H, m), 1.86 (3 H, br. s.)	7.7 min, 99.3% 9.0 min, 98.6%
177Q	2-(3-((4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)-N,N- trimethylethanaminium, TFA	NH TFA'	O	Н	Н	611.4	8.15 (1 H, s), 7.97 (1 H, s), 7.78-7.83 (2 H, m), 7.51-7.55 (2 H, m), 7.47 (1 H, d, J = 7.70 Hz), 7.24 (1 H, br. s.), 6.91-7.00 (2 H, m), 6.64-6.73 (2 H, m), 5.47 (2 H, s), 4.29 (2 H, br. s.), 3.99 (4 H, t, J = 4.84 Hz), 3.87 (2 H, t, J = 6.05 Hz), 3.59 (2 H, t, J = 6.71 Hz), 3.25 (9 H, s), 2.95 (2 H, t, J = 6.60 Hz), 2.19 (2 H, quin, J = 6.27 Hz), 2.09 (3 H, br. s.), 1.89 (3 H, br. s.)	7.3 min, 99.6% 8.6 min, 98.1%
177R	(3-(3-((4-(4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl) phenyl)ureido) methanesulfonic acid	Por SO3H	Ο	Н	Н	634.0	7.90 (s, 1H), 7.85 (s, 1H), 7.39-7.31 (m, 2H), 7.29 (d, J = 8.2 Hz, 1H), 7.19 (t, J = 7.9 Hz, 1H), 7.06-6.96 (m, 1H), 6.87 (t, J = 7.8 Hz, 1H), 6.87 (t, J = 7.9 Hz, 1H), 6.81 (d, J = 7.1 Hz, 1H), 6.66 (d, J = 7.1 Hz, 1H), 5.66 (d, J = 7.2 Hz, 1H), 5.26 (s, 2H), 4.29 (s, 4H), 4.00-3.86 (m, 4H), 2.83 (d, J = 19.4 Hz, 2H), 2.23-2.02 (m, 5H), 1.93- 1.79 (m, 3H)	

	TABLE 11-continued							
		R_{6b} N						
Ex- ample	Name	—X—Y	Q	R ₃ R _{6b}	LCMS, [M + H] ⁺	^{1}H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	
1778	4-((4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzoic acid	OH	O	н н	526.3	8.11 (s, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.94 (s, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 7.27-7.06 (m, 1H), 6.99-6.86 (m, 2H), 6.64 (t, J = 8.2 Hz, 2H), 5.45 (s, 2H), 4.34-4.19 (m, 2H), 4.03-3.87 (m, 4H), 2.92 (t, J = 5.8 Hz, 2H), 2.22-2.12 (m, 2H), 2.12-1.97 (m, 3H), 1.97-1.69 (m, 3H)	10.7 min, 99.0% 10.0 min, 98.8%	
177T	2-(3-(3-Chloro-4-((4-(4-(4-(2,3-dimethylphenoxy))butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorophenyl)ureido) acetic acid	NH NH O	O	н н	650.3	9.13 (s, 1H), 8.04 (s, 1H), 7.83 (d, J = 0.6 Hz, 1H), 7.40 (d, J = 1.9 Hz, 2H), 7.38-7.30 (m, 2H), 6.98 (t, J = 7.9 Hz, 1H), 6.86 (t, J = 7.9 Hz, 1H), 6.72 (dd, J = 14.3, 7.6 Hz, 2H), 6.50 (t, J = 5.5 Hz, 1H), 5.38 (s, 2H), 4.31 (t, J = 4.7 Hz, 2H), 3.97 (t, J = 6.2 Hz, 2H), 3.92-3.87 (m, 2H), 3.81 (d, J = 5.8 Hz, 2H), 2.78 (t, J = 7.1 Hz, 2H), 2.78 (t, J = 7.1 Hz, 2H), 2.15 (s, 3H), 2.05 (quin, J = 6.7 Hz, 2H), 1.98 (s, 3H)**	10.6 min, 91.2% 9.8 min, 97.0%	
177U	3-(3-(4-((4-(4-(4-(2,3-Dimethylphenoxy)) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl)methyl)-3,5-difluorophenyl) ureido)propanoic acid	NH H OH	0	н н	648.3	8.92 (s, 1H), 8.04 (s, 1H), 7.83 (d, J = 0.6 Hz, 1H), 7.43 (br. s., 1H), 7.35 (dd, J = 7.8, 1.4 Hz, 1H), 7.20-7.11 (m, 2H), 6.98 (t, J = 7.8 Hz, 1H), 6.86 (t, J = 7.9 Hz, 1H), 6.72 (dd, J = 14.0, 7.9 Hz, 2H), 6.32 (br. s., 1H), 5.29 (s, 2H), 4.32 (t, J = 4.9 Hz, 2H), 3.97 (t, J = 6.2 Hz, 2H), 3.97 (t, J = 6.2 Hz, 2H), 3.97 (t, J = 1.2 Hz, 2H), 3.97 (t, J = 1.2 Hz, 2H), 3.97 (t, J = 6.2 Hz, 2H), 3.97 (t, J = 6.2 Hz, 2H), 3.97 (t, J = 6.7 Hz, 2H), 1.98 (s, 3H), 2.15 (s, 3H), 2.05 (quin, J = 6.7 Hz, 2H), 1.98 (s, 3H)**	10.5 min, 97.7% 9.8 min, 98.0%	

		R_{6b} N			/			
Ex- ample	Name	—X—Y	Q	R_3	R_{6b}	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
177V	3,5-Dichloro-4-((4-(4-(4-(4-(2,3-dimethylphenoxy))butanoyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid	CIOH	0	Н	Н	594.3	8.04 (s, 2H), 7.94 (s, 1H), 7.87-7.81 (m, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.26 (br. s., 1H), 6.96-6.85 (m, 2H), 6.69-6.60 (m, 2H), 5.71 (s, 2H), 4.25 (t, J = 4.9 Hz, 2H), 3.94 (s, 4H), 2.91- 2.86 (m, 2H), 2.19-2.11 (m, 2H), 2.09 (s, 3H), 1.94- 1.87 (m, 3H)	12.0 min, 95.9% 10.9 min, 91.6%
177W	3-(4-((4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl)- 3,5-difluorobenzamido) propanoic acid	F HN OH	O	Н	Н	633.3	8.01 (s, 1H), 7.83 (s, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 7.8 Hz, 1H), 7.27 (br. s., 1H), 6.91 (dt, J = 19.1, 7.9 Hz, 2H), 6.69- 6.63 (m, 2H), 5.48 (s, 2H), 4.28 (t, J = 4.9 Hz, 2H), 4.00-3.93 (m, 4H), 3.63 (t, J = 6.8 Hz, 2H), 2.92-2.85 (m, 2H), 2.63 (t, J = 6.8 Hz, 2H), 2.15 (quin, J = 6.5 Hz, 2H), 2.09 (s, 3H), 1.91 (s, 3H)	10.2 min, 96.5% 9.6 min, 95.5%
177X	2-(4-((4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl)- 3,5-difluorobenzamido) ethanesulfonic acid	HN SO ₃ H	0	Н	Н	669.3	8.00 (s, 1H), 7.84 (s, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 6.7 Hz, 1H), 7.27 (br. s., 1H), 6.97-6.85 (m, 2H), 6.71-6.63 (m, 2H), 5.48 (s, 2H), 4.28 (t, J = 4.9 Hz, 2H), 4.00-3.91 (m, 4H), 3.80 (t, J = 6.5 Hz, 2H), 3.07 (t, J = 6.5 Hz, 2H), 2.94-2.83 (m, 2H), 2.15 (quin, J = 6.5 Hz, 2H), 2.10 (s, 3H), 1.98-1.87 (m, 3H)	12.5 min, 97.7% 8.3 min, 96.0%
177Y	4-((4-(4-(2,3-Dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl)methyl)-3,5-difluorobenzoic acid	Province of the contract of th	Ο	Н	Н	562.2	8.02 (s, 1H), 7.83 (d, J = 0.6 Hz, 1H), 7.66-7.59 (m, 2H), 7.37 (dd, J = 7.8, 1.7 Hz, 1H), 7.26 (br. s., 1H), 6.96-6.87 (m, 2H), 6.65 (t, J = 7.4 Hz, 2H), 5.49 (s, 2H), 4.28 (t, J = 4.9 Hz, 2H), 3.99-3.93 (m, 4H), 2.89 (t, J = 7.1 Hz, 2H), 2.15 (quin, J = 6.5 Hz, 2H), 2.09 (s, 3H), 1.91 (s, 3H)	11.2 min, 99.3% 10.3 min, 96.2%

Example 178

2-(3-((4-(4-(4-(2,3-Dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-yl)-1H-pyrazol-1-yl)methyl)benzamido)ethanesulfonic acid

To a mixture of Example 10 (15 mg, 0.029 mmol), 2-aminoethanesulfonic acid (3.9 mg, 0.031 mmol), and HATU (11.9 mg, 0.031 mmol) in DMF (285 μ L) was added DIPEA 50 (9.97 μ L, 0.057 mmol). The resulting mixture was stirred at room temperature for 2 h. After this time, the reaction mixture was quenched with sat. NaHCO₃ and extracted with DCM. The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was purified by pre-55 parative HPLC (PHENOMENEX® Axia Luna column, 5μ, C18, 30×100 mm; 10 min gradient from 100% A:0% B to 40% A:60% B and 3 min 100% B (A=90% H₂O/10% MeOH+ 0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 178 (7 mg, 39% yield). 60 LCMS, [M+H]⁺=633.3. ¹H NMR (400 MHz, MeOD) δ 8.15 (s, 1H), 7.99 (s, 1H), 7.75-7.84 (m, 2H), 7.39-7.50 (m, 3H), 7.25-7.35 (m, 1H), 6.88-6.96 (m, 2H), 6.66 (t, J=7.5 Hz, 2H), 5.45 (s, 2H), 4.30 (t, J=5.0 Hz, 2H), 3.92-4.01 (m, 4H), 3.81 (t, J=6.4 Hz, 2H), 3.07 (t, J=6.4 Hz, 2H), 2.89 (t, J=7.1 Hz, 65 2H), 2.12-2.19 (m, 2H), 2.10 (s, 3H), 1.93 (s, 3H). HPLC-1: Rt=11.0 min, purity=99.6%; HPLC-2: Rt=7.8 min, purity=99.6%.

 $^{^{*1}\}mbox{H}$ NMR (400 MHz, CDCl3) $\delta.$

^{**&}lt;sup>1</sup>H NMR (500 MHz, DMSO-d₆) δ.

(3-Chloro-4-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)methanesulfonic acid

$$\begin{array}{c} Cl \\ N-N \\ \end{array}$$

298

Example 179 was prepared using a procedure analogous to Example 178 except that Example 10 was replaced with Example 68 and 2-aminoethanesulfonic acid was replaced with aminomethanesulfonic acid. LCMS, [M+H]⁺=669.1. ¹H NMR (500 MHz, MeOD) δ 7.88 (s, 1H), 7.70 (dd, J=10.0, 1.4 Hz, 1H), 7.59 (s, 1H), 7.45 (s, 1H), 7.13-7.22 (m, 3H), 6.95 (t, J=7.9 Hz, 1H), 6.66 (dd, J=17.2, 7.8 Hz, 2H), 5.59 (d, J=1.4 Hz, 2H), 4.50 (s, 2H), 3.89 (t, J=5.7 Hz, 2H), 3.73 (t, J=6.8 Hz, 2H), 2.77 (t, J=7.1 Hz, 2H), 2.52 (t, J=6.8 Hz, 2H), 2.06-2.15 (m, 5H), 1.77-1.85 (m, 5H). HPLC-1: Rt=12.4 min, purity=99.8%; HPLC-2: Rt=8.0 min, purity=99.5%.

The following Examples were prepared in a manner analogous to Example 178.

TABLE 12

15

20

		O V	R_3		X		
Ex- ample	Name	—X—Y	V	R_3	LCMS, [M + H] ⁺	1H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
180	(3-((4-(4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	NH SO ₃ H	CH ₂	Н	619.2	8.16 (s, 1H), 8.00 (s, 1H), 7.88 (s, 1H), 7.85 (d, J = 7.2 Hz, 1h), 7.43-7.49 (m, 2H), 7.40 (dd, J = 7.8, 1.7 Hz, 1H), 7.31 (br. s, 1H), 6.88-6.96 (m, 2H), 6.66 (dd, J = 7.6, 3.8 Hz, 2H), 5.46 (s, 2H), 4.53 (br. s, 2H), 4.30 (t, J = 4.96 Hz, 2H), 3.93-3.99 (m, 4H), 2.88 (t, J = 7.1 Hz, 2H), 2.12-2.18 (m, 2H), 2.11 (s, 3H), 1.94 (s, 3H)	11.1 min, 99.9% 7.8 min, 99.9%
181	(3-((4-(4-((2-(2,3- Dimethylphenoxy) ethoxy)carbonyl)-3,4- dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	NH SO ₃ H	0	Н	621.2	8.21 (s, 1H), 8.04 (s, 1H), 7.82-7.88 (m, 2H), 7.68 (s, 1H), 7.42-7.49 (m, 2H), 7.30 (dd, J = 7.8, 1.4 Hz, 1H), 6.99 (t, J = 7.9 Hz, 1H), 6.84 (t, J = 8.1 Hz, 1H), 6.76 (t, J = 7.5 Hz, 2H), 5.47 (s, 2H), 4.54-4.59 (m, 2H), 4.52 (br. s, 2H), 4.31-4.34 (m, 2H), 4.24-4.28 (m, 2H), 3.88-3.92 (m, 2H), 2.22 (s, 3H), 2.13 (s, 3H)	11.6 min, 99.8% 8.1 min, 99.8%

TABLE 12-continued

		N-N X O V	, R ₃		X		
Ex- ample	Name	—X—Y	V	R_3	LCMS, [M + H] ⁺	1H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
182	2-(3-((4-(4-((2-(2,3- Dimethylphenoxy) ethoxy)carbonyl)-3,4- dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) ethanesulfonic acid	NH SO ₃ H	O	Н	635.1	8.22 (s, 1H), 8.05 (s, 1H), 7.76-7.81 (m, 2H), 7.68 (s, 1H), 7.40-7.47 (m, 2H), 7.30 (dd, J = 7.8, 1.49 Hz, 1H), 6.99 (t, J = 7.9 Hz, 1H), 6.84 (t, J = 8.1 Hz, 1H), 6.76 (t, J = 7.8 Hz, 2H), 5.47 (s, 2H), 4.54-4.58 (m, 2H), 4.31-4.35 (m, 2H), 4.23-4.27 (m, 2H), 3.88-3.92 (m, 2H), 3.80 (t, J = 6.4 Hz, 2H), 3.07 (t, J = 6.48 Hz, 2H), 2.22 (s, 3H), 2.12 (s, 3H)	11.5 min, 100% 8.1 min, 99.6%
183	6-(3-((4-(4-((2-(2,3- Dimethylphenoxy) ethoxy)carbonyl)-3,4- dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) naphthalene-2-sulfonic acid	SO ₃ H	0	Н	733.2	10.33 (s, 1H), 8.35 (s, 1H), 8.24 (s, 1H), 8.09 (s, 1H), 7.97-7.88 (m, 4H), 7.82 (dd, J = 8.8, 2.0 Hz, 1H), 7.75 (d, J = 8.5, Hz, 1H), 7.70 (dd, J = 8.5, 1.5 Hz, 1H), 7.61 (dd, J = 8.3, 1.0 Hz, 1H), 7.51 (t, J = 7.9 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.31 (dd, J = 7.7, 1.5 Hz, 1H), 7.01 (t, J = 7.9 Hz, 1H), 6.82 (dd, J = 15.2, 7.3 Hz, 2H), 6.76 (d, J = 7.5 Hz, 1H), 5.46 (s, 2H), 4.49 (dd, J = 5.4, 3.8 Hz, 2H), 4.35-4.29 (m, 2H), 4.23 dd, J = 5.4, 3.9 Hz, 2H), 3.89-3.83 m, 2H), 2.20 (s, 3H), 2.08 (s, 3H)	9.1 min, 98.6% (HPLC-2)
184	4-(3-((4-(4-((2-(2,3- Dimethylphenoxy) ethoxy)carbonyl)-3,4- dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) benzenesulfonic acid	NH SO ₃ H	0	Н	683.2	8.25 (s, 1H), 8.02 (s, 1H), 7.96-7.89 (m, 2H), 7.89-7.78 (m, 4H), 7.74-7.65 (m, 1H), 7.58-7.47 (m, 2H), 7.36 (dd, J = 7.8, 1.5 Hz, 1H), 7.03 (t, J = 7.9 Hz, 1H), 6.87 (t, J = 8.0 Hz, 1H), 6.80 (d, J = 14.9 Hz, 2H), 5.51 (s, 2H), 4.60 (dd, J = 5.4, 3.7 Hz, 2H), 4.0-4.34 (m, 2H), 4.29 (dd, J = 5.4, 3.8 Hz, 2H), 3.98-3.91 (m, 2H), 2.26 (s, 3H), 2.16 (s, 3H)	12.9 min, 100% 8.7 min, 99.8%
185	3-(3-((4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) benzenesulfonic acid	SO ₃ H	CH ₂	Н	681.3	8.49 (s, 1H), 8.39 (t, J = 1.8 Hz, 1H), 8.36 (ddd, J = 8.1, 2.0, 0.9 Hz, 1H), 8.33 (s, 1H), 8.32-8.27 (m, 2H), 8.04-8.00 (m, 1H), 7.92-7.85 (m, 2H), 7.82-7.77 (m, 2H), 7.35-7.27 (m, 2H), 7.05 (dd, J = 7.6, 5.7 Hz, 2H), 5.85 (s, 2H), 4.71-4.67 (m, 2H), 4.39-4.32 (m, 4H), 3.28 (t, J = 7.0 Hz, 2H), 2.58-2.52 (m, 2H), 2.50 (s, 3H), 2.32 (s, 3H)	12.8 min, 95.4% 8.4 min, 99.8%

	TABLE 12-continued						
		N-N $N-N$					
Ex- ample	Name		HPLC-1: Rt min, purity; HPLC-2: Rt min, purity				
186	6-(3-((4-(4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) naphthalene-2-sulfonic acid	SO ₃ H CH ₂ H 731.3 8.32 (d, J = 1.9 Hz, 2H), 8.11 (s, 1H), 7.92-7.96 (m, 4H), 7.88-7.91 (m, 1H), 7.83-7.86 (m, 1H), 7.80 (dd, J = 8.7, 2.4 Hz, 1H), 7.47-7.55 (m, 2H), 7.41 (dd, J = 7.8, 1.4 Hz, 1H), 7.24-7.33 (m, 1H), 6.86-6.95 (m, 2H), 6.66 (d, J = 4.4 Hz, 2H), 5.47 (s, 2H), 4.26-4.32 (m, 2H), 3.93-4.00 (m, 4H), 2.84-2.92 (m, 2H), 2.15 (t, J = 6.0 Hz, 2H), 2.10 (s, 3H), 1.92 (s, 3H)	13.9 min, 99.2% 8.9 min, 98.7%				
187	4-(3-((4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) benzenesulfonic acid	SO ₃ H CH ₂ H 681.3 8.51 (s, 1H), 8.34 (s, 1H), 8.31-8.27 (m, 2H), 8.25-8.20 (m, 2H), 8.17-8.12 (m, 2H), 7.93-7.85 (m, 2H), 7.80 (dd, J = 7.7, 1.4 Hz, 1H), 7.72-7.65 (m, 1H), 7.31 (dt, J = 11.7, 8.0 Hz, 2H), 7.86 (s, 2H), 4.71-4.66 (m, 2H), 4.39-4.32 (m, 4H), 3.28 (t, J = 7.0 Hz, 2H), 2.58-2.52 (m, 2H), 2.50 (s, 3H), 2.32 (s, 3H)	12.1 min, 100% 8.4 min, 99.1%				
188	3-((4-(4-(4-(2,3- Dimethylphenoxy) butanoyl)-2-methyl-3,4- dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) methanesulfonic acid	NH SO ₃ H CH ₂ Me 633.3 8.12 (s, 1H), 8.01 (s, 1H), 7.89 (s, 1H), 7.85 (d, J = 7.5 Hz, 1H), 7.43-7.50 (m, 2H), 7.40 (dd, J = 7.8, 1.4 Hz, 1H), 7.31 (br. s, 1H), 6.86-6.97 (m, 2H), 6.66 (d, J = 8.1 Hz, 2H), 5.46 (s, 2H), 4.51-4.56 (m, 2H), 4.28-4.37 (m, 2H), 3.19-3.28 (m, 1H), 2.80-3.00 (m, 2H), 2.13-2.19 (m, 2H), 2.12 (s, 3H), 1.93 (s, 3H), 1.32 (d, J = 6.1 Hz, 3H)	11.7 min, 99.9% 8.0 min, 99.6%				
189	2-(3-((4-(4-(2,3- Dimethylphenoxy) butanoyl)-2-methyl-3,4- dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido) ethanesulfonic acid	NH SO ₃ H CH ₂ Me 647.3 8.08 (s, 1H), 7.97 (s, 1H), 7.82 (s, 1H), 7.78 (d, J = 7.21 Hz, 1H), 7.38-7.48 (m, 3H), 7.29 (br. s, 1H), 6.86-6.96 (m, 2H), 6.66 (d, J = 7.8 Hz, 2H), 5.44 (s, 2H), 4.26-4.39 (m, 2H), 3.92-4.02 (m, 2H), 3.81 (t, J = 6.4 Hz, 2H), 3.20-3.27 (m, 1H), 3.07 (t, J = 6.4 Hz, 2H), 2.89-2.98 (m, 1H), 2.80-2.89 (m, 1H), 2.15 (ddd, J = 12.8, 6.8, 6.5 Hz, 2H), 2.11 (s, 3H), 1.93 (s, 3H), 1.31 (d, J = 6.1 Hz, 3H)	11.8 min, 99.9% 8.0 min, 99.9%				

10

15

20

40

45

50

2-(3-Chloro-4-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol1-yl)methyl)-5-fluorobenzamido)ethanesulfonic acid

Example 190 was prepared using a procedure analogous to Example 178 except that Example 10 was replaced by Example 173. LCMS, [M+H]⁺=683.2. ¹H NMR (500 MHz, MeOD) & 7.81 (s, 1H), 7.64 (dd, J=9.9, 1.5 Hz, 1H), 7.59 (br. s, 1H), 7.43 (s, 1H), 7.21 (d, J=5.1 Hz, 2H), 7.18 (br. s, 1H), 30 6.96 (t, J=7.9 Hz, 1H), 6.65 (t, J=8.0 Hz, 2H), 5.58 (d, J=1.3 Hz, 2H), 3.82-3.90 (m, 2H), 3.79 (t, J=6.7 Hz, 2H), 3.73 (t, J=6.8 Hz, 2H), 3.08 (t, J=6.7 Hz, 2H), 2.80 (t, J=6.8 Hz, 2H), 2.45 (br. s, 2H), 2.11 (quin, J=6.2 Hz, 2H), 2.05 (s, 3H), 1.66-1.83 (m, 5H). HPLC-1: Rt=12.1 min, purity=100%; ³⁵ HPLC-2: Rt=8.1 min, purity=99.5%.

Example 191

3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-N-(2-guanidinoethyl)benzamide

304

Step A. tert-Butyl 2-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzamido)ethylcarbamate

The title compound was prepared using a procedure analogous to N-(2-cyanoethyl)-2-(4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetamide except that Example 1 was replaced with Example 95 and 3-aminopropanenitrile was replaced with tert-butyl 2-aminoethylcarbamate. LCMS, [M+H]+=666.4.

Step B. N-(2-Aminoethyl)-3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzamide

The title compound was prepared using a procedure analogous to 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one except that tert-butyl 3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzylcarbamate was replaced with tert-butyl 2-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethylcarbamate. LCMS, [M+H]+=566.3. ¹H

NMR (400 MHz, MeOD) & 7.89-7.73 (m, 2H), 7.65 (s, 1H), 7.56-7.40 (m, 3H), 7.32-7.19 (m, 2H), 7.17 (br. s, 1H), 6.96 (t, J=7.9 Hz, 1H), 6.71-6.59 (m, 2H), 5.43 (s, 2H), 3.86 (br. s, 2H), 3.74 (t, J=6.8 Hz, 2H), 3.50 (t, J=6.3 Hz, 2H), 2.90 (t, J=6.3 Hz, 2H), 2.81 (t, J=6.8 Hz, 2H), 2.48 (br. s, 2H), 2.12

(dt, J=12.4, 6.3 Hz, 2H), 2.03 (s, 3H), 1.85-1.75 (m, 2H), 1.74 (s, 3H).

Example 191

Example 191 was prepared using a procedure analogous to Example 90 except that 1-(5-(1-(3-aminobenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimeth-ylphenoxy)butan-1-one was replaced by with N-(2-aminoet-hyl)-3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamide. LCMS, [M+H]⁺=608.3. ¹H NMR (500 MHz, MeOD) δ 7.82 (s, 1H), 7.81-7.75 (m, 1H), 7.65 (br. s, 1H), 7.56-7.42 (m, 3H), 7.29-7.08 (m, 3H), 6.96 (t, J=7.9 Hz, 1H), 6.71-6.60 (m, 2H), 5.43 (s, 2H), 3.85 (br. s, 2H), 3.73 (t, J=6.8 Hz, 2H), 3.55 (t, J=6.2 Hz, 2H), 3.45-3.37 (m, 2H), 2.80 (t, J=6.8 Hz, 2H), 2.47 (br. s, 2H), 2.18-2.06 (m, 2H), 2.02 (s, 15 3H), 1.85-1.75 (m, 2H), 1.71 (s, 3H). HPLC-1: Rt=8.2 min, purity=95.0%; HPLC-2: Rt=10.0 min, purity=96.0%.

-,--,--

3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenylphosphonic acid

306

Example 194

25

35

40

45

50

20

Example 193

1-(5-(1-(3-(1H-Tetrazol-5-yl)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimeth-ylphenoxy)butan-1-one

Example 193 was prepared using a procedure analogous Example 147 to except that Example 1 was replaced with Example 95. LCMS, [M+H]⁺=548.3. ¹H NMR (400 MHz, 60 CDCl₃) 8 7.93 (s, 1H), 7.86 (d, J=7.1 Hz, 1H), 7.59 (s, 1H), 7.46 (s, 1H), 7.40-7.27 (m, 3H), 7.13 (s, 2H), 6.98 (t, J=7.9 Hz, 1H), 6.70 (d, J=7.4 Hz, 1H), 6.62 (d, J=8.0 Hz, 1H), 5.38 (s, 2H), 3.93 (s, 2H), 3.77 (t, J=6.8 Hz, 2H), 2.76 (t, J=7.1 Hz, 2H), 2.59 (s, 2H), 2.29-2.08 (m, 5H), 2.03-1.79 (m, 5H). 65 HPLC-1: Rt=9.7 min, purity=94.9%; HPLC-2: Rt=8.8 min, purity=96.8%.

Step A. 1-(5-(1-(3-Bromobenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analogous to methyl 3-((4-bromo-1H-pyrazol-1-yl)methyl)benzoate except that 4-bromo-1H-pyrazole was replaced with 1-(5-(1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2, 3-dimethylphenoxy)butan-1-one and methyl 3-(bromomethyl)benzoate was replaced with 1-bromo-3-(bromomethyl) benzene. LCMS, [M+H]⁺=560.2.

Example 194

Argon was bubbled through a stirring mixture of 1-(5-(1-(3-bromobenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1 (2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (0.05 g, 0.09

30

50

2.59 (s, 2H), 2.26-2.13 (m, 7H), 1.97-1.79 (m, 5H).

308

mmol), dibenzyl phosphate (0.059 g, 0.224 mmol), Hunig's base (0.035 g, 0.269 mmol), and Pd(dppf)Cl₂—CH₂Cl₂ (7.31 mg, 8.95 µmol) in toluene (0.5 mL) for 5 min. The vessel was then capped and heated at 100° C. overnight. The reaction was cooled to room temperature and concentrated to provide the 5 crude ester. The crude ester was re-dissolved in TFA (1.8 mL) and stirred at room temperature overnight. The reaction was concentrated and purified by preparative HPLC (PHENOM-ENEX® Axia Luna column, 5μ, C18, 30×75 mm; 15 min gradient from 100% A:0% B to 0% A:100% B and 3 min 10 100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 194 (24 mg, 47% yield). LCMS, [M+H]⁺=560.3. ¹H NMR (400 MHz, DMSO- d_6) δ 8.01 (s, 1H), 7.68-7.52 (m, 3H), 7.45-7.36 (m, 2H), 7.29-7.13 (m, 3H), 7.00-6.93 (m, 15 1H), 6.73-6.65 (m, 2H), 5.39 (s, 2H), 3.92-3.82 (m, 2H), 3.65 (t, J=6.5 Hz, 2H), 2.66 (t, J=7.0 Hz, 2H), 2.63-2.56 (m, 2H), 2.09 (s, 3H), 2.03-1.94 (m, 2H), 1.85 (s, 3H), 1.80-1.70 (m, 2H). HPLC-1: Rt=8.3 min, purity=100%; HPLC-2: Rt=7.5 min, purity=100%.

Step B. 3-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) propanal

Example 195

3-(4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)propanoic

To a solution of 1-(5-(1-(3,3-dimethoxypropyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (40 mg, 0.081 mmol) in acetone (0.8 mL) was added 9 M H₂SO₄. The reaction mixture was stirred at room temperature for 2 h. After this time, the reaction mixture was partitioned between DCM and saturated NaHCO₃, and stirred for 15 min. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the title compound (36 mg, 100% yield). ¹H NMR (400 MHz, CDCl₃) & 9.86 (s, 1H), 7.50 (s, 1H), 7.38 (s, 1H), 7.21-7.12 (m, 2H), 7.02 (t, J=7.9 Hz, 1H), 6.75 (d, J=7.5 Hz, 1H), 6.65 (d, J=8.1 Hz, 1H), 6.09 (s, 1H), 4.48 (t, J=6.3 Hz, 2H), 3.94 (s, 2H), 3.81-3.75 (m, 2H), 3.14 (t, J=6.3 Hz, 2H), 2.74 (t, J=7.1 Hz, 2H), 2.63 (s, 2H), 2.59 (d, J=4.3 Hz, 2H), 2.14 (s, 3H), 1.95-1.81 (m, 5H).

Example 195

Step A. 1-(5-(1-(3,3-Dimethoxypropyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

To a solution of 3-(4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)
propanal (36 mg, 0.081 mmol) in THF/t-BuOH/2-methyl-2butene (1:3:1, 0.5 mL) was added an aqueous solution of
NaClO₂ (18 mg, 0.162 mmol) and NaHPO₄ (29 mg, 0.243
mmol). The resulting mixture was stirred vigorously at room
temperature for 30 min. The organic solvents were removed
in vacuo, and the resulting solid was partitioned between
DCM and water. The reaction mixture was adjusted to pH~5
with conc. HCl, and then excess 5% citric acid was added.
The resulting mixture was stirred for 15 min. The organic
layer was separated, dried over anhydrous Na₂SO₄, filtered,

and concentrated. The resulting residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5µ,

20

40

45

50

55

C18, 30×75 mm; 10 min gradient from 100% A:0% B to 0% A:100% B and 3 min 100% B (A=90% H₂O/10% MeCN+ 0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 195 (18 mg, 47% yield). LCMS, [M+H]*=462.1. ¹H NMR (400 MHz, CDCl₃) & 7.53 ⁵ (d, J=5.1 Hz, 1H), 7.37 (s, 1H), 7.23-7.10 (m, 3H), 7.02 (t, J=7.9 Hz, 1H), 6.74 (d, J=7.5 Hz, 1H), 6.64 (d, J=8.1 Hz, 1H), 4.46 (t, J=6.3 Hz, 2H), 3.93 (s, 2H), 3.78 (t, J=6.8 Hz, 2H), 3.02 (t, J=6.3 Hz, 2H), 2.75 (t, J=7.1 Hz, 2H), 2.57 (s, 2H), 2.25-2.10 (m, 5H), 1.97-1.78 (m, 5H). HPLC-1: Rt=9.3 min, purity=99.4%; HPLC-2: Rt=8.2 min, purity=99.6%.

Example 196

2-(4-(1-(4-(2,4,5-Trichlorophenoxy)butanoyl)-1,2,3, 4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetic

Step A. Methyl 4-(5-bromo-3,4-dihydroquinolin-1 (2H)-yl)-4-oxobutanoate

The title compound was prepared using a procedure analogous to 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one except that 4-(2,3-dimethylphenoxy)butanoic acid was replaced by 4-methoxy-4-oxobutanoic acid. LCMS, [M+Na]⁺=349.9. ¹H NMR (400 65 MHz, CDCl₃) δ 7.38 (d, J=8.0 Hz, 1H), 7.25 (br. s, 1H), 7.03 (t, J=8.1 Hz, 1H), 3.80-3.73 (m, 2H), 3.68 (d, J=11.0 Hz, 2H),

3.66 (s, 3H), 2.81 (t, J=6.9 Hz, 2H), 2.78-2.72 (m, 2H), 2.71-2.63 (m, 2H), 1.99 (dd, J=12.5, 6.6 Hz, 2H).

Step B. 1-(5-Bromo-3,4-dihydroquinolin-1(2H)-yl)-4-hydroxybutan-1-one

To a solution of methyl 4-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-4-oxobutanoate (0.9 g, 2.76 mmol) in MeOH (30 mL) was added sodium borohydride (2.088 g, 55.2 mmol), and the resulting mixture was stirred at room temperature for 30 min. After this time, additional sodium borohydride (1.566 g, 41.4 mmol) was added slowly and the reaction was stirred for another 30 min. The reaction mixture was quenched with 30 HCl and extracted with ethyl acetate. The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes then 10% CH₃OH:ethyl acetate) to afford the title compound (0.6 g, 73% yield) as a 35 colorless oil. LCMS, [M+H]⁺=298.0. ¹H NMR (400 MHz, MeOD) δ 7.49 (d, J=8.1 Hz, 1H), 7.44 (br. s, 1H), 7.17 (t, J=8.1 Hz, 1H), 3.86-3.80 (m, 2H), 3.61 (t, J=6.2 Hz, 2H), 2.89 (t, J=6.9 Hz, 2H), 2.68 (t, J=7.4 Hz, 2H), 2.10-2.01 (m, 2H), 1.95-1.85 (m, 2H).

Step C. Ethyl 2-(4-(1-(4-hydroxybutanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetate

To a degassed solution of 1-(5-bromo-3,4-dihydroquino-lin-1(2H)-yl)-4-hydroxybutan-1-one (68 mg, 0.228 mmol), ethyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)acetate (80 mg, 0.285 mmol) and potassium phosphate (145 mg, 0.684 mmol) in THF (1 mL) was added

PdCl₂(dppf) (15 mg, 0.021 mmol). The vial was purged with argon, sealed, and stirred 80° C. overnight. After this time, the reaction mixture was partitioned between EtOAc and saturated NH₄Cl solution, and the organic layer was separated. The aqueous phase was extracted with EtOAc. The combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to provide the crude material. The crude material was purified by flash chromatography (0-100% ethyl acetate:hexanes then 10% ethyl acetate: MeOH) to afford the title compound (80 mg, 85% yield) as a yellow oil. LCMS, [M+H]⁺=372.1. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.53 (s, 1H), 7.23-7.12 (m, 3H), 4.94 (s, 2H), 4.25 (q, J=7.1 Hz, 2H), 3.78 (t, J=6.9 Hz, 2H), 3.68 (dd, J=11.1, 5.5 Hz, 2H), 2.73 (t, J=6.5 Hz, 2H), 2.64 (t, J=6.7 Hz, 2H), 1.97-1.83 (m, 4H), 1.29 (t, J=7.1 Hz, 3H).

Example 196 was prepared using a procedure analogous to Example 2 except that methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)picolinate was replaced with ethyl 2-(4-(1-(4-(2,4,5-trichlorophenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetate. LCMS, [M+H]⁺=522.1. ¹H NMR (400 MHz, MeOD) δ δ 7.95 (s, 1H), 7.76 (s, 1H), 7.44 (s, 1H), 7.42-7.36 (m, 1H), 7.36-7.28 (m, 1H), 7.29-7.23 (m, 1H), 7.23-7.17 (m, 1H), 7.17-7.09 (m, 2H), 7.04 (s, 1H), 7.02-6.96 (m, 1H), 6.95-6.89 (m, 1H), 5.43 (s, 2H), 4.67-4.59 (m, 1H), 4.58-4.50 (m, 2H), 4.38 (s, 2H), 4.30 (br. s, 2H), 3.11 (d, J=12.3 Hz, 1H), 2.95-2.71 (m, 2H), 2.28 (s, 3H), 2.27-2.19 (m, 1H), 1.94-1.84 (m, 1H), 1.16-1.07 (m, 1H), 0.74-0.63 (m, 1H). HPLC-1: Rt=10.7 min, purity=100%; HPLC-2: Rt=9.5 min, purity=100%.

Step D. Ethyl 2-(4-(1-(4-(2,4,5-trichlorophenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetate

CO₂Et

25

30

35

40

45

20

N-N Cl

Example 197

2-(4-(1-(4-(3-Chloro-2-methylphenoxy)butanoyl)-1, 2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetic acid

In an oven dried 1-dram vial was a mixture of ethyl 2-(4-(1-(4-hydroxybutanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetate (40 mg, 0.108 mmol), 2,4,5-trichlo-50 rophenol (34.0 mg, 0.172 mmol), triphenylphosphine (45.2 mg, 0.172 mmol) in CH₂Cl₂ (35.9 mL). DIAD (29.2 μL, 0.172 mmol) was added, and the reaction mixture was stirred at room temperature overnight. At the conclusion of this period, the reaction mixture was concentrated and purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ, C18, 21.2×250 mm; 25 min gradient from 40% A:60% B to 0% A:100% B and 3 min 100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford the title compound (18.9 mg. 32% yield) as a colorless oil. LCMS, [M+H]⁺=550.1. ¹H NMR (400 MHz, MeOD) δ 7.76 (s, 1H), 7.61 (s, 1H), 7.48 (s, 1H), 7.28-7.16 (m, 4H), 5.06 (s, 2H), 4.25 (q, J=7.1 Hz, 2H), 4.04 (br. s, 2H), 3.77 (t, J=6.8 Hz, 2H), 2.79 (t, J=7.0 Hz, 2H), 65 2.66 (br. s, 2H), 2.13 (dt, J=12.7, 6.4 Hz, 2H), 1.92-1.80 (m, 2H), 1.29 (t, J=7.1 Hz, 3H).

Example 197 was prepared using a procedure analogous to Example 196 except that 2,4,5-trichlorophenol was replaced with 3-chloro-2-methylphenol. LCMS, $[\mathrm{M}+\mathrm{H}]^+=468.2$. $^1\mathrm{H}$ NMR (400 MHz, $\mathrm{CD}_2\mathrm{Cl}_2$) & 7.68-7.60 (m, 1H), 7.50-7.42 (m, 1H), 7.30 7.12 (m, 3H), 7.10-7.02 (m, 1H), 6.94 (d, J=8.0 Hz, 1H), 6.72 (d, J=8.1 Hz, 1H), 5.01 (s, 2H), 3.95 (br. s, 2H), 3.79-3.70 (m, 2H), 2.73 (t, J=6.8 Hz, 2H), 2.57 (br. s, 2H), 2.15 (dt, J=11.9, 6.0 Hz, 2H), 2.03 (s, 3H), 1.84 (br. s, 2H). HPLC-1: Rt=9.6 min, purity=99.4%; HPLC-2: Rt=8.6 min, purity=99.4%.

10

15

20

25

40

3-((3-(1-(4-(o-Tolyloxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino)propanoic acid

Step A. tert-Butyl 3-((3-(1-(4-hydroxybutanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)benzyloxy)carbony-lamino)propanoate

To a degassed mixture of 1-(5-bromo-3,4-dihydroquino-lin-1(2H)-yl)-4-hydroxybutan-1-one (0.208 g, 0.698 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (0.532 g, 2.094 mmol), and potassium acetate (0.411 g, 4.19 mmol) in DMF (10 mL) was added PdCl₂(dppf)-CH₂Cl₂ (0.057 g, 0.070 mmol). The vial was purged with argon, sealed, and stirred at 90° C. for 2 d. tert-Butyl 3-((3-bromobenzyloxy)carbonylamino)propanoate (0.5 g, 1.396 mmol), PdCl₂(dppf)-CH₂Cl₂ (0.057 g, 0.070 mmol), and 2 M Na₂CO₃ (2 mL, 1.396 mmol) were added. The reaction mixture was purged with argon and stirred at 95° C. overnight. At the conclusion of this period, the reaction mixture was quenched with water and extracted with ethyl acetate. The organic extract was dried, concentrated, and purified by flash chromatography (0-100% ethyl acetate:hexanes then 10%

314

CH₃OH:ethyl acetate) to afford the title compound (0.24 g, 69% yield) as a dark brown oil. LCMS, [M+H]⁺=497.4.

Step B. tert-Butyl 3-((3-(1-(4-(o-tolyloxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino)propanoate

The title compound was prepared using a procedure analogous to ethyl 2-(4-(1-(4-(2,4,5-trichlorophenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetate except that ethyl 2-(4-(1-(4-hydroxybutanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetate was replaced with tert-butyl 3-((3-(1-(4-hydroxybutanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino)propanoate and 2,4,5-trichlorophenol was replaced with o-cresol. LCMS, M+HJ*=587.3.

Example 198

To a solution of tert-butyl 3-((3-(1-(4-(o-tolyloxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy)carbony-45 lamino)propanoate (6 mg, 7.16 μmol) in CH₂Cl₂ (200 μL) was added m-cresol (7.74 mg, 0.072 mmol) and TFA (55.2 μL, 0.716 mmol). The reaction mixture was stirred at room temperature for 2 h and then concentrated to provide the crude material. The crude material was purified by preparative ⁵⁰ HPLC (PHENOMENEX® Axia Luna column, 5μ, C18, 30×75 mm; 10 min gradient from 100% A:0% B to 0% A:100% B and 3 min 100% B (A=90% H₂O/10% MeCN+ 0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 198 (3.2 mg, 83% yield) as a white powder. LCMS, [M+H]⁺=531.3. ¹H NMR (400 MHz, MeCN- d_2) δ 7.42 (t, J=7.6 Hz, 1H), 7.35 (d, J=7.2 Hz, 1H), 7.26 (d, J=8.1 Hz, 2H), 7.20 (d, J=7.5 Hz, 1H), 7.46-7.39 (m, 2H), 6.85 (d, J=7.4 Hz, 1H), 6.81 (d, J=7.5 Hz, 1H), 5.82-5.69 (br. s, 1H), 5.10 (s, 2H), 3.96 (t, J=5.6 Hz, 2H), 3.71 (t, J=6.9 Hz, 2H), 3.33 (dd, J=12.8, 6.4 Hz, 2H), 2.73 (t, J=7.1 Hz, 2H), 2.47 (t, J=6.6 Hz, 2H), 2.44-2.36 (m, 2H), 2.10 (dt, J=12.9, 6.3 Hz, 2H), 2.00 (s, 3H), 1.82-1.72 (m, 2H). HPLC-1: Rt=10.2 min, purity=99.7%; HPLC-2: Rt=9.2 min, purity=97.7%.

The following Examples were prepared in a manner analogous to Example 198.

TABLE 13

		0> ~	\sim		
Example	Name	R	LCMS, [M + H] ⁺	^{1}H NMR (400 MHz, CD ₃ CN) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
199	3-((3-(1-(4-(3-Chlorophenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid	Cl	551.2	7.43 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.30-7.20 (m, 5H), 7.10 (d, J = 7.7 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.91 (s, 1H), 6.81 (d, J = 8.4 Hz, 1H), 5.10 (s, 2H), 3.99 (t, J = 6.1 Hz, 2H), 3.71 (t, J = 6.9 Hz, 2H), 3.33 (dd, J = 12.8, 6.4 Hz, 2H), 2.67 (t, J = 7.1 Hz, 2H), 2.54-2.44 (m, 4H), 2.11-2.01 (m, 2H), 1.85-1.74 (m, 2H)	10.4 min, 100% 9.4 min, 100%
200	3-((3-(1-(4-(2- Cyclopropylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid		557.3	7.42 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 7.7 Hz, 1H), 7.28-7.18 (m, 4H), 7.13-7.04 (m, 2H), 6.88-6.78 (m, 3H), 5.09 (s, 2H), 4.00 (t, J = 5.8 Hz, 2H), 3.71 (t, J = 6.9 Hz, 2H), 3.33 (dd, J = 12.8, 6.5 Hz, 2H), 2.75 (t, J = 7.2 Hz, 2H), 2.53-2.41 (m, 4H), 2.16-2.06 (m, 2H), 2.02-1.96 (m, 1H), 1.83-1.73 (m, 2H), 0.75 (d, J = 7.4 Hz, 2H)	10.6 min, 100% 9.5 min, 100%
201	3-((3-(1-(4-(2-Chlorophenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid, TFA salt	Cl	551.2	7.43 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 7.7 Hz, 2H), 7.30-7.20 (m, 5H), 7.09 (d, J = 7.3 Hz, 1H), 7.03 (d, J = 8.2 Hz, 1H), 6.91 (t, J = 7.7 Hz, 1H), 5.10 (s, 2H), 4.06 (br. s, 2H), 3.71 (t, J = 6.9 Hz, 2H), 3.33 (q, J = 6.4 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.52-2.41 (m, 4H), 2.11 (p, J = 6.6 Hz, 2H), 1.78 (p, J = 6.5 Hz, 2H)	10.0 min, 99.9% 9.1 min, 99.8%
202	3-((3-(1-(4-(3- Cyclopropylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid		557.3	7.43 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 7.5 Hz, 2H), 7.30-7.19 (m, 3H), 7.16-7.04 (m, 2H), 6.64 (t, J = 8.3 Hz, 2H), 6.56 (s, 1H), 5.10 (s, 2H), 3.96 (t, J = 6.1 Hz, 2H), 3.71 (t, J = 6.8 Hz, 2H), 3.33 (dd, J = 12.8, 6.5 Hz, 2H), 2.66 (t, J = 7.1 Hz, 2H), 2.55-2.42 (m, 4H), 2.10-2.00 (m, 2H), 1.90-1.73 (m, 3H), 0.95-0.87 (m, 2H), 0.68-0.59 (m, 2H)	10.6 min, 99.8% 9.5 min, 96.7%
203	3-((3-(1-(4-(2,3- Difluorophenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid, TFA salt	F	553.2	7.43 (t, J = 7.6 Hz, 1H), 7.39-7.20 (m, 5H), 7.13-7.02 (m, 2H), 6.93-6.78 (m, 2H), 5.10 (s, 2H), 4.09 (t, J = 5.8 Hz, 2H), 3.72 (t, J = 6.8 Hz, 2H), 3.33 (q, J = 6.4 Hz, 2H), 2.69 (t, J = 7.1 Hz, 2H), 2.54-2.44 (m, 4H), 2.11 (p, J = 6.7 Hz, 2H), 1.80 (p, J = 6.6 Hz, 2H)	9.8 min, 99.9% 8.9 min, 99.8%

		0			
Example	Name	R	LCMS, [M+H]+	^{1}H NMR (400 MHz, CD ₃ CN) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
204	3-((3-(1-(4-(3-(Trifluoromethyl) phenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid, TFA salt	CF ₃	585.3	7.48-7.40 (m, 2H), 7.39-7.20 (m, 6H), 7.16 (s, 1H), 7.12 (d, J = 8.7 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 5.10 (s, 2H), 4.06 (t, J = 6.0 Hz, 2H), 3.72 (t, J = 6.8 Hz, 2H), 3.33 (q, J = 6.5 Hz, 2H), 2.68 (t, J = 7.1 Hz, 2H), 2.55-2.42 (m, 4H), 2.09 (p, J = 6.7 Hz, 2H), 1.80 (p, J = 6.7 Hz, 2H)	10.6 min, 100% 9.5 min, 100%
205	3-((3-(1-(4-(m-Tolyloxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid, TFA salt		531.4	7.41 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 7.4 Hz, 1H), 7.30-7.18 (m, 4H), 7.18-7.08 (m, 2H), 6.74 (d, J = 7.4 Hz, 1H), 6.67 (s, 1H), 6.64 (d, J = 8.5 Hz, 1H), 5.13 (s, 2H), 4.01-3.93 (m, 2H), 3.76 (t, J = 6.9 Hz, 2H), 3.43 (dd, J = 12.0, 6.0 Hz, 2H), 2.73 (t, J = 7.3 Hz, 2H), 2.63-2.45 (m, 4H), 2.28 (s, 3H), 2.13 (dt, J = 13.1, 6.5 Hz, 2H), 1.87-1.75 (m, 2H)*	10.3 min, 99.0% 9.4 min, 98.9%
206	3-((3-(1-(4-(3-Fluoro-2- methylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid, TFA salt	F	549.3	7.40 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.30-7.12 (m, 5H), 7.07 (dd, J = 15.4, 8.1 Hz, 1H), 6.65 (d, J = 8.8 Hz, 1H), 6.61 (d, J = 7.5 Hz, 1H), 5.13 (s, 2H), 3.98 (br. s, 2H), 3.77 (t, J = 7.0 Hz, 2H), 3.44 (dd, J = 12.0, 6.0 Hz, 2H), 2.63-2.52 (m, 2H), 2.47 (br. s, 2H), 2.17 (dt, J = 12.6, 6.2 Hz, 2H), 1.93 (s, 3H), 1.81 (dd, J = 13.2, 6.6 Hz, 2H)*	10.3 min, 100% 9.2 min, 100%
207	3-((3-(1-(4-(2,3-Dihydro-1H-inden-4-yloxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid, TFA salt		557.4	7.40 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.28-7.11 (m, 5H), 7.06 (t, J = 7.8 Hz, 1H), 6.81 (d, J = 7.4 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 5.13 (s, 2H), 3.98 (br. s, 2H), 3.78 (t, J = 7.0 Hz, 2H), 3.44 (dd, J = 12.1, 6.1 Hz, 2H), 2.84 (t, J = 7.4 Hz, 2H), 2.78 (t, J = 7.3 Hz, 2H), 2.65 (br. s, 2H), 2.61-2.53 (m, 2H), 2.49 (t, J = 5.9 Hz, 2H), 2.14 (dt, J = 13.0, 6.4 Hz, 2H), 2.02-1.89 (m, 2H), 1.87-1.74 (m, 2H)*	11.0 min, 100% 9.9 min, 100%
208	3-((3-(1-(4-(2-Fluoro-3- methylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid, TFA salt	F	549.3	7.41 (t, J = 7.5 Hz, 1H), 7.38-7.19 (m, 5H), 7.15 (br. s, 1H), 6.92 (t, J = 7.4 Hz, 1H), 6.83-6.71 (m, 2H), 5.13 (s, 2H), 4.05 (t, J = 5.6 Hz, 2H), 3.77 (t, J = 6.9 Hz, 2H), 3.44 (dd, J = 12.1, 6.1 Hz, 2H), 2.76 (t, J = 7.2 Hz, 2H), 2.62-2.48 (m, 4H), 2.23 (d, J = 2.1 Hz, 3H), 2.16 (dd, J = 13.2, 6.6 Hz, 2H), 1.87-1.76 (m, 2H)*	10.2 min, 100% 9.3 min, 100%

		0			
Example	Name	R	LCMS, [M + H] ⁺	^{1}H NMR (400 MHz, CD ₃ CN) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
209	3-((3-(1-(4-(2-Chloro-3- methylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid	Cl	565.4	7.42 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.29-7.19 (m, 4H), 7.12 (t, J = 7.9 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 5.09 (s, 2H), 4.03 (t, J = 5.9 Hz, 2H), 3.71 (t, J = 6.9 Hz, 2H), 3.32 (dd, J = 12.7, 6.5 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.46 (t, J = 6.6 Hz, 4H), 2.31 (s, 3H), 2.09 (p, J = 6.6 Hz, 2H), 1.78 (p, J = 6.7 Hz, 2H)	11.0 min, 100% 9.9 min, 100%
210	3-((3-(1-(4-(3-Chloro-2- methylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid	Cl	565.4	7.41 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 7.0 Hz, 1H), 7.29-7.18 (m, 4H), 7.16-7.10 (m, 1H), 7.06 (t, J = 8.1 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 5.14 (s, 2H), 3.99 (br. s, 2H), 3.75 (t, J = 6.9 Hz, 2H), 2.75 (t, J = 7.2 Hz, 2H), 2.56 (br. s, 2H), 2.48 (br. s, 2H), 2.22-2.14 (m, 2H), 2.12 (s, 3H), 1.85-1.76 (m, 2H), 1.84-1.76 (m, 2H)*	11.4 min, 97.8% 10.1 min, 98.4%
211	3-((3-(1-(4-(3-Chloro-2- fluorophenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid	F	569.4	7.42 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 7.5 Hz, 1H), 7.29-7.20 (m, 3H), 7.11-6.97 (m, 5H), 5.09 (s, 2H), 4.07 (t, J = 6.1 Hz, 2H), 3.70 (t, J = 6.9 Hz, 2H), 3.32 (q, J = 6.5 Hz, 2H), 2.67 (t, J = 7.1 Hz, 2H), 2.51-2.44 (m, 4H), 2.09 (dt, J = 13.4, 6.7 Hz, 2H) 1.78 (p, J = 6.7 Hz, 2H)	10.7 min, 98.2% 9.7 min, 98.2%
212	3-((3-(1-(4-(Benzo[d][1,3] dioxol-4-yloxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid		561.4	7.42 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.25 (m, 4H), 7.09 (d, J = 7.6 Hz, 1H), 6.79-6.72 (m, 1H), 6.54 (d, J = 8.5 Hz, 1H), 6.51 (d, J = 7.8 Hz, 1H), 5.87 (s, 2H), 5.09 (s, 2H), 4.07 (t, J = 6.1 Hz, 2H), 3.70 (t, J = 6.9 Hz, 2H), 3.32 (q, J = 6.5 Hz, 2H), 2.65 (t, J = 7.2 Hz, 2H), 2.54-2.42 (m, 4H), 2.09-2.01 (m, 2H), 1.79 (p, J = 6.7 Hz, 2H)	9.7 min, 97.4% 9.1 min, 95.0%
213	3-((3-(1-(5-(2,3- Dimethylphenoxy)pentanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid		559.4	7.42 (t, J = 7.6 Hz, 1H), 7.38-7.15 (m, 5H), 7.06 (d, J = 7.6 Hz, 1H), 6.98 (t, J = 7.9 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 5.08 (s, 2H), 3.89 (br. s, 2H), 3.69 (t, J = 6.8 Hz, 2H), 3.31 (dd, J = 12.8, 6.4 Hz, 2H), 2.56 (t, J = 6.9 Hz, 2H), 2.52 (t, J = 6.4 Hz, 2H), 2.45 (t, J = 6.6 Hz, 2H), 2.21 (s, 3H), 2.07 (s, 3H), 1.85-1.72 (m, 6H)	10.8 min, 100% 9.5 min, 100%

Example	Name	R	LCMS, [M + H] ⁺	$^{1}\text{H NMR (400 MHz, CD}_{3}\text{CN)}$ δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
214	3-((3-(1-(4-(2-Chloro-6- methylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) propanoic acid	CI	565.3	7.43 (t, J = 7.6 Hz, 1H), 7.39-7.18 (m, 6H), 7.12 (d, J = 7.5 Hz, 1H), 7.11-7.05 (m, 1H), 6.97 (t, J = 7.8 Hz, 1H), 5.10 (s, 2H), 3.90 (t, J = 5.9 Hz, 2H), 3.73 (t, J = 6.8 Hz, 2H), 3.32 (q, J = 6.5 Hz, 2H), 2.77 (t, J = 7.2 Hz, 2H), 2.54 (t, J = 6.4 Hz, 2H), 2.46 (t, J = 6.6 Hz, 2H), 2.23 (s, 3H), 2.15-2.06 (m, 2H), 1.81 (p, J = 6.7 Hz, 2H)	10.7 min, 100% 9.6 min, 100%

40

55

60

Example 215

2-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenoxy)ethanesulfonic acid

Step A. 4-Bromo-1-(3-methoxybenzyl)-1H-pyrazole

$$\bigcup_{O}\bigvee_{N}^{N} \to \operatorname{Br}$$

The title compound was prepared using a procedure analogous to methyl 3-((4-bromo-1H-pyrazol-1-yl)methyl)ben-

zoate except that methyl 3-(bromomethyl)benzoate was replaced with 1-(bromomethyl)-3-methoxybenzene. LCMS, [M+H]*=267.1.

Step B. 3-((4-Bromo-1H-pyrazol-1-yl)methyl)phenol

To a solution of 4-bromo-1-(3-methoxybenzyl)-1H-pyrazole (3.8 g, 14.23 mmol) was dissolved in CH₂Cl₂ (30 mL) at
0° C. was added boron tribromide (2.69 mL, 28.5 mmol). The
reaction mixture was stirred at 0° C. for 30 min and concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (2.55 g, 71% yield) as a yellow oil. LCMS, [M+H]⁺⁼
253.0. ¹H NMR (400 MHz, CDCl₃) & 7.47 (s, 1H), 7.38 (s,
1H), 7.19 (t, J=8.0 Hz, 1H), 6.76 (d, J=8.0 Hz, 2H), 6.59 (s,
1H), 5.20 (s, 2H).

Step C. 2-(3-((4-Bromo-1H-pyrazol-1-yl)methyl) phenoxy)ethyl acetate

A mixture of 3-((4-bromo-1H-pyrazol-1-yl)methyl)phenol (0.6 g, 2.37 mmol), 2-bromoethyl acetate (0.792 g, 4.74

^{*&}lt;sup>1</sup>H NMR (400 MHz, CD₂Cl₂) δ.

45

mmol) and potassium carbonate (0.655 g, 4.74 mmol) in DMF (5 mL) was heated at 200° C. in a microwave reactor for 1 h. After this time, the reaction mixture was quenched with water and extracted with ethyl acetate. The organic layer was dried and concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (0.27 g, 34% yield) as a colorless oil. LCMS, [M+H]⁺=339.0. 1 H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.34 (s, 1H), 7.24 (dd, J=8.3, 7.6 Hz, 2H), 6.83 (dd, J=8.3, 2.4 Hz, 1H), 6.80 (d, J=7.6 Hz, 1H), 6.74 (d, J=2.4 Hz, 1H), 5.20 (s, 2H), 4.41-4.32 (m, 2H), 4.14-4.08 (m, 2H), 2.06 (s, 3H).

Step D. 4-(2,3-Dimethylphenoxy)-1-(5-(1-(3-(2-hydroxyethoxy)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one

The title compound was prepared using a procedure analogous to methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)picolinate except that methyl 4-bromopicolinate was replaced with 2-(3-((4-bromo-1H-pyrazol-1-yl)methyl)phenoxy)ethyl acetate. LCMS, [M+H]⁺= 540.4.

Step E. 2-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenoxy)ethyl methanesulfonate

To a solution of 4-(2,3-dimethylphenoxy)-1-(5-(1-(3-(2-hydroxyethoxy)benzyl)-1H-pyrazol-4-yl)-3,4-dihydro-

quinolin-1(2H)-yl)butan-1-one (0.07 g, 0.13 mmol) in $\rm CH_2Cl_2$ (2 mL) at 0° C. was added methanesulfonyl chloride (0.019 g, 0.17 mmol) and triethylamine (0.029 mL, 0.21 mmol) dropwise. The reaction mixture was stirred at 0° C. for 2 h and then quenched with saturated NaHCO $_3$. The resulting mixture was extracted with ethyl acetate. The organic layer was washed with 1 N HCl, saturated NaHCO $_3$, and brine, dried and concentrated to afford the title compound (80 mg, 100%). LCMS, [M+H]⁺=618.4.

Example 215

A mixture of 2-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)phenoxy)ethyl methanesulfonate (0.08 g, 0.130 20 mmol) and sodium sulfite (250 mg, 1.983 mmol) in ethanol (2 mL) and water (4 mL) was heated at 150° C. in a microwave reactor for 20 min. The reaction mixture was concentrated and the resulting residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ, C18, 30×100 mm; 10 min gradient from 100% A:0% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/ 10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 215 (9 mg, 11% yield) as a white powder. LCMS, $[M+H]^+=604.4.$ ¹H NMR (400 MHz, CD₃CN) δ 7.61 (s, 1H), 7.52 (s, 1H), 7.27 (t, J=7.9 Hz, 1H), 7.23-7.09 (m, 3H), 7.02-6.88 (m, 3H), 6.84 (d, J=7.4 Hz, 1H), 6.67 (d, J=7.9 Hz, 1H), 6.65 (d, J=8.9 Hz, 1H), 5.28 (s, 2H), 4.31 (t, J=7.1 Hz, 2H), 3.85 (br. s, 2H), 3.72-3.64 (m, 2H), 3.25-3.17 (m, 2H), 2.70 (t, J=7.1 Hz, 2H), 2.49 (br. s, 2H), 2.10-1.99 (m, 5H), 1.85-1.68 (m, 5H). HPLC-1: Rt=11.9 min, purity=98.2%; HPLC-2: Rt=9.9 min, purity=100%.

Example 216

1-(3-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)phenoxy)propyl)guanidine, TFA salt

25

45

The title compound was prepared using a procedure analogous to 2-(3-((4-bromo-1H-pyrazol-1-yl)methyl)phenoxy) ethyl acetate except that 2-bromoethyl acetate was replaced with tert-butyl 3-bromopropylcarbamate. LCMS, [M+H]⁺= 20 410.0.

Step B. tert-Butyl 3-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenoxy)propylcarbamate

The title compound was prepared using a procedure analogous to methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)picolinate except that methyl 4-bromopicolinate was replaced with tert-butyl 3-(3-((4-65 bromo-1H-pyrazol-1-yl)methyl)phenoxy)propyl carbamate. LCMS, [M+H]*=653.3.

326

Step C. 1-(5-(1-(3-(3-Aminopropoxy)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one

The title compound was prepared using a procedure analogous to 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one except that tert-butyl 3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzylcarbamate was replaced with tert-butyl 3-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenoxy)propylcarbamate. LCMS, [M+H]⁺=553.3.

Example 216

To a solution of 1H-pyrazole-1-carboximidamide hydro-⁵⁰ chloride (2.67 mg, 0.018 mmol) in DMF (0.5 mL) at room temperature was added 1-(5-(1-(3-(3-Aminopropoxy)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2, 3-dimethylphenoxy)butan-1-one (6.7 mg, 0.012 mmol) and N-ethyl-N-isopropylpropan-2-amine (4.35 μL, 0.024 mmol). The reaction mixture was heated to 120° C. in a microwave reactor for 20 min. After cooling to room temperature, the reaction mixture was filtered and the filtrate was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ, C18, 30×100 mm; 10 min gradient from 95% A:5% B to 0% A:100% B (A=90% H₂O/10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 216 (8 mg, 89% yield) as a white powder. LCMS, [M+H]⁺=595.5. ¹H NMR (400 MHz, MeOD) δ 7.68 (s, 1H), 7.56 (s, 1H), 7.45-7.19 (m, 4H), 7.11-6.91 (m, 4H), 6.81-6.65 (m, 2H), 5.41 (s, 2H), 4.14 (t, J=5.8 Hz, 2H), 3.95 (br. s, 2H), 3.82 (t, J=6.7 Hz, 2H), 3.53-3.44 (m, 2H), 2.88 (t,

J=6.7 Hz, 2H), 2.57 (br. s, 2H), 2.28-2.06 (m, 7H), 1.97-1.76 (m, 5H). HPLC-1: Rt=8.7 min, purity=96.9%; HPLC-2: Rt=11.0 min, purity=96.9%.

Step B. 4-(2,3-Dimethylphenoxy)-1-(5-(1-(3-hydroxybenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one

Example 217

((3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenoxy)carbonylamino)methanesulfonic acid

15

20

35

40

5

The title compound was prepared using a procedure analogous to 3-((4-bromo-1H-pyrazol-1-yl)methyl)phenol except 4-bromo-1-(3-methoxybenzyl)-1H-pyrazole replaced with 4-(2,3-dimethylphenoxy)-1-(5-(1-(3-meth-30 oxybenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)yl)butan-1-one. LCMS, [M+H]+=496.4.

Step A. 4-(2,3-Dimethylphenoxy)-1-(5-(1-(3-methoxybenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1

(2H)-yl)butan-1-one

The title compound was prepared using a procedure analogous to methyl 4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)picolinate except that methyl 65 4-bromopicolinate was replaced with 4-bromo-1-(3-methoxybenzyl)-1H-pyrazole. LCMS, [M+H]⁺=510.4.

Example 217

To a solution of 4-(2,3-dimethylphenoxy)-1-(5-(1-(3-hydroxybenzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)yl)butan-1-one (45 mg, 0.09 mmol) in THF 0.2 mL) was added triethyl amine (0.038 mL, 0.27 mmol) and a catalytic amount of DMAP (1 mg, 8.19 mmol). The reaction mixture was cooled to 0° C. and 4-nitrophenyl carbonochloridate (36.6 mg, 0.18 mmol) in THF (0.2 mL) was added dropwise. The resulting mixture was stirred at 0° C. to room temperature for 30 min and then treated with aminomethanesulfonic acid (202 mg, 1.82 mmol) in DMF (1 mL). The resulting mixture was heated at 80° C. for 20 min and concentrated. The result-55 ing residue was purified by preparative HPLC (PHENOM-ENEX® Axia Luna column, 5μ, C18, 30×100 mm; 10 min gradient from 95% A:5% B to 0% A:100% B (A=90% H₂O/ 10% MeOH+0.1% TFA); (B=90% MeOH/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 217 (10 mg, 60 17% yield) as a white powder. LCMS, [M+H]⁺=633.4. ¹H NMR (400 MHz, MeOD) δ 7.66 (s, 1H), 7.54 (s, 1H), 7.49 (t, J=7.9 Hz, 1H), 7.41-7.29 (m, 2H), 7.30-7.16 (m, 4H), 7.07 (t, J=7.8 Hz, 1H), 6.83-6.70 (m, 2H), 5.48 (s, 2H), 4.37 (s, 2H), 3.94 (br. s, 2H), 3.82 (t, J=6.8 Hz, 2H), 2.91 (t, J=6.6 Hz, 2H), 2.51 (br. s, 2H), 2.28-2.16 (m, 2H), 2.10 (s, 3H), 1.96-1.82 (m, 2H), 1.76 (s, 3H). HPLC-1: Rt=11.9 min, purity=99.0%; HPLC-2: Rt=9.9 min, purity=99.1%.

purity=98.8%.

20

25

30

35

40

45

50

55

330

Example 218

1-(2-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)phenoxy)ethyl)guanidine, TFA salt

Step A. tert-Butyl (tert-butoxycarbonylamino)(2-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenoxy)ethylamino)methylenecarbamate

hydroxyethoxy)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one (0.02 g, 0.037 mmol), 1,3-bis (tert-butoxycarbonyl)-guanidine (0.024 g, 0.093 mmol), triphenylphosphine (0.024 g, 0.093 mmol) in DCM (0.1 mL) was added DEAD (0.040 g, 0.093 mmol, 40% wt in toluene). The reaction mixture was stirred at room temperature for 1 h and then concentrated. The resulting residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to 65 afford the title compound (0.026 g, 90% yield) as a white powder. LCMS, [M+H]⁺=781.3.

Example 218 was prepared using a procedure analogous to 1-(5-(3-(aminomethyl)phenyl)-3,4-dihydroguinolin-1(2H)yl)-4-(2,3-dimethylphenoxy)butan-1-one except that tert-butyl 3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzylcarbamate was replaced with tert-(tert-butoxycarbonylamino)(2-(3-(4-(1-(4-(2,3dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-10 yl)-1H-pyrazol-1-yl)methyl)phenoxy)ethylamino) methylenecarbamate. LCMS, [M+H]⁺=581.5. ¹H NMR (400 MHz, MeOD) δ 7.60 (br. s, 1H), 7.47 (s, 1H), 7.30 (t, J=7.8 Hz, 1H), 7.27-7.19 (m, 2H), 7.16 (s, 1H), 7.00-6.84 (m, 4H), 6.65 (d, J=7.3 Hz, 2H), 5.34 (s, 2H), 4.11 (t, J=5.1 Hz, 2H), 15 3.85 (br. s, 2H), 3.73 (t, J=6.8 Hz, 2H), 3.59 (t, J=5.0 Hz, 2H), 2.80 (t, J=6.8 Hz, 2H), 2.46 (br. s, 2H), 2.11 (dt, J=12.5, 6.3

Example 219

Hz, 2H), 2.02 (s, 3H), 1.83-1.74 (m, 2H), 1.71 (s, 3H). HPLC-1: Rt=8.6 min, purity=95.0%; HPLC-2: Rt=10.3 min,

3-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenoxy)propane-1-sulfonic acid

Step A. 1-(5-(1-(3-(3-Bromopropoxy)benzyl)-1Hpyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3dimethylphenoxy)butan-1-one

35

40

45

50

The title compound was prepared using a procedure analogous to tert-butyl (tert-butoxycarbonylamino)(2-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydro-quinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenoxy) ethylamino)-methylenecarbamate except that 1,3-bis(tert-butoxycarbonyl)-guanidine was replaced with 3-bromopropan-1-ol. LCMS, [M+H]⁺=616.3.

Example 219

Example 219 was prepared using a procedure analogous to Example 215 except that 2-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenoxy)ethyl methanesulfonate was replaced with 1-(5-(1-(3-(3-bromopropoxy)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one. LCMS, [M+H]+618.4. H NMR (400 MHz, MeOD) δ 7.89 (br. s, 1H), 7.75 (s, 1H), 7.44-7.18 (m, 4H), 7.09-6.87 (m, 4H), 6.71 (d, J=7.7 Hz, 2H), 5.48 (s, 2H), 4.18 (t, J=6.3 Hz, 2H), 3.93 (br. s, 2H), 3.81 (t, J=6.8 Hz, 2H), 3.11-2.98 (m, 2H), 2.87 (t, J=6.8 Hz, 2H), 2.56 (br. s, 2H), 2.37-2.24 (m, 2H), 2.18 (dt, J=12.5, 6.3 Hz, 2H), 2.11 (s, 3H), 1.95-1.85 (m, 2H), 1.82 (s, 3H). HPLC-2: Rt=9.1 min, purity=99.9%.

Example 220

3-((3-(1-(1-((3-Chloro-2-methylphenoxy)methyl) cyclopropanecarbonyl)-1,2,3,4-tetrahydroquinolin-5-yl)benzyloxy)carbonylamino)propanoic acid

Step A. Methyl 1-(5-bromo-1,2,3,4-tetrahydroquino-line-1-carbonyl)cyclopropanecarboxylate

The title compound was prepared using a procedure analogous to 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one except that 4-(2,3-dimethylphenoxy)butanoic acid was replaced with 1-(methoxycarbonyl)cyclopropanecarboxylic acid. LCMS, $[M+H]^+=338.0$.

Step B. 1-(5-Bromo-1,2,3,4-tetrahydroquinoline-1-carbonyl)cyclopropanecarboxylic acid

A mixture of methyl 1-(5-bromo-1,2,3,4-tetrahydroquino-line-1-carbonyl)cyclopropanecarboxylate (500 mg, 1.478 mmol) and LiOH (1.478 mL, 5.91 mmol) in 1,4-dioxane (5 mL) was stirred at room temperature for 2 d, and then adjusted to pH 1-3 with 3 N HCl. The resulting mixture was extracted with ethyl acetate (3×15 ml). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the title compound (0.37 g, 37%).

Step C. (5-Bromo-3,4-dihydroquinolin-1(2H)-yl)(1-(hydroxymethyl)cyclopropyl)methanone

To a solution of 1-(5-bromo-1,2,3,4-tetrahydroquinoline-55 1-carbonyl)cyclopropanecarboxylic acid (0.58 g, 1.789 mmol) in CH₂Cl₂ (17 mL) at 0° C. was added N,N-dimethylformamide (2.78 μL, 0.036 mmol) and oxalyl chloride (0.187 mL, 2.147 mmol) slowly. The reaction mixture was stirred at 0° C. for 60 min, and then at room temperature for 16 h. The solvent was removed under reduced pressure and the crude acyl chloride (0.610 g, 1.78 mmol) was re-dissolved in THF (17.8 mL) and cooled to 0° C. Lithium tri-tert-butoxy-aluminum hydride (7.12 mL, 7.12 mmol) was added, and the reaction mixture was stirred at 0° C. for 2 h. The reaction mixture was quenched with saturated NH₄Cl (10 mL) and then stirred at room temperature for 30 min. After this time, the mixture was extracted with EtOAc (2×40 mL). The com-

15

20

50

bined organic layer was dried, filtered and concentrated. The resulting residue was purified by flash chromatography (0 to 100% ethyl acetate:hexanes) to afford the title compound (0.45 g, 82% yield) as an oil. LCMS, [M+H]⁺=310.0. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J=8.7 Hz, 1H), 7.35 (d, 5 J=8.0 Hz, 1H), 7.01 (dd, J=8.7, 8.0 Hz, 1H), 3.88-3.81 (m, 2H), 3.56 (d, J=5.8 Hz, 2H), 2.81 (t, J=6.9 Hz, 2H), 2.04-1.93

(m, 3H), 1.06 (dd, J=6.7, 4.9 Hz, 2H), 0.81 (dd, J=6.7, 4.9 Hz, 2H).

Step D. (5-Bromo-3,4-dihydroquinolin-1(2H)-yl)(1-((3-chloro-2-methylphenoxy)methyl)cyclopropyl) methanone

The title compound was prepared using a procedure analogous to ethyl 2-(4-(1-(4-(2,4,5-trichlorophenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetate except that ethyl 2-(4-(1-(4-hydroxybutanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)acetate was replaced (5-bromo-3,4-dihydroquinolin-1(2H)-yl)(1-(hydroxymethyl)cyclopropyl)methanone and 2,4,5-trichlorophenol was replaced with 3-chloro-2-methylphenol. 40 LCMS, $[M+H]^+=436.1$. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J=8.2 Hz, 1H), 7.33 (d, J=7.9 Hz, 1H), 7.04-6.90 (m, 3H), 6.49 (d, J=7.8 Hz, 1H), 3.92-3.82 (m, 4H), 2.65 (t, J=6.9 Hz, 2H), 2.26 (s, 3H), 1.96-1.87 (m, 2H), 1.21 (dd, J=6.9, 4.9 Hz, 2H), 0.94 (q, J=5.0 Hz, 2H).

Example 220

Example 220 was prepared using a procedure analogous to 55 Example 198 except that 1-(5-bromo-3,4-dihydroquinolin-1 (2H)-yl)-4-hydroxybutan-1-one was (5-bromo-3,4-dihydroquinolin-1(2H)-yl)(1-((3-chloro-2methylphenoxy)methyl)cyclopropyl)methanone. LCMS, $[M+H]^+=577.4$. ¹H NMR (500 MHz, CD_2Cl_2) δ 7.47 (d, 60 J=7.9 Hz, 1H), 7.38-7.28 (m, 2H), 7.25 (t, J=7.8 Hz, 1H), 7.10 (d, J=7.4 Hz, 1H), 7.03-6.91 (m, 4H), 6.37 (dd, J=6.1, 2.8 Hz, 1H), 5.07 (s, 2H), 3.80 (t, J=6.8 Hz, 2H), 3.61 (s, 2H), 3.44 (dd, J=11.7, 5.8 Hz, 2H), 2.63-2.49 (m, 2H), 2.37-2.25 (m, 5H), 1.82-1.72 (m, 2H), 1.44-1.34 (m, 2H), 0.91 (q, J=4.7 Hz, 65 2H). HPLC-1: Rt=10.2 min, purity=100%; HPLC-2: Rt=9.1 min, purity=99.8%.

2-(3-((4-(3-(4-(3-Chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)acetic acid

To a suspension of Example 24 (25 mg, 0.045 mmol), methyl 2-aminoacetate (24.84 mg, 0.198 mmol), and Hunig's base (158 µL, 0.90 mmol) in ethyl acetate (300 µL) was added a 50% w/w solution of T3P in Et₂O (160 µL, 0.27 mmol) dropwise. The reaction mixture was stirred at room temperature for 24 h and concentrated in vacuo. The resulting residue was re-dissolved in THF with one drop of MeOH and LiOH $(90 \mu L, 0.360 \text{ mmol})$ was added. The reaction mixture was stirred at room temperature for 1d, and adjusted to pH 1-3. The resulting mixture was extracted with EtOAc, and the organic layer was concentrated and purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ, C18, 30×100 mm; 15 min gradient from 100% A:0% B to 0% A:100% B and 5 min 100% B (A=90% H₂O/10% MeCN+ 0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 221 (13 mg, 46% yield). LCMS, $[M+H]^+=613.5$. ¹H NMR (400 MHz, CDCl₃) δ . HPLC-1: Rt=13.6 min, purity=100%; HPLC-2: Rt=13.6 min, purity=100%.

Example 222

(3-((4-(3-(4-(3-Chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7yl)-1H-pyrazol-1-yl)methyl)benzamido)methanesulfonic acid

25

30

35

50

To a mixture of Example 24 (20 mg, 0.036 mmol), aminomethanesulfonic acid (7.99 mg, 0.072 mmol), and Hunig's base (31.4 µL, 0.180 mmol) in ethyl acetate (300 µL) and DMF (300 μ L) was added T3P (86 μ L, 0.144 mmol, 50% w/w in Et₂O). The reaction mixture was stirred at room temperature for 1 d. At the conclusion of this period, the reaction mixture was concentrated and purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5μ, C18, 30×75 mm; 10 min gradient from 100% A:0% B to 0% A:100% B and 3 min 100% B (A=90% H₂O/10% MeCN+0.1% TFA); ¹⁰ $(B=90\% MeCN/10\% H_2O+0.1\% TFA)$; detection at 220 nm) to afford Example 222 (13 mg, 55% yield). LCMS, [M+H]⁺= 649.3. 1 H NMR (400 MHz, MeOD) δ 8.00 (s, 1H), 7.88 (s, 1H), 7.86 (d, J=4.3 Hz, 1H), 7.81 (s, 1H), 7.49 (d, J=5.1 Hz, 2H), 7.30 (d, J=7.4 Hz, 1H), 7.19 (t, J=7.8 Hz, 1H), 7.13-7.00 (m, 2H), 6.90 (d, J=8.0 Hz, 1H), 6.77 (d, J=7.9 Hz, 1H), 5.52 (s, 2H), 4.53 (s, 2H), 4.04-3.93 (m, 2H), 3.85 (s, 2H), 2.74 (t, J=6.3 Hz, 2H), 2.11 (s, 4H), 1.88 (s, 2H), 1.75 (s, 1H), 0.83 (s, 1H), 0.37 (s, 1H). HPLC-2: Rt=12.0 min, purity=99.1%.

Example 223

3-((3-(3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)benzyloxy)carbonylamino)propanoic acid

Example 223 was prepared using a procedure analogous to Example 16 except that 2-(2,3-dimethylphenoxy)ethyl 5-bromo-3,4-dihydroquinoline-1(2H)-carboxylate was replaced with Example 24. LCMS, [M–H]⁺=555.5. ¹H NMR (400 MHz, CDCl₃) δ. HPLC-1: Rt=10.8 min, purity=98.8%; 45 HPLC-2: Rt=9.6 min, purity=98.9%.

Example 224

2-((3-(3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)benzyloxy)carbonylamino)ethanesulfonic acid

Example 224 was prepared using a procedure analogous to Example 36 except that 1-(5-bromo-3,4-dihydroquinolin-1 (2H)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with 1-(7-bromo-1a,2-dihydro-1H-cyclopropa[c]quinolin-3 (7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one, and 3-(cyclopropylamino)propane-1-sulfonic acid was replaced with 2-aminoethanesulfonic acid. LCMS, [M+H]⁺=593.3. 1 H NMR (400 MHz, MeOD) δ 7.41-7.29 (m, 3H), 7.25 (d, J=7.0 Hz, 1H), 7.21-7.13 (m, 2H), 7.09 (d, J=6.7 Hz, 1H), 6.94 (t, J=7.9 Hz, 1H), 6.68 (d, J=7.5 Hz, 1H), 6.62 (d, J=8.1 Hz, 1H), 5.08 (s, 2H), 3.96-3.87 (m, 1H), 3.85-3.72 (m, 1H), 3.52 (dd, J=14.0, 7.3 Hz, 2H), 2.94 (t, J=7.0 Hz, 2H), 2.85-2.61 (m, 4H), 2.24-1.99 (m, 5H), 1.85-1.71 (m, 4H), 1.70-1.60 (m, 1H), 0.47-0.36 (m, 1H), 0.42 (d, J=4.1 Hz, 1H). HPLC-2: Rt=9.7 min, purity=100%.

Example 225

2-(4-((3-(3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a, 2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl) benzyloxy)carbonyl)piperazin-1-yl)ethanesulfonic acid

Example 225 was prepared using a procedure analogous to Example 224 except that 2-aminoethanesulfonic acid was replaced with 2-(piperazin-1-yl)ethanesulfonic acid. LCMS, [M+H]⁺=662.2. ¹H NMR (400 MHz, MeOD) & 7.58-7.46 (m, 3H), 7.41 (d, J=6.7 Hz, 1H), 7.37-7.18 (m, 3H), 7.06 (t, J=7.8 Hz, 1H), 6.80 (d, J=7.6 Hz, 1H), 6.75 (d, J=7.1 Hz, 1H), 5.29 (s, 2H), 5.15-5.01 (m, 1H), 4.87 (br. S, 1H), 4.38 (br. S, -2H), 4.06 (br. S, 1H), 3.99-3.86 (m, 1H), 3.72 (br. S, 2H), 3.62 (t, J=6.9 Hz, 2H), 3.29 (t, J=6.9 Hz, 2H), 3.21 (br. S, 2H), 2.95-2.74 (m, 4H), 2.34-2.14 (m, 6H), 1.89 (s, 3H), 1.79 (s, 1H), 0.93-0.76 (m, 1H), 0.58 (s, 1H). HPLC-1: Rt=11.0 min, purity=98.3%; HPLC-2: Rt=11.1 min, purity=98.5%.

45

50

55

2-((3-((1aS,7bR)-3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quino-lin-7-yl)benzyloxy)carbonylamino)ethanesulfonic

acid

Example 224 was purified by chiral HPLC (CHIRAL-PAK® AD-H, 250×21 cm ID, 5 μ m; mobile phase: 78%/22% CO₂/acetonitrile-methanol-0.1 v/v % DEA; detection at 220 nm) to afford Example 226 as the faster moving isomer on preparative HPLC. LCMS, [M+H]⁺=593.5. HPLC (CHIRALPAK® AD-H, 250×4.6 mm ID, 5 μ m; mobile phase: 80%/20% CO₂/acetonitrile-methanol-0.1 v/v % DEA; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 235 nm): Rt=20.6 min, purity=99.0%.

Example 227

2-(((3-(((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)benzyloxy)carbonylamino)ethanesulfonic acid

Example 224 was purified by chiral HPLC (CHIRAL-PAK® AD-H, 250×21 cm ID, 5 μm; mobile phase: 78%/22% CO₂/acetonitrile-methanol-0.1 v/v % DEA; detection at 220 nm) to afford Example 227 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=593.5. HPLC 65 (CHIRALPAK® AD-H, 250×4.6 mm ID, 5 μm; mobile phase: 80%/20% CO₂/acetonitrile-methanol-0.1 v/v % DEA;

338

flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 235 nm): Rt=22.1 min, purity=91.2%.

Example 228

3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quino-lin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Example 9 was purified by chiral HPLC (CHIRALPAK® AD-H, 250×21 cm ID, 5 µm; mobile phase: 70%/30% CO₂/methanol; detection at 220 nm) to afford Example 228 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=536.5. HPLC (CHIRALPAK® AD-H, 250×4.6 mm ID, 5 µm; mobile phase: 70%/30% CO₂/methanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 235 nm): Rt=10.9 min, purity=96.3%.

Example 229

3-((4-((1aS,7bR)-3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

10

25

40

Bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinoline was purified by chiral HPLC (CHIRALCEL® OJ-H, 250×30 cm ID, 5 μ m; mobile phase: 85%/15% CO₂/methanol; detection at 220 nm) to afford the title compound as the fastermoving isomer on preparative HPLC. LCMS, [M+H]⁺⁼ 223.9. HPLC (CHIRALCEL® OJ-H, 250×4.6 mm ID, 5 μ m; mobile phase: 85%/15% CO₂/methanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=6.5 min, purity=99.8%.

Example 229

Example 229 was prepared using a procedure analogous to Example 9 except that bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinoline was replaced with (1aS,7bR)-7-bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinoline. LCMS, [M+H]+=536.5. HPLC (CHIRALPAK® AD-H, 250×4.6 mm ID, 5 μ m; mobile phase: 70%/30% CO₂/methanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 235 nm): Rt=8.1 min, purity=99.5%.

Example 230

3-((4-((1aS,7bR)-3-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Example 24 was purified by chiral HPLC (CHIRALPAK® AD-H, 250×30 cm ID, 5 μ m; mobile phase: 80%/20% CO₂/ isopropanol; detection at 220 nm) to afford Example 230 as 65 the faster moving isomer on preparative HPLC. LCMS, [M+H]⁺=556.4. HPLC (CHIRALPAK® AD-H, 250×4.6 mm

340

ID, 5 μ m; mobile phase: 80%/20% CO₂/isopropanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=11.7 min, purity=99.5%.

Example 231

3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Example 24 was purified by chiral HPLC (CHIRALPAK® AD-H, 250×30 cm ID, 5 μm; mobile phase: 80%/20% CO₂/isopropanol; detection at 220 nm) to afford Example 231 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=556.4. HPLC (CHIRALPAK® AD-H, 250×4.6 mm ID, 5 μm; mobile phase: 80%/20% CO₂/isopropanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=17.1 min, purity=95.8%.

Example 232

3-((4-((1aS,7bR)-3-((2-(2,3-Dimethylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Example 26 was purified by chiral HPLC (CHIRALPAK® AD-H, 250×30 cm ID, 5 µm; mobile phase: 75%/25% CO₂/methanol:isopropanol (2:1); detection at 220 nm) to afford Example 232 as the faster moving isomer on preparative HPLC. LCMS, [M+H]⁺=558.2. HPLC (CHIRALPAK®

10

15

20

25

40

45

50

55

60

AD-H, 250×4.6 mm ID, 5 µm; mobile phase: 75%/25% $\rm CO_2/$ methanol:isopropanol (2:1); flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=6.5 min, purity=98.0%.

Example 233

3-((4-((1aR,7bS)-3-((2-(2,3-Dimethylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Example 26 was purified by chiral HPLC (CHIRALPAK® AD-H, 250×30 cm ID, 5 μm; mobile phase: 75%/25% CO₂/methanol:isopropanol (2:1); detection at 220 nm) to afford Example 233 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=558.2. HPLC (CHIRALPAK® AD-H, 250×4.6 mm ID, 5 μm; mobile phase: 75%/25% CO₂/methanol:isopropanol (2:1); flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=8.4 min, purity=98.0%.

Example 234

3-((3-((1aR,7bS)-3-((2-(3-Chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)benzyloxy)carbonylamino) propanoic acid

Example 21 was purified by chiral HPLC (CHIRALPAK® AD-H, 250×30 cm ID, 5 μ m; mobile phase: 75%/25% CO₂/ isopropanol; detection at 220 nm) to afford Example 234 as 65 the faster moving isomer on preparative HPLC. LCMS, [M+H]⁺=579.3. HPLC (CHIRALPAK® AD-H, 250×4.6 mm

ID, 5 μ m; mobile phase: 75%/25% CO₂/isopropanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=8.4 min, purity=95.6%.

Example 235

3-((3-((1aS,7bR)-3-((2-(3-Chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclo-propa[c]quinolin-7-yl)benzyloxy)carbonylamino) propanoic acid

Example 21 was purified by chiral HPLC (CHIRALPAK® AD-H, 250×30 cm ID, 5 μ m; mobile phase: 75%/25% CO₂/isopropanol; detection at 220 nm) to afford Example 235 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=579.3. HPLC (CHIRALPAK® AD-H, 250×4.6 mm ID, 5 μ m; mobile phase: 75%/25% CO₂/isopropanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=9.9 min, purity=95.8%.

Example 236

3-(((3-((1aS,7bR)-3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quino-lin-7-yl)benzyloxy)carbonylamino)propanoic acid

Example 223 was purified by chiral HPLC (CHIRAL-PAK® AD-H, 250×30 cm ID, 5 μ m); mobile phase: 80%/20% CO₂/methanol; detection at 220 nm) to afford Example 236 as the faster-moving isomer on preparative HPLC. LCMS, [M+H]⁺=557.5. HPLC (CHIRALPAK® AD-H, 250×4.6 mm

10

15

20

25

40

ID, 5 μ m; mobile phase: 80%/20% CO₂/methanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=8.4 min, purity=99.5%.

Example 237

3-(((3-(((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quino-lin-7-yl)benzyloxy)carbonylamino)propanoic acid

Example 223 was purified by chiral HPLC (CHIRAL-PAK® AD-H, 250×30 cm ID, 5 μ m; mobile phase: 80%/20% CO₂/methanol; detection at 220 nm) to afford Example 237 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=557.5. HPLC (CHIRALPAK® AD-H, 250×4.6 mm ID, 5 μ m; mobile phase: 80%/20% CO₂/methanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=10.5 min, purity=95.8%.

Example 238

(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)methanesulfonic acid

Example 150 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 μ m; mobile phase: 45% methanol-0.1% DEA/55% CO₂; detection at 220 nm) to afford Example 238 as the faster-moving isomer on preparative 65 HPLC. LCMS, [M+H]⁺=629.2. HPLC (KROMASIL® Cellucoat-5, 250×4.6 mm ID, 5 μ m; mobile phase: 45% methanormal methanology.

344

nol-0.1% DEA/55% $\rm CO_2$; flow rate: 2 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=2.5 min, purity=99.5%.

Example 239

(3-((4-((1aS,7bR)-3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quino-lin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)methanesulfonic acid

Example 150 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 μm; mobile phase: 45% methanol-0.1% DEA/55% CO₂; detection at 220 nm) to afford Example 239 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=629.2. HPLC (KROMASIL® Cellucoat-5, 250×4.6 mm ID, 5 μm; mobile phase: 45% methanol-0.1% DEA/55% CO₂; flow rate: 2 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=3.0 min, purity=98.9%.

Example 240

2-(3-((4-((1 aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido) ethanesulfonic acid

Example 151 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 μm; mobile phase: 45% methanol-0.1% DEA/55% CO₂; detection at 220 nm) to afford Example 240 as the faster-moving isomer on preparative HPLC. LCMS, [M+H]⁺=643.2. HPLC (KROMASIL® Cel-

15

20

25

45

lucoat-5, 250×4.6 mm ID, 3 nm; mobile phase: 45% methanol-0.1% DEA/55% $\rm CO_2$; flow rate: 2 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=2.0 min, purity=99.5%.

Example 241

2-(3-((4-((1aS,7bR)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido) ethanesulfonic acid

Example 151 was purified by chiral HPLC (KROMASIL® 30 Cellucoat-5, 250×21 cm ID, 5 µm; mobile phase: 45% methanol-0.1% DEA/55% 30 Cog; detection at 220 nm) to afford Example 241 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]+=643.2. HPLC (KROMASIL® Cellucoat-5, 250×4.6 mm ID, 3 nm; mobile phase: 45% methanol-0.1% DEA/55% 30 COg; flow rate: 2 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=2.5 min, purity=98.9%.

Example 242

(3-((4-((1 aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido) methanesulfonic acid

Example 222 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 μ m; mobile phase: 45% (1:1) 65 methanol-ethanol-0.1% DEA/55% CO₂; detection at 220 nm) to afford Example 242 as the faster-moving isomer on

346

preparative HPLC. LCMS, [M+H]⁺=649.3. HPLC (KRO-MASIL® Cellucoat-5, 250×4.6 mm ID, 5 µm; mobile phase: 45% (1:1) methanol-ethanol-0.1% DEA/55% CO₂; flow rate: 2 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=4.1 min, purity=99.0%.

Example 243

(3-((4-((1aS,7bR)-3-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido) methanesulfonic acid

Example 222 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 µm; mobile phase: 45% (1:1) methanol-ethanol-0.1% DEA/55% CO₂; detection at 220 nm) to afford Example 243 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=649.3. HPLC (KROMASIL® Cellucoat-5, 250×4.6 mm ID, 5 µm; mobile phase: 45% (1:1) methanol-ethanol-0.1% DEA/55% CO₂; flow rate: 2 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=5.7 min, purity=99.0%.

Example 244

2-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphe-noxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)acetic acid

15

20

25

40

45

50

55

60

Example 221 was purified by chiral HPLC (CHIRAL-PAK® AD-H, 250×30 cm ID, 5 μ m; mobile phase: 60%/40% CO₂/isopropanol; detection at 220 nm) to afford Example 244 as the faster-moving isomer on preparative HPLC. LCMS, [M+H]⁺=613.4. HPLC (CHIRALPAK® AD-H, 5250×4.6 mm ID, 5 μ m; mobile phase: 65%/35% CO₂/isopropanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=9.0 min, purity=99.5%.

Example 245

2-(3-((4-((1aS,7bR)-3-(4-(3-Chloro-2-methylphe-noxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)acetic acid

Example 221 was purified by chiral HPLC (CHIRAL-PAK® AD-H, 250×30 cm ID, 5 μ m; mobile phase: 60%/40% CO₂/isopropanol; detection at 220 nm) to afford Example 245 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=613.4. HPLC (CHIRALPAK® AD-H, 250×4.6 mm ID, 5 μ m; mobile phase: 65%/35% CO₂/isopropanol; flow rate: 3 mL/min; 100 bar BP; 35° C.; wavelength: 220 nm): Rt=12.3 min, purity=99.5%.

Example 246

2-(3-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)ethanesulfonic acid

Example 117 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 μ m; mobile phase: 30% Methanol-0.1% DEA/70% CO $_2$; detection at 220 nm) to afford Example 246 as the faster-moving isomer on preparative

HPLC. LCMS, [M+H]⁺=658.5. HPLC (KROMASIL® Cellucoat-5, 250×4.6 mm ID, 5 μm; mobile phase: 40% Methanol-0.1% DEA/60% CO₂; flow rate: 2 mL/min; 100 bar BP; 35° C.; wavelength: 240 nm): Rt=2.8 min, purity=95.4%.

Example 247

2-(3-(3-((14-((1aS,7bR)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)ethanesulfonic acid

 $\label{eq:chiral HPLC} Example 117 was purified by chiral HPLC (KROMASIL \& Cellucoat-5, 250×21 cm ID, 5 \mum; mobile phase: 30% Methanol-0.1% DEA/70% CO_2; detection at 220 nm) to afford Example 247 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]+=658.5. HPLC (KROMASIL & Cellucoat-5, 250×4.6 mm ID, 5 <math>\mu$ m; mobile phase: 40% Methanol-0.1% DEA/60% CO_2; flow rate: 2 mL/min; 100 bar BP; 35° C.; wavelength: 240 nm): Rt=3.1 min, purity=96.9%.

Example 248

3-(3-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ure-ido)propanoic acid

Example 120 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 μ m; mobile phase: 30% Methanol/70% CO₂; detection at 220 nm) to afford Example 248 as the faster-moving isomer on preparative HPLC. LCMS, [M+H]⁺=622.5. HPLC (KROMASIL® Cellucoat-5, 250×4.6

10

mm ID, 5 μ m; mobile phase: 30% Methanol/70% CO₂; flow rate: 3 mL/min; 100 bar BP; wavelength: 220 nm): Rt=12.5 min, purity=99.5%.

Example 249

3-(3-(3-((4-((1aS,7bR)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ure-ido)propanoic acid

Example 120 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 μ m; mobile phase: 30% Methanol/70% CO₂; detection at 220 nm) to afford Example 249 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=622.5. HPLC (KROMASIL® Cellucoat-5, 250×4.6 mm ID, 5 μ m; mobile phase: 30% Methanol/70% CO₂; flow rate: 3 mL/min; 100 bar BP; wavelength: 220 nm): Rt=14.4 min, purity=99.5% for Example 249.

Example 250

2-(3-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ure-ido)acetic acid

Example 119 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 μ m; mobile phase: 30% Methanol/70% CO₂; detection at 220 nm) to afford Example 250 as 65 the faster-moving isomer on preparative HPLC. LCMS, [M+H]⁺=608.4. HPLC (KROMASIL® Cellucoat-5, 250×4.6

mm ID, 5 μ m; mobile phase: 30% Methanol/70% CO₂; flow rate: 3 mL/min; 100 bar BP; wavelength: 220 nm): Rt=11.9 min, purity=96.3%.

Example 251

2-(3-(3-((4-((1 aS,7bR)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ure-ido)acetic acid

Example 119 was purified by chiral HPLC (KROMASIL® Cellucoat-5, 250×21 cm ID, 5 μ m; mobile phase: 30% Methanol/70% CO₂; detection at 220 nm) to afford Example 251 as the slower-moving isomer on preparative HPLC. LCMS, [M+H]⁺=608.4. HPLC (KROMASIL® Cellucoat-5, 250×4.6 mm ID, 5 μ m; mobile phase: 30% Methanol/70% CO₂; flow rate: 3 mL/min; 100 bar BP; wavelength: 220 nm): Rt=13.8 min, purity=97.4%.

Compounds described in Table 14 were prepared using parallel assay synthesis following the general protocol set forth below.

Benzyl alcohol was treated with phosgene or similar reagents, such as diphosgene or triphosgene, in the presence of a base, such as DIEA, at 0° C. for 30 min. The solvent was then removed via vacuum and the resulting intermediate carbonochloridate was dissolved in an organic solvent, such as DCM or EtOAc, and then treated with amine in the presence of base, such as Hunig's base or aqueous Na₂CO₃, to provide the desired carbamate. If required, hydrolysis under a basic condition, such as aqueous LiOH, was used to convert the carbamate to the final product. Alternatively, the benzyl alcohol was treated with 4-nitrophenyl carbonochloridate in the 55 presence of base, such as pyridine, at 0° C. The reaction mixture was slowly warmed to room temperature where it was stirred overnight. After this time, the reaction was quenched with water. The organic layer washed with water and brine, dried over MgSO₄ and concentrated in vacuum to provide the crude material. The crude material was purified by silica gel flash chromatography to afford the corresponding benzyl 4-nitrophenyl carbonate. The resulting benzyl 4-nitrophenyl carbonate was then treated with amine in the presence of a base, such as Hunig's base or aqueous Na₂CO₃, to get the desired carbamate. If required, hydrolysis under a basic condition, such as aqueous LiOH, was used to convert the carbamate to the final product.

$$\bigcap_{N} R_{18} - CO_2H \text{ or } --SO_3H$$

	O	•			
Example	Name	$-R_{18}$ — CO_2 H or $-SO_3$ H	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
252	3-((3-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-2- fluoropropanoic acid	Zozeh CO2H	561.4	4.62*	100
253	(R)-3-((3-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) butanoic acid	Solve CO2H	557.5	4.77*	100
254	3-((3-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-3- (pyridin-3-yl)propanoic acid	Solve N. N.	620.5	4.54*	100
255	(S)-3-((3-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-4- methoxy-4-oxobutanoic acid	Vocation CO ₂ H CO ₂ Me	601.5	4.67*	99.3
256	(1R,2S)-2-((3-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5- yl)benzyloxy)carbonylamino) cyclohexanecarboxylic acid	$\mathcal{F}_{\mathbf{CO}_{2}\mathbf{H}}$	597.5	5.45*	100
257	3-((3-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-2,2- dimethylpropanoic acid	Zoo ₂ H	571.5	5.12*	100
258	(S)-3-((3-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-4- methylpentanoic acid		585.5	5.15*	100

R₁₈-CO₂H or --- SO₃H

272

273

274

HPLC-3:

Rt (min)

4.83*

4.57*

4.34*

Purity

(%)

100

100

100

Example	Name	— R_{18} — CO_2 H or — SO_3 H	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
290	(S)-4-Amino-3-((3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-4-oxobutanoic acid	H ₂ N O CO ₂ H	588.2	4.20	100
291	3-((3-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-4,4,4- trifluorobutanoic acid	Solve CCO2H CCF3	613.2	4.83	100
292	2-(((3-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) methyl)-3,3,3-trifluoropropanoic acid	${}^{CO_{2}H}$	613.2	4.86	100
293	(S)-5-Amino-4-((3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-5-oxopentanoic acid	Por NH2	602.22	4.22	100
294	(1R,2S)-2-((3-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) cyclopentanecarboxylic acid	ZO ₂ H	585.2	5.09	100
295	3-((3-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) heptanoic acid	Por CO ₂ H	601.3	5.22	91.2
296	(S)-3-((3-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-5- methylhexanoic acid	Solve CO ₂ H	601.3	5.18	93.8

297

298

299

300

301

302

TABLE 14-continued

.CO₂H

559.2

559.3

4.48

4.50

96.9

98.4

303 (R)-3-((3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) butanoic acid

(S)-3-((3-(1-(4-(2,3-

Dimethylphenoxy)butanoyl)l,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino) butanoic acid

304

305

307

308

309

benzyloxy)carbonylamino)-4-(S-methylsulfonimidoyl)butanoic acid

TABLE 14-continued

CO₂H

310

312

313

314

315

2-((3-(1-(4-(2,3-Dimethylphenoxy)

butanoyl)-1,2,3,4tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-3-(thiazol-2-yl)propanoic acid

TABLE 14-continued

CF₃

628.2

4.11

100

 $\mathrm{CO_2H}$

$$\bigcap_{N} \bigcap_{H} R_{18} - CO_2 H \text{ or } \longrightarrow SO_3 H$$

Example	Name	$-R_{18}$ — CO_2 H or — SO_3 H	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
322	2-((3-(1-(4-(2,3-Ddimethylphenoxy)butanoyl)-1.2.3 4-tetrahydroquinolin-5-yl)	y, CO₂H	639.2	3.26	100

323 4-(2-Aminophenyl)-2-((3-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-4-oxobutanoic acid

benzyloxy)carbonylamino)-4phosphonobutanoic acid

324 (S)-2-((3-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-3-(4-(phosphonooxy)phenyl)propanoic acid

325 2-((3-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl) benzyloxy)carbonylamino)-3,3,3-trifluoropropanoic acid

20

25

40

45

50

55

2-(3-((4-((1aR,7bS)-3-(4-(2,4,5-Trichlorophenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido) ethanesulfonic acid

Example 326 was prepared using a procedure analogous to Example 222 except that aminomethanesulfonic acid was replaced with 2-aminoethanesulfonic acid and Example 24 was replaced with Example 32D. LCMS, [M+H]⁺=719.2. ¹H NMR (400 MHz, CDCl₃) & 8.45-8.25 (m, 2H), 8.18-8.00 (m, 2H), 7.97 (s, 1H), 7.83-7.69 (m, 1H), 7.45-7.28 (m, 2H), 7.21-7.01 (m, 2H), 6.94 (s, 1H), 5.62 (s, 2H), 4.17-3.75 (m, 4H), 3.39-3.13 (m, 2H), 2.93-2.67 (m, 2H), 2.64-2.42 (m, 2H), 2.32-2.02 (m, 2H), 1.99-1.82 (m, 1H), 1.83-1.64 (m, 1H), 1.13-0.87 (m, 1H), 0.68-0.42 (m, 1H). HPLC-1: N/A; HPLC-2: Rt=9.8 min, purity=99.5%.

Example 327

2-(3-((4-((1aR,7bS)-3-(2-((2,4,5-Trichlorophenoxy) methyl)cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl) methyl)benzamido)ethanesulfonic acid

Example 327 was prepared using a procedure analogous to Example 222 except that aminomethanesulfonic acid was 65 replaced with 2-aminoethanesulfonic acid and Example 24 was replaced with 3-((4-((1aR,7b5)-3-((2-((2,4,5-trichlo-

376

rophenoxy)methyl)cyclopropyl)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl) methyl)benzoic acid. LCMS, [M+H]⁺=731.2 ¹H NMR (400 MHz, CDCl₃) & 8.42-8.26 (m, 1H), 8.21-8.10 (m, 1H), 8.06 (s, 1H), 8.00 (s, 1H), 7.86-7.72 (m, 2H), 7.35 (d, J=8.2 Hz, 2H), 7.18 (t, J=7.5 Hz, 1H), 7.12 (d, J=7.4 Hz, 1H), 6.83 (s, 1H), 5.76-5.54 (m, 2H), 4.20-4.03 (m, 2H), 3.98-3.80 (m, 2H), 3.71-3.52 (m, 2H), 3.39-3.17 (m, 2H), 2.17-2.04 (m, 1H), 2.04-1.96 (m, 1H), 1.96-1.87 (m, 1H), 1.87-1.75 (m, 1H), 1.49-1.33 (m, 1H), 1.19-0.99 (m, 2H), 0.90-0.73 (m, 1H). HPLC-1: Rt=9.9 min, purity=99.4%; HPLC-2: Rt=9.8 min, purity=99.7%.

Example 328

3-((4-(1-(5-(4-Chlorophenyl)-5,5-difluoropentanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Step A. 1-(5-Bromo-3,4-dihydroquinolin-1(2H)-yl)-5-(4-chlorophenyl)pentane-1,5-dione

The title compound was prepared using a procedure analogous to Example 1, Step E, except that 4-(2,3-dimethylphenoxy)butanoic acid was replaced by 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-5-(4-chlorophenyl)pentane-1,5-dione. LCMS, [M+H]*=420.0 ^1H NMR (400 MHz, CDCl $_3$) δ 7.89 (d, J=8.6 Hz, 2H), 7.43 (d, J=8.6 Hz, 2H), 7.40-7.34 (m, 1H), 7.35-7.21 (m, 1H), 7.05 (s, 1H), 3.83-3.70 (m, 2H), 3.04 (t, J=6.8 Hz, 2H), 2.79 (t, J=6.9 Hz, 2H), 2.60 (t, J=7.0 Hz, 2H), 2.10 (p, J=7.0 Hz, 2H), 2.03-1.92 (m, 2H).

45

50

To 1-(5-bromo-3,4-dihydroquinolin-1(2H)-yl)-5-(4-chlorophenyl)pentane-1,5-dione (100 mg, 0.238 mmol) was added bis-(2-methoxyethyl)aminosulfur trifluoride (657 µl, 3.57 mmol). The orange colored solution was capped under argon and allowed to stir at 90° C. for 3 h. Water (2 mL) was $_{20}$ added to the reaction mixture, which was extracted with DCM (2×5 ml). The combined organic layers were concentrated and purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (50 mg, 46% yield) as a yellow foam. LCMS, [M+H]⁺=442.0 ¹H NMR 25 $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.44-7.34 \text{ (m, 6H)}, 7.04 \text{ (t, J=8.0 Hz, })$ 1H), 3.74 (t, J=6.0 Hz, 2H), 2.79 (t, J=6.9 Hz, 2H), 2.50 (t, J=7.2 Hz, 2H), 2.14 (ddd, J=24.1, 15.8, 8.0 Hz, 2H), 2.02-1.89 (m, 2H), 1.78 (dt, J=14.9, 7.4 Hz, 2H).

Example 328

Example 328 was prepared using a procedure analogous to Example 1 except that ethyl 2-(4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-pyrazol-1-yl)acetate was replaced by 35 methyl 3-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol-1-yl)methyl)benzoate. LCMS, [M+H]⁺=564.2 ¹H NMR (400 MHz, CDCl₃) δ 10.79-10.52 (m, 1H), 8.08 (br. s, 2H), 7.70 (s, 1H), 7.56-7.46 (m, 3H), 7.35 (s, 4H), 7.24-7.14 (m, 2H), 7.14-6.95 (m, 1H), 5.46 (s, 2H), 3.76 (t, J=6.6 Hz, 40 2H), 2.69 (t, J=6.5 Hz, 2H), 2.52 (t, J=7.3 Hz, 2H), 2.21-2.02 (m, 2H), 1.93-1.83 (m, 2H), 1.78 (dt, J=14.6, 7.2 Hz, 2H). HPLC-1: Rt=14.2 min, purity=97.7%; HPLC-2: Rt=13.6 min, purity=100%.

Example 329

(3-((4-(1-(5-(4-Chlorophenyl)-5,5-difluoropentanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzamido)methanesulfonic acid, TFA

378

Example 329 was prepared using a procedure analogous to Example 222 except that Example 24 was replaced with Example 328. LCMS, [M+H]⁺=657.0. ¹H NMR (400 MHz, CD_3OD) δ 7.95 (s, 1H), 7.88 (s, 1H), 7.86-7.80 (m, 1H), 7.69 (s, 1H), 7.46 (d, J=4.9 Hz, 2H), 7.42 (s, 4H), 7.27-7.14 (m, 3H), 5.46 (s, 2H), 4.52 (s, 2H), 3.71 (t, J=6.7 Hz, 2H), 2.72 (t, J=6.5 Hz, 2H), 2.54 (t, J=7.1 Hz, 2H), 2.24-2.06 (m, 2H), 1.92-1.80 (m, 2H), 1.75-1.62 (m, 2H). HPLC-1: Rt=N/A; HPLC-2: Rt=9.2 min, purity=93.4%.

Example 330

2-(3-((4-(1-(5-(4-Chlorophenyl)-5,5-difluoropentanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzamido)ethanesulfonic acid

Example 330 was prepared using a procedure analogous to Example 222 except that Example 24 was replaced with Example 328 and aminomethanesulfonic acid was replaced with 2-aminoethanesulfonic acid. LCMS, [M+H]+=671.0. ¹H NMR (400 MHz, CD₃OD) δ 8.05 (s, 1H), 7.84-7.74 (m, 3H), 7.47 (d, J=5.1 Hz, 2H), 7.42 (s, 4H), 7.30-7.15 (m, 3H), 5.50 (s, 2H), 3.79 (t, J=6.6 Hz, 2H), 3.72 (t, J=6.8 Hz, 2H), 3.08 (t, J=6.6 Hz, 2H), 2.72 (t, J=6.5 Hz, 2H), 2.54 (t, J=7.2 Hz, 2H), 2.22-2.06 (m, 2H), 1.94-1.81 (m, 2H), 1.75-1.63 (m, 60 2H). HPLC-1: Rt=10.2 min, purity=99.0%; HPLC-2: Rt=9.2 min, purity=99.0%. LCMS, [M+H]+=657.0. 1H NMR (400 MHz, CD₃OD) δ 7.95 (s, 1H), 7.88 (s, 1H), 7.86-7.80 (m, 1H), 7.69 (s, 1H), 7.46 (d, J=4.9 Hz, 2H), 7.42 (s, 4H), 7.27-7.14 (m, 3H), 5.46 (s, 2H), 4.52 (s, 2H), 3.71 (t, J=6.7 65 Hz, 2H), 2.72 (t, J=6.5 Hz, 2H), 2.54 (t, J=7.1 Hz, 2H), 2.24-2.06 (m, 2H), 1.92-1.80 (m, 2H), 1.75-1.62 (m, 2H). HPLC-1: Rt=N/A; HPLC-2: Rt=9.2 min, purity=93.4%.

15

45

3-((4-(4-(4-(2,3-Dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Step A. Ethyl 2-((2-bromo-6-nitrophenyl)thio)acetate

Triethylamine (4.75 mL, 34.1 mmol) was added dropwise to a solution of 1-bromo-2-fluoro-3-nitrobenzene (2.5 g, 11.36 mmol) in DCM (35 mL) and stirred at RT for 1 h. The reaction was diluted with DCM, washed with water, 1N HCl, dried over MgSO₄, and concentrated. The crude product was azeotroped from toluene and then acetic acid to afford the title compound (3.64 g, 100% yield). LCMS, [M-H₂O+H]⁺= 303.9.

Step B. 8-Bromo-2H-benzo[b][1,4]thiazin-3(4H)-one

A mixture of ethyl 2-((2-bromo-6-nitrophenyl)thio)acetate (3.64 g, 11.37 mmol) and iron (6.35 g, 114 mmol) in acetic 60 acid (56.8 ml) was stirred at 90° C. for 1.5 h and at room temperature overnight. The mixture was filtered through CELITE®, washed with methanol, followed by hot CHCl $_3$: MeOH:AcOH (1:1:1) till most of the compound came off the CELITE®. The filtrated was concentrated and re-dissolved in 65 EtOAc. The organic solution was washed with water, dried over MgSO $_4$, filtered, and concentrated to afford the title

380

compound (2.59 g, 90% yield). LCMS, [M+H] $^+$ =246.0. 1 H NMR (400 MHz, DMSO-d₆) δ 7.27 (dd, J=8.0, 1.0 Hz, 1H), 7.10 (t, J=8.0 Hz, 1H), 6.97 (dd, J=8.0, 1.0 Hz, 1H), 3.53 (s, 2H).

Step C. 8-Bromo-3,4-dihydro-2H-benzo[b][1,4]thiazine

The title compound was prepared using a procedure analogous to bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinoline except that 7-bromo-3,7b-dihydro-1H-cyclopropa [c]quinolin-2(1aH)-one was replaced with 8-bromo-2H-benzo[b][1,4]thiazin-3(4H)-one. LCMS, [M+H]⁺=231.9. ¹H NMR (400 MHz, MeOD) & 6.86-6.80 (m, 1H), 6.73 (t, J=7.9 Hz, 1H), 6.52 (dd, J=8.1, 1.3 Hz, 1H), 3.56-3.49 (m, 2H), 3.09-3.01 (m, 2H).

Example 331

Example 331 was prepared using a procedure analogous to Example 9 except that 7-bromo-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinoline was replaced with 8-bromo-3,4-dihydro-2H-benzo[b][1,4]thiazine. LCMS, [M+H]*=542.2. ¹H NMR (500 MHz, MeOD) δ 8.00-7.93 (m, 2H), 7.74 (s, 1H), 7.64 (s, 1H), 7.52-7.44 (m, 2H), 7.29-7.25 (m, 1H), 7.19-7.14 (m, 2H), 6.92 (t, J=7.8 Hz, 1H), 6.67-6.62 (m, 2H), 5.43 (s, 2H), 4.14-3.82 (m, 4H), 3.13 (t, J=6.2 Hz, 2H), 2.69 (t, J=7.1 Hz, 2H), 2.10 (s, 3H), 2.09-2.04 (m, 2H), 1.86 (s, 3H). HPLC-1: Rt=10.8 min, purity=99.6%; HPLC-2: Rt=10.0 min, purity=99.6%.

Example 332

3-((4-(4-(4-(2,3-Dimethylphenoxy)butanoyl)-1-oxido-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

To a solution of $3-((4-(4-(2,3-\dim ethylphenoxy)butanoyl)-3,4-\dim or2H-benzo[b][1,4]thiazin-8-yl)-1H-$

25

30

35

40

(m, 2H), 2.72 (t, J=7.1 Hz, 2H), 2.15 (s, 3H), 2.15-2.09 (m, 2H), 1.95 (s, 3H).

Example 334

3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3-hydroxy-2,3,4,5-tetrahydrobenzo [b][1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5fluorobenzoic acid

$$Cl$$
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 OOD
 OOD
 OOD
 OOD
 OOD
 OOD

Step A. 9-Bromo-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-3-ol

$$\bigcup_{N \in \mathcal{N}} O \to OH$$

9-Bromo-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepin-3-ol was prepared using a procedure analogous to 9-bromo-2,3,4, 5-tetrahydrobenzo[b][1,4]oxazepine except that 3,3-diethoxypropan-1-ol was replaced by 3,3-diethoxypropane-1,2-diol. LCMS, [M+H]⁺=246.1. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (dd, J=7.7, 1.8 Hz, 1H), 6.81-6.69 (m, 2H), 4.37 (ddd, J=12.3, 3.7, 1.3 Hz, 1H), 3.99 (br. s., 1H), 3.93 (dd, J=12.3, 2.2 Hz, 1H), 3.57 (br. s., 1H), 3.40 (dd, J=13.0, 4.0 Hz, 1H), 3.22 (dd, J=13.0, 2.4 Hz, 1H), 3.01 (br. s., 1H).

Step B. 9-Bromo-3-(tert-butyldimethylsilyloxy)-2,3, 4,5-tetrahydrobenzo-[b][1,4]oxazepine

pyrazol-1-yl)methyl)benzoic acid (20 mg, 0.037 mmol) in DCM (0.5 mL) was added mCPBA (9.93 mg, 0.044 mmol). The reaction was stirred at room temperature for 20 min and diluted with DCM. The solution was washed with 5% sodium thiosulfate, dried over MgSO₄, filtered, and concentrated. ⁵ The crude product was purified by preparative HPLC (PHE-NOMENEX® Axia Luna, 5u, C18 30×100 mm; 10 min gradient from 90% A:10% B to 0% A:100% B and 5 min 100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/ 10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 332 (18 mg, 85% yield) as a white solid. LCMS, $[M+H]^{+}=558.2.$ ¹H NMR (500 MHz, MeOD) δ 7.99-7.96 (m, 3H), 7.76 (d, J=0.6 Hz, 1H), 7.60-7.56 (m, 1H), 7.55-7.52 (m, 1H), 7.50-7.42 (m, 3H), 6.94 (t, J=7.8 Hz, 1H), 6.67 (d, J=8.6 $_{15}$ Hz, 2H), 5.48 (s, 2H), 4.45-4.42 (m, 1H), 4.07-4.01 (m, 1H), 3.95 (t, J=6.1 Hz, 2H), 3.49-3.43 (m, 1H), 2.96 (ddd, J=14.4, 10.0, 6.1 Hz, 1H), 2.84-2.77 (m, 1H), 2.74-2.67 (m, 1H), 2.18-2.08 (m, 5H), 1.97 (s, 3H). HPLC-1: Rt=9.1 min, purity=99.8%; HPLC-2: Rt=8.8 min, purity=99.1%.

Example 333

3-((4-(4-(4-(2,3-Dimethylphenoxy)butanoyl)-1,1dioxido-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

To a solution of 3-((4-(4-(4-(2,3-dimethylphenoxy)butanoyl)-1-oxido-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid (10.2 mg, 0.018 mmol) in DCM (0.5 mL) was added mCPBA (4.73 mg, 0.027 mmol). 55 The reaction was stirred at room temperature for 20 min and diluted with DCM. The solution was washed with 5% sodium thiosulfate, dried over MgSO₄, filtered, and concentrated. The crude product was purified by preparative HPLC (PHE-NOMENEX® Axia Luna, 5μ, C18 30×100 mm; 10 min gra- 60 dient from 90% A:10% B to 0% A:100% B and 5 min 100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/ 10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 333 (6 mg, 55% yield) as a white solid. LCMS, $[M+H]^{+}=574.2.$ ¹H NMR (500 MHz, MeOD) δ 8.01-7.94 (m, 65 2H), 7.86 (s, 1H), 7.67 (s, 1H), 7.59-7.52 (m, 1H), 7.49-7.36 (m, 4H), 6.94 (t, J=7.9 Hz, 1H), 6.67 (d, J=7.8 Hz, 2H), 5.44

25

45

383

To a solution of 9-bromo-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-3-ol (0.456 g, 1.868 mmol) and imidazole (0.280 g, 4.11 mmol) in DMF (5.0 mL) was added TBSCl (0.619 g, 4.11 mmol). The reaction was stirred at room temperature for 18 h. The mixture was diluted with a solution of saturated sodium bicarbonate (15 ml) and extracted with ethyl acetate (20 mL). The organic layer was dried over sodium sulfate and concentrated. The crude product was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (648 mg, 1.718 mmol, 92% yield) as clear oil. LCMS, $[M+H]^+=360.1$. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (dd, J=7.8, 1.4 Hz, 1H), 6.69 (t, J=7.9 Hz, 1H), 6.57 (dd, J=7.9, 1.5 Hz, 1H), 4.39 (dd, J=11.9, 4.8 Hz, 1H), 4.19 (tt, J=6.5, 4.7 Hz, 1H), 3.94 (dd, J=11.9, 6.8 Hz, 1H), 3.67 (br. s., 15)1H), 3.54 (dt, J=13.2, 4.1 Hz, 1H), 3.17 (dd, J=12.3, 5.5 Hz, 1H), 0.93-0.90 (m, 9H), 0.11 (s, 6H).

Step C. 2-(3-Chloro-2-methylphenoxy)ethyl 9-(1-(4-(tert-butoxycarbonyl)-2-chloro-6-fluorobenzyl)-1H-pyrazol-4-yl)-3-(tert-butyldimethylsilyloxy)-3,4-dihydrobenzo[b][1,4]oxazepine-5(2H)-carboxylate

The title compound was prepared in a manner analogous to Example 13. LCMS, $[M+H]^+=800.3$.

Example 334

To a solution of 2-(3-chloro-2-methylphenoxy)ethyl 9-(1-(4-(tert-butoxycarbonyl)-2-chloro-6-fluorobenzyl)-1Hpyrazol-4-yl)-3-((tert-butyldimethylsilyl)oxy)-3,4-dihydrobenzo[b][1,4]oxazepine-5(2H)-carboxylate (144 mg, $0.180 \, \text{mmol}$) in THF was added $1.0 \, \text{M}$ TBAF in THF (270 $\, \mu \text{L}$, 55 0.270 mmol). The mixture was stirred at room temperature for 60 min and then concentrated. The residue was suspended in a solution of saturated sodium bicarbonate (15 mL) and extracted with ethyl acetate (20 mL). The organic layer was dried over sodium sulfate and concentrated. The residue was 60 dissolved in DCM (1.0 mL) and TFA (1.0 mL) and stirred at room temperature for 30 min. The mixture was concentrated and the crude product was purified by preparative HPLC (PHENOMENEX® Axia Luna, $5\mu, C18\,30{\times}100\,\text{mm};\,10\,\text{min}$ gradient from 80% A:20% B to 0% A:100% B and 5 min 65 100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford

384

Example 334 (7 mg, 70% yield) as a white powder. LCMS, $[M+H]^+=630.2$. 1H NMR (400 MHz, MeOD) δ 8.17 (s, 1H), 8.00-7.86 (m, 2H), 7.78 (dd, J=9.7, 1.5 Hz, 1H), 7.51 (d, J=7.5 Hz, 1H), 7.28-6.89 (m, 4H), 6.79 (br. s., 1H), 5.64 (d, J=1.5 Hz, 2H), 4.33 (br. s., 3H), 4.15 (br. s., 5H), 2.42-2.06 (m, 4H). HPLC-1: Rt=9.4 min, purity=99.9%; HPLC-2: Rt=8.9 min, purity=99.8%.

Example 335

3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3-fluoro-2,3,4,5-tetrahydrobenzo [b][1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid

$$Cl$$
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_2H

To a solution of 2-(3-chloro-2-methylphenoxy)ethyl 9-(1-(4-(tert-butoxycarbonyl)-2-chloro-6-fluorobenzyl)-1Hpyrazol-4-yl)-3-hydroxy-3,4-dihydrobenzo[b][1,4]ox-50 azepine-5(2H)-carboxylate (20 mg, 0.029 mmol) in DCM (5 mL) was added bis(e-methoxyethyl)aminosulfur trifluoride (5.37 µl, 0.029 mmol). The reaction was stirred at room temperature for 18 h. The mixture was diluted with a solution of saturated sodium bicarbonate (15 mL) and extracted with DCM (20 mL). The organic layer was dried over sodium sulfate and concentrated. The tert-butyl ester was re-dissolved in DCM (1.0 mL) and TFA (1.0 mL) and stirred at room temperature for 30 min. The mixture was concentrated and was purified by preparative HPLC (PHENOMENEX® Axia Luna, 5µ, C18 30×100 mm; 10 min gradient from 80% A:20% B to 0% A:100% B and 5 min 100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+ 0.1% TFA); detection at 220 nm) to afford Example 335 (5 mg, 24% yield) as white powder. LCMS, [M+H]⁺=632.2. ¹H NMR (400 MHz, MeOD) δ 8.19 (s, 1H), 7.99-7.88 (m, 2H), 7.78 (dd, J=9.6, 1.4 Hz, 1H), 7.53 (d, J=6.4 Hz, 1H), 7.30-6.74 (m, 5H), 5.65 (d, J=1.5 Hz, 2H), 4.63-4.07 (m, 6H), 3.93 (s,

30

35

40

45

50

1H), 2.40-2.07 (m, 5H). HPLC-1: Rt=10.1 min, purity=97.1%; HPLC-2: Rt=9.5 min, purity=97.5%.

Example 336

3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,3-difluoro-2,3,4,5-tetrahy-drobenzo[b][1,4]oxazepin-9-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzoic acid

Step A. 2-(3-Chloro-2-methylphenoxy)ethyl 9-(1-(4-(tert-butoxycarbonyl)-2-chloro-6-fluorobenzyl)-1H-pyrazol-4-yl)-3-oxo-3,4-dihydrobenzo[b][1,4]ox-azepine-5(2H)-carboxylate

To a solution of 2-(3-chloro-2-methylphenoxy)ethyl 9-(1-(4-(tert-butoxycarbonyl)-2-chloro-6-fluorobenzyl)-1H-pyrazol-4-yl)-3-hydroxy-3,4-dihydrobenzo[b][1,4]ox-azepine-5(2H)-carboxylate (59 mg, 0.086 mmol) in DCM (5.0 mL) was added Dess-Martin periodinane (109 mg, 0.258 mmol). The reaction was stirred at room temperature for 2 d. The mixture was diluted with a solution of saturated sodium bicarbonate (15 mL) and extracted with DCM (20 mL). The organic layer was dried over sodium sulfate and concentrated. The crude product was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound (58 mg, 92% yield) as white form. LCMS, [M+H]⁺=684.3. 65 ¹H NMR (400 MHz, CDCl₃) & 7.89-7.86 (m, 1H), 7.83 (d, J=6.8 Hz, 2H), 7.66 (dd, J=9.5, 1.5 Hz, 1H), 7.42 (dd, J=7.7,

386

1.5 Hz, 1H), 7.18 (br. s., 1H), 7.10-6.95 (m, 3H), 6.68 (d, J=7.3 Hz, 1H), 5.54 (d, J=1.5 Hz, 2H), 4.54 (s, 4H), 4.49 (s, 2H), 4.16 (br. s., 2H), 2.21 (br. s., 3H), 1.59 (s, 9H).

Example 336

Example 336 was prepared using a procedure analogous to 3-chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-3-fluoro-2,3,4,5-tetrahydrobenzo[b][1,4]ox-10 azepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid except that 2-(3-chloro-2-methylphenoxy)ethyl 9-(1-(4-(tertbutoxycarbonyl)-2-chloro-6-fluorobenzyl)-1H-pyrazol-4yl)-3-hydroxy-3,4-dihydrobenzo[b][1,4]oxazepine-5(2H)carboxylate was replaced by 2-(3-chloro-2-methylphenoxy) 9-(1-(4-(tert-butoxycarbonyl)-2-chloro-6fluorobenzyl)-1H-pyrazol-4-yl)-3-oxo-3,4-dihydrobenzo[b] [1,4]oxazepine-5(2H)-carboxylate. LCMS, [M+H]⁺=650.2. ¹H NMR (400 MHz, MeOD) δ 8.21 (s, 1H), 8.00-7.87 (m, 2H), 7.78 (dd, J=9.6, 1.4 Hz, 1H), 7.58 (d, J=7.5 Hz, 1H), 20 7.33-6.72 (m, 5H), 5.65 (d, J=1.3 Hz, 2H), 4.50 (br. s., 2H), 4.15 (br. s., 6H), 2.06 (s, 3H). HPLC-1: Rt=10.4 min, purity=99.4%; HPLC-2: Rt=9.8 min, purity=99.6%.

Example 337

3-Chloro-4-((4-(1-(4-(3-chloro-2-methylphenoxy) butanoyl)-1,2,3,5-tetrahydrobenzo[e][1,4]oxazepin-6-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid

Step A. 6-Bromo-1,2,3,5-tetrahydrobenzo[e][1,4]oxazepine

To a solution of 2-chloroacetyl chloride (380 mg, 3.37 mmol) in DCM (10 mL) was added (2-amino-6-bromophenyl)methanol (630 mg, 3.12 mmol) followed by DIPEA (1.253 mL, 7.17 mmol). The reaction was stirred at room temperature for 3 d. The mixture was diluted with a solution of saturated sodium bicarbonate (15 mL) and extracted with

ethyl acetate (20 mL). The organic layer was dried over sodium sulfate and concentrated to give N-(3-bromo-2-(hydroxymethyl)phenyl)-2-chloroacetamide. The above product was dissolved in IPA (10 mL), and added 50% w/w aqueous NaOH (374 mg, 4.68 mmol). The mixture was stirred at room 5 temperature for 3 h and concentrated. The residue was diluted with a solution of saturated sodium bicarbonate (15 mL) and extracted with DCM (80 mL). The organic layer was dried over sodium sulfate and concentrated to give 6-bromo-3,5mediate was dissolved in THF (60 mL) and added 2.0 M borane dimethyl sulfide methyl sulfide complex in THF (6.24 mL, 12.47 mmol). The reaction was refluxed for 60 min, cooled to room temperature, and added MeOH (5.0 mL) dropwise. The mixture was refluxed for 30 min concentrated. 15 The residue was diluted with a solution of saturated sodium bicarbonate (60 mL) and extracted with ethyl acetate (60 mL). The organic layer was dried over sodium sulfate and concentrated. The crude product was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title

compound (237 mg, 32% yield) as clear gum. LCMS, [M+H]⁺=229.9. ¹H NMR (400 MHz, CDCl₃) 8 7.13 (dd, J=7.9, 1.1 Hz, 1H), 6.94 (t, J=7.9 Hz, 1H), 6.74 (dd, J=7.9, 0.9 Hz, 1H), 4.92 (s, 2H), 4.06 (br. s., 1H), 3.89-3.81 (m, 2H), 3.24-3.17 (m, 2H).

Example 337

Example 337 was prepared in a manner analogous to dihydrobenzo[e][1,4]oxazepin-2(1H)-one. The above inter- 10 Example 13. LCMS, [M+H]⁺=612.1. ¹H NMR (400 MHz, MeOD) δ 7.97 (s, 1H), 7.84-7.73 (m, 2H), 7.55 (s, 1H), 7.44-7.33 (m, 2H), 7.28 (dd, J=7.2, 1.9 Hz, 1H), 7.12-7.02 (m, 1H), 6.89 (d, J=7.9 Hz, 1H), 6.80 (d, J=8.1 Hz, 1H), 5.65 (d, J=1.3 Hz, 2H), 4.71 (dd, J=13.8, 3.2 Hz, 2H), 4.14 (d, J=13.4 Hz, 1H), 4.07-3.90 (m, 3H), 3.86-3.73 (m, 1H), 3.05-2.91 (m, 1H), 2.58 (t, J=6.9 Hz, 2H), 2.19-2.08 (m, 2H), 1.92 (s, 3H). HPLC-1: Rt=11.5 min, purity=9.69%; HPLC-2: Rt=10.7 min, purity=99.0%.

> The compounds exemplified in Table 15 were prepared in a manner analogous to Example 23.

	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.5 min, 100%	10.9 min, 98.3%
	¹ H NMR (400 MHz, MeOD) 8	8.06 (s, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 7.4 Hz, 1H), 7.49-7.41 (m, 2H), 7.30-7.22 (m, 2H), 7.36-55 (m, 2H), 6.74 (d, J = 7.7 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 4.29 (s, 2H), 3.96 (t, J = 5.1 Hz, 2H), 3.82 (t, J = 6.7 Hz, 2H), 2.84 (t, J = 6.5 Hz, 2H), 2.76 (t, J = 7.4 Hz, 2H), 2.21 (s, 3H), 2.21-2.12 (m, 3H), 2.00 (br. s., 3H), 1.90 (t, J = 6.6 Hz, 2H)	8.11-8.02 (m, 1H), 7.81 (s, 1H), 7.52 (s, 1H), 7.50-7.46 (m, 2H), 7.45-7.46 (m, 1H), 7.38-7.33 (m, 1H), 7.24-7.19 (m, 1H), 7.03-6.94 (m, 2H), 6.72 (d, 1 = 7.7 Hz, 1H), 6.61 (d, 1 = 8.3 Hz, 1H), 5.38 (s, 2H), 3.88 (t, 1 = 5.5 Hz, 2H), 3.28 (t, 1 = 5.9 Hz, 2H), 2.35 (t, 1 = 6.9 Hz, 2H), 2.17 (s, 3H), 2.35 (t, 1 = 6.9 Hz, 2H), 2.17 (s, 3H), 2.14-2.05 (m, 4H), 1.95-1.87 (m, 3H)
	$\begin{array}{c} LCMS, \\ [M+H]^{+} \end{array}$	341.2	498.3
TABLE 15	Formula I	H ₂ CO2	H _C O
	Name	3-((2-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- terraltydroquinolin- 5-yl)thiazol-4-yl) methyl)benzoic acid	3-((4-(3.4-(2.3-Dimethylphenoxy)-N-methylbutanamido)phenyl-IH-pyrazol-1-yl)methyl) benzoic acid
	Example	338	339

ontinued
15-c
BLE
IA

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	12.4 min, 99.1% 11.0 min, 99.7%	12.6 min, 99.4% 10.6 min, 99.1%
¹ H NMR (400 MHz, MeOD) δ	7.72 (s, 1H), 7.53 (s, 1H), 7.32-7.26 (m, 1H), 7.19-7.13 (m, 1H), 7.13-7.07 (m, 1H), 7.02-6.97 (m, 1H), 6.95 (s, 1H), 6.92-6.84 (m, 3H), 6.92 (s, 1H), 6.92-6.84 (m, 3H), 6.72 (d, 1 = 7.4 Hz, 1H), 6.63 (d, 1 = 7.7 Hz, 1H), 5.34 (s, 2H), 4.63 (s, 2H), 3.96 (br. s., 1H), 2.82-2.67 (m, 2H), 2.29 (br. s., 1H), 2.82-2.07 (m, 7H), 1.91 (br. s., 3H), 1.69 (d, 1 = 5.8 Hz, 1H), 0.98-0.85 (m, 1H), 0.62-0.49 (m, 1H)	8.09-8.05 (m, 2H), 7.59 (s, 1H), 7.54-7.46 (m, 2H), 7.37-7.33 (m, 1H), 7.20-7.10 (m, 3H), 7.08-7.03 (m, 1H), 6.79 (d, J = 7.4 Hz, 1H), 6.58 (d, J = 8.0 Hz, 1H), 5.41 (s, J = 6.9 Hz, 2H), 2.79 (t, J = 7.3 Hz, 2H), 2.72 (t, J = 7.0 Hz, 2H), 2.59 (hz, 3.4H), 2.76 (quin, J = 6.4 Hz, 2H), 2.76 (quin, J = 6.7 Hz, 2H)
$\begin{array}{c} \text{LCMS,} \\ [\text{M} + \text{H}]^{+} \end{array}$	566.3	536.2
Formula I	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HO Z
Name	2-(3-((4-((1aR, 7bS)-3-(4- 2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)+1H-pyrazol-1- yl)methylphenoxy)acetic acid	3-((4-(1-(4-(2,3-Dihydro- 1H-inden-4-yloxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-y1)methyl) benzoic acid
Example	341	342

	ز
₫	١
-	3
- 7	٦
. =	3
Ψ.	3
- 2	╛
~	5
>	≺
٠.	•
	ı.
ч	,
_	4
_	4
ΓT	1
Ţ	1
ΠI	1
N 1 1 1	1
RI FI 1	
ARIE 1	
ARIE 1	
TARIE 1	
TARIE 1	
TARIE 1	
TARIE 1	

	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.4 min, 99.2%	11.1 min, 94.8% 9.5 min, 94.2%
	¹ H NMR (400 MHz, MeOD) δ	8.06 (dt, J = 3.6, 1.9 Hz, 2H), 7.63 (d, J = 0.6 Hz, 1H), 7.53-7.46 (m, 3H), 7.44 (s, 1H), 7.14-7.06 (m, 2H), 7.02 (t, J = 7.7 Hz, 1H), 6.86 (d, J = 7.4 Hz, 1H), 6.75 (d, J = 8.3 Hz, 1H), 6.42 (d, J = 6.1 Hz, 1H), 5.42 (s, 2H), 5.14-5.07 (m, 1H), 5.42 (s, 2H), 5.14-5.07 (m, 1H), 5.42 (s, 2H), 2.69 (t, J = 6.6 Hz, 2H), 2.39 (t, J = 6.6 Hz, 2H), 2.39 (s, 3H), 2.09 (t, J = 6.6 Hz, 2H), 2.33 (s, 3H), 2.05 (br. s, 3H), 1.94-1.86 (m, 3H)	8.09-8.03 (m, 11H), 7.68 (d, J = 0.6 Hz, 1H), 7.55-7.45 (m, 4H), 7.17-7.10 (m, 3H), 7.08-7.04 (m, 2H), 6.6.8 (d, J = 7.4 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 6.61 (dt, J = 15.1, 1.9 Hz, 1H), 5.43 (s, 2H), 4.68 (dd, J = 3.9, 2.2 Hz, 2H), 3.86 (t, J = 6.7 Hz, 2H), 2.74 (t, J = 6.3 Hz, 2H), 2.6-2.21 (m, 3H), 2.02 (s, 3H), 1.95-1.86 (m, 2H)
	LCMS, [M+H] ⁺	522.2	522.2
LABLE 13-continued	Formula I	HO N N N N N N N N N N N N N N N N N N N	DE LA CONTRACTION OF THE PROPERTY OF THE PROPE
	Name	(Z)-3-((4-(1-(4-(2,3- Dimethylphenoxy)but-3- enoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoic acid	(E)-3-((4-(1-(4-(2,3- Dimethylphenoxy)bur-2- enoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- IH-pyrazol-1-yl)methyl) benzoic acid
	Example	343	44.

Detinition	
4	
~	

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	8.3 min, 94.8% 7.7 min, 99.6%	13.5 min, 99.7% 11.7 min, 99.2%
¹ H NMR (400 MHz, MeOD) δ	7.69 (s, 1H), 7.52 (s, 1H), 7.24-7.20 (m, 1H), 7.16 (d, 1 = 7.7 Hz, 1H), 7.09 (t, 1 = 7.7 Hz, 1H), 6.99 (t, 1 = 7.8 Hz, 1H), 6.99 (t, 5 = 7.09 (t, 1 = 7.4 Hz, 1H), 6.80-6.76 (m, 1H), 6.75-6.89 (m, 2H), 6.63 (d, 1 = 7.7 Hz, 1H), 5.30 (s, 2H), 3.30 (d, 1 = 4.1 Hz, 1H), 3.88 (hz, s., 1H), 2.80-2.70 (m, 2H), 2.88 (hz, s., 1H), 2.25-2.06 (m, 7H), 1.91 (hzs., 3H), 1.05-2.06 (m, 7H), 1.91 (hzs., 3H), 1.65 (hz, 3.14), 1.65 (hz, 3.14), 1.65 (hz, 3.14)	7.70 (s. 1H), 7.49 (s. 1H), 7.28-7.24 (m, 1H), 7.18-7.13 (m, 1H), 7.13-6.96 (m, 1H), 7.13-6.93 (d.) 1-7. Hz, 2H, 6.88 (dd, 1 = 8.3, 1.7 Hz, 2H), 6.81 (s. 1H), 6.73 (d.) 1-7.7 Hz, 1H), 6.81 (s. 1H), 6.73 (d.) 1-7.7 Hz, 1H), 5.31 (s. 2H), 3.97 (bz. s., 1H), 3.88 (bz. s., 1H), 2.81-2.68 (m, 3H), 2.80 (bz. s., 2H), 2.81-2.68 (m, 3H), 2.81 (bz. s., 3H), 1.62-1.51 (m, 6H), 0.94-0.84 (m, 1H), 0.57 (bz. s., 1H)
LCMS, [M+H] ⁺	508.2	594.3
Formula I	Ho Ho N	Harris Name of the state of the
Name	4-(2,3-Dimethylphenoxy)-1- ((1aR,7bS)-7-(1-(3- hydroxybenzyl)-1H-pyrazol- 4-yi)-1a,2-dihydro-1H- cyclopropa[c]quinolin- 3(7bH)-yl)butan-1-one	2-(3-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy)) butanoyl)-1a,2,3,7b-tetrahydro-H-cyclopropa[c] quinolin-7-yl)-H-pyrazol-1-yl)methylphenoxy)-2-methylpropanoic acid
Example	345	346

٦	フ
(υ
-	3
Š	⇉
٠	٦
7	=
2	≂
2	≺
V	'n
_	
	_
	1
	3
۰	-
Ξ	۵
-	7
~	ų
۰	-

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	K/X	10.2 min, 99.5% 9.2 min, 97.7%
¹ H NMR (400 MHz, MeOD) δ	8.04-7.99 (m, 1H), 7.98 (s, 1H), 7.72 (s, 1H), 7.55 (s, 1H), 7.50-7.43 (m, 2H), 7.22-7.17 (m, 1H), 7.16-7.09 (m, 1H), 7.06-6.99 (m, 1H), 6.97-6.91 (m, 2H), 6.67 (d, 1 = 8.2 Hz, 1H), 5.42 (s, 2H), 4.05-3.97 (m, 1H), 3.92 (s, 3H), 3.90-3.84 (m, 1H), 2.78-2.69 (m, 1H), 2.67-2.57 (m, 1H), 2.71-2.12 (m, 2H), 2.00 (br. s., 3H), 1.73-1.64 (m, 2H), 1.30-1.26 (m, 1H), 1.25 (s, 3H), 0.83 (d, 1 = 4.9 Hz, 1H), 0.45 (d, 1 = 3.8 Hz, 1H)	7.94 (br. s., 1H), 7.76 (s, 1H), 7.69-7.56 (m, 1H), 7.41-7.28 (m, 2H), 7.24-7.10 (m, 3H), 7.08-6.83 (m, 4H), 6.67 (d, J = 7.7 Hz, 1H), 5.47-5.23 (s, 2H), 4.12-3.76 (m, 3H), 3.53 (t, J = 5.5 Hz, 2H), 3.20-2.46 (m, 8H), 2.16 (br. s., 2H), 2.06-1.84 (m, 3H), 1.69 (br. s., 1H), 0.84 (br. s., 1H), 0.44 (br.s., 1H)
LCMS, [M+H] ⁺	570.2	682.4
Formula I	N—N N—N N—N N—N	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
Name	Methyl 3-((4-((1aR,7bS)-3-(4-(3-chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tertahdro-IH-cyclopropa(cjquinolin-7-yl)-IH-pyrazol-1-yl)methyl) benzoate	2-(3-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-(etrahydro-1H-cyclopropa[c]quinolin-7-yl)-phenyl)-2,4-dioxotetrahydropyrimidin-1(2H)-yl)acetic acid
Example	347	84. 84.

continued
15-0
BLE
IA

	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.4 min, 98.7%	9.5 min, 93.1%
	¹ H NMR (400 MHz, MeOD) δ	7.77 (s, 1H), 7.60-7.51 (m, 1H), 7.50-7.39 (m, 1H), 7.35-7.27 (m, 1H), 7.25-7.27 (m, 1H), 7.25-7.27 (m, 3H), 6.66 (d, J = 8.2 Hz, 1H), 5.50-5.31 (m, 2H), 4.31-4.13 (m, 3H), 6.9 Hz, 2H), 3.15-2.83 (m, 3H), 6.9 Hz, 2H), 3.15-2.83 (m, 3H), 6.9 Hz, 2H), 3.15-2.83 (m, 3H), 6.9 Hz, 2H), 3.15-2.81 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 0.88 (d, J = 5.5 Hz, 1H), 0.45 (d, J = 4.4 Hz, 1H)	7.72 (s, 1H), 7.59 (s, 1H), 7.56-7.37 (m, 2H), 7.32-7.26 (m, 1H), 7.25-7.08 (m, 3H), 7.07-6.79 (m, 3H), 6.66 (d, 1=7.7 Hz, 1H), 5.44 (s, 2H), 4.27 (s, 1H), 4.19 (s, 1H), 4.06-3.80 (m, 2H), 2.81-1.52 (m, 9H), 1.36-1.19 (m, 1H), 0.86 (s, 1H), 0.45 (br. s., 1H)
	LCMS, $[\mathrm{M} + \mathrm{H}]^{+}$	710.5	4.89
E TELET IS COMMISSED	Formula I	CO ₂ Er	
	Name	Ethyl 2-(3-(3-((4-(13-k)7bS)-3-(4-(3-k)loro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[cjquinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)-2,4-dioxotetrahydropyrimidin-1(2H)-yl)acetate	2-(3-(3-(4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy)butanoyl)- 1a,2,3,7b-tertahlydro-1H-cyclopropa[c]quinolin-7-yl)-phrayl)-2,4-dioxoimidazolidin-1-yl) acetic acid
	Example	349	350

◡
a)
⊐
٠,
≒
=
\sim
ပ္
٠.
41
$\overline{}$
רדו
щ
-
\sim
_
◂
ŭ
Γ.

	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.7 min, 92.8%	8.3 min, 93.2% 10.3 min, 91.8%
	¹ H NMR (400 MHz, MeOD) δ	7.79 (s. 1H), 7.56 (s. 1H), 7.53-7.28 (m. 4H), 7.24-7.09 (m. 2H), 7.07-6.87 (m. 3H), 6.66 (d. J = 8.2 Hz, 1H), 5.56-5.39 (m. 2H), 4.32-4.15 (m. 6H), 4.05-3.77 (m. 2H), 3.3.1 (br. s., 2H), 2.89-2.60 (m. 3H), 2.24-1.89 (m. 5H), 1.78-1.63 (m. 1H), 1.39-1.22 (m. 3H), 0.89 (d. J = 4.9 Hz, 1H), 0.45 (d. J = 4.9 Hz, 1H)	8.08 (s, 1H), 7.85-7.56 (m, 2H), 7.54-7.11 (m, 2H), 7.08-6.87 (m, 3H), 6.66 (d, J = 8.2 Hz, 1H), 5.61 (br. s., 9H), 5.50-5.37 (m, 2H), 4.11 (d, J = 5.5 Hz, 1H), 4.05 (d, J = 5.5 Hz, 1H), 4.05-3.77 (m, 2H), 348 (d, J = 6.0 Hz, 1H), 3.46-3.32 (m, 3H), 2.02-1.82 (m, 3H), 2.26-2.05 (m, 3H), 2.26-2.05 (m, 3H), 0.43 (br. s., 1H), 0.86 (br. s., 1H), 0.43 (br. s., 1H)
	LCMS, [M+H] ⁺	696.4	723.4
IABLE 15-continued	Formula I	N—N N—N N—N N—N N—N	
	Name	Ethyl 2-(3-(3-(4- ((1aR,7bS)-3-(4-(3-chloro-2- methylphenoxy)butanoyl)- 1a,2,3,7b-tetrahydro-1H- cycloprap[c]quinolin/-7-yl)- 1H-pyrazol-1-ylmethyl) phenyl)-2,4- dioxoimidazolidin-1-yl) acetate	3-((S)-1-(3-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy)butanoyl)- 1a,2,3,7b-tetrahydro-1H-cyclopropalc quinolin-7-yl)- 1H-pyrazol-1-yl)methyl) phenyl)-3-methyl-2,5- dioxoimidazolidin-4-yl)- N,N,N-trimethylpropan-1- aminium, TFA salt
	Example	351	352

-continued
Ś
Π
LΈ
\mathbf{H}
g
ĭ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.2 min, 99.9% 10.2 min, 99.9%	11.0 min. 99.8%
¹ H NMR (400 MHz, M¢OD) δ	7.67-7.59 (m, 3H), 7.45 (s, 1H), 7.21-7.13 (m, 3H), 6.98-6.91 (m, 1H), 6.65 (dd, J = 14.7, 7.8 Hz, 2H), 5.50 (s, 2H), 3.89 (t, J = 5.8 Hz, 2H), 3.73 (t, J = 6.8 Hz, 2H), 2.77 (t, J = 6.9 Hz, 2H), 2.52 (t, J = 6.5 Hz, 2H), 2.16-2.05 (m, 5H), 1.86-1.76 (m, 5H)	8.02-7.94 (m, 2H), 7.78 (s, 1H), 7.66 (s, 1H), 7.42-7.42 (m, 2H), 7.32-7.25 (m, 1H), 7.20-7.13 (m, 2H), 7.04-6.96 (m, 1H), 6.85 (d, 1 = 8.0 Hz, 1H), 6.74 (d, 1 = 8.0 Hz, 1H), 5.43 (s, 2H), 4.07-3.83 (m, 4H), 3.12 (t, 1 = 6.2 Hz, 2H), 2.69 (t, 1 = 6.9 Hz, 2H), 2.08 (quin, 1 = 6.4 Hz, 2H), 1.98 (s, 3H)
LCMS, [M+H] ⁺	560.2	562.1
Formula I	H _C CO ₂ H	
Name	4-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin- 5-yl)-1H-pyrazol-1-yl) methyl)-3,5-difluorobenzoic acid	3-((4-(4-(4-(3-Chloro-2-methylphenoxyl)butanoyl)-3,4-dihydro-2H-benzolb] [1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid
Example	353	354

	שוועולע	Tomaca
	-	
ļ	T	
6	◁	1

_		
HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.2 min, 98.4% 10.4 min, 98.1%	11.2 min, 99.1% 10.4 min, 98.9%
¹ H NMR (400 MHz, MeOD) δ	7.77 (s, 1H), 7.68-7.56 (m, 3H), 7.31-7.20 (m, 1H), 7.20-7.11 (m, 2H), 6.92 (t, 1= 7.9 Hz, 1H), 6.64 (dd, 1= 12.1, 7.9 Hz, 2H), 5.90 (s, 2H), 4.10-3.81 (m, 4H), 3.12 (t, 1= 6.2 Hz, 2H), 2.68 (t, 1= 7.1 Hz, 2H), 2.11 (s, 3H), 2.10-2.03 (m, 2H), 1.87 (s, 3H)	8.06 (s, 1H), 7.99-7.94 (m, 2H), 7.91 (s, 1H), 7.52-7.43 (m, 2H), 7.40 (d, 1 = 7.2 Hz, 1H), 7.28 (bz. s., 1H), 7.03-6.98 (m, 1H), 6.90 (t, 1 = 7.9 Hz, 1H), 6.85 (d, 1 = 8.0 Hz, 1H), 6.71 (d, 1 = 8.3 Hz, 1H), 5.43 (s, 2H), 4.31 (t, 1 = 4.9 Hz, 2H), 4.01 (t, 1 = 5.8 Hz, 2H), 3.95 (t, 1 = 4.9 Hz, 2H), 2.04 (t, 1 = 6.5 Hz, 2H), 2.16 (quin, 1 = 6.5 Hz, 2H), 2.06 (s, 3Hz, 2H), 2.16 (quin, 1 = 6.5 Hz, 2H), 2.06 (s, 3Hz, 2H), 2.06 (s, 3Hz, 2H), 3.95 (t, 3 = 6.9 Hz, 2H), 3.95 (t, 3 = 6.9 Hz
LCMS, [M+H] ⁺	578.2	546.1
Formula I	H _c OO N N N N N N N N N N N N N N N N N N	
Name	4 ((4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dilydro-2H- berzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl)- 3,5-difluorobenzoic acid	3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl)benzoic acid
Example	355	356

ned
ontin
5-6
ΞĮ
∆BI
Η

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	12.0 min, 100% 10.9 min, 100%	12.0 min, 99.3%
¹ H NMR (400 MHz, MeOD) 8	8.01 (s, 1H), 7.94-7.92 (m, 1H), 7.83 (d, J = 0.6 Hz, 1H), 7.73 (dd, J = 8.7, 1.4 Hz, 1H), 7.37 (dd, J = 7.8, 1.4 Hz, 1H), 7.27 (bz, x, 1H), 7.04-6.98 (m, 1H), 6.92-6.83 (m, 2H), 6.77 (d, J = 8.0 Hz, 1H), 5.58 (d, J = 1.4 Hz, 2H), 4.30 (t, J = 5.0 Hz, 2H), 4.00 (t, J = 6.0 Hz, 2H), 3.98-3.93 (m, 2H), 2.88 (t, J = 7.1 Hz, 2H), 2.16 (s, 2H), 2.05 (s, 3H)	7.93 (s. 1H), 7.78 (s. 1H), 7.74 (dd. J = 9.7, 1.4 Hz, 1H), 7.19 (s. 1H), 7.29 (7.22 (m. 1H), 7.19 7.13 (m. 2H), 7.04-6.97 (m. 1H), 6.86 (d. J = 7.8 Hz, 1H), 6.74 (d. J = 8.3 Hz, 1H), 5.59 (d. J = 1.4 Hz, 2H), 3.93 (t. J = 5.8 Hz, 4H), 3.12 (t. J = 6.2 Hz, 2H), 2.08 (t. J = 6.5 Hz, 2H), 2.08 (t. J = 6.5 Hz, 2H), 2.68 (t. J = 6.5 Hz, 2H), 2.98 (s. 3H)
LCMS, [M+H] ⁺	598.1	614.1
Formula I	CO ₂ H	Hoo D N N N N N N N N N N N N N N N N N N
Name	3-Chloro-4-(4-(4-(4-(3-chloro-2-methylphenoxy)) butanoxy). 3,4-dihydro-2H-berzolp[1][4,4]xxxzin-8-yl). 1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	3-Chloro-4-(4-(4-(3-chloro-2-methylphenoxy)) butanoxy)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid
Example	357	358

ontinued
15-c
BLE
IA

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	100%*	11.4 min, 93.9% 10.5 min, 94.5%
¹ H NMR (400 MHz, MeOD) δ	9.12 (d, J = 2.0 Hz, 1H), 8.68 (d, J = 2.0 Hz, 1H), 8.28 (t, J = 2.0 Hz, 1H), 7.57.749 (m, 2H), 7.22 (d, J = 4.5 Hz, 2H), 7.10 (br. s., 1H), 6.90 (t, J = 7.7 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 6.4 (d, J = 7.9 Hz, 1H), 5.48 (s, 2H), 3.89 (br. s., 2H), 3.75 (m, 2H), 2.79 (t, J = 6.9 Hz, 2H), 2.53 (t, J = 7.2 Hz, 2H), 2.53 (t, J = 7.2 Hz, 2H), 2.53 (t, J = 7.2 Hz, 2H), 2.50 2.06 (m, 5H), 1.92-1.70 (m, 5H)	7.85-7.79 (m, 2H), 7.74 (dd, J = 0.6 Hz, 1H), 7.67 (d, J = 0.6 Hz, 1H), 7.31-7.22 (m, 2H), 7.21-7.14 (m, 2H), 7.03-6.98 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.49 (s, 2H), 4.10-3.83 (m, 4H), 3.13 (t, J = 6.1 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.08 (quin, J = 6.5 Hz, 2H), 1.98 (s, 3H)
LCMS, [M+H] ⁺	525.3	580.1
Formula I	HO N N N N N N N N N N N N N N N N N N N	N—N S CO ₂ H
Name	5-((4-(1-(4-(2,3- Dimethylphenoxy)) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) nicotinic acid, TFA salt	4-((4-(4-(3-Chloro-2-methylphenoxy)butanoyl) 3,4-dilydro-2H-benzo[b] [1,4]thiazin-8-yl)-1H- pyrazol-1-yl)methyl)-3- fluorobenzoic acid
Example	359	360

continued
5
15
LE 15
BLE 15

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.7 min, 97.8% 10.7 min, 97.9%	11.1 min, 99.3% 10.2 min, 98.4%
¹ Н NMR (400 MHz, MeOD) δ	7.93 (s, 1H), 7.78-7.71 (m, 2H), 7.60 (s, 1H), 7.27-7.23 (m, 1H), 7.20-7.12 (m, 2H), 6.92 (t, 1 = 8.0 Hz, 1H), 6.64 (t, 1 = 8.9 Hz, 2H), 5.59 (d, 1 = 1.4 Hz, 2H), 4.09-3.84 (m, 4H), 3.12 (t, 1 = 6.2 Hz, 2H), 2.68 (t, 1 = 6.9 Hz, 2H), 2.10-2.03 (m, 2H), 1.87 (s, 3H)	7.81 (dd, J = 7.9, 1.5 Hz, 1H), 7.77 (s, 1H), 7.74 (dd, J = 10.7, 1.5 Hz, 1H), 7.65 (s, 1H), 7.31-7.23 (m, 2H), 7.67-115 (m, 2H), 6.95-6.90 (m, 1H), 6.65 (t, J = 7.6 Hz, 2H), 5.49 (s, 2H), 4.05-3.86 (m, 4H), 3.14 (t, J = 6.1 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.10 (quin, J = 6.4 Hz, 2H), 1.87 (s, 3H)
LCMS, [M+H] ⁺	594.2	560.4
Formula I	CI CO2H	L CO2H
Name	3-Chloro 4-((4-(4-(2,3-dimethylphenoxy)butanoyl)-3,4-dihydro-2H-berzo[b] [[1,4]hilazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	4-((4-(4-(2,3- Dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b] [1,4]thiazin-8-yl)-1H- pyrazol-1-yl)methyl)-3- fluorobenzoic acid
Example	361	362

ontinued
15-c
BLE
IA

	in, 2:	 % %	% %
	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.3 min, 99.3%	12.0 min, 98.6%
	¹ H NMR (400 MHz, MeOD) δ	8.03-7.94 (m, 3H), 7.71 (s, 1H), 7.56-7.45 (m, 2H), 7.30 (d, 1 = 7.9 Hz, 1H), 7.13 (dd, 1 = 1.8, 7.9 Hz, 2H), 7.01 (dd, 1 = 1.8, 7.9 Hz, 2H), 6.75 (dd, 1 = 7.8, 3.6 Hz, 2H), 5.46 (s, 2H), 4.57-4.50 (m, 2H), 4.26-4.17 (m, 2H), 3.94-3.84 (m, 2H), 3.13 (t, 1 = 5.6 Hz, 2H), 2.15 (s, 2H), 2.16-2.08 (m, 3H)	7.95-7.90 (m, 1H), 7.86 (s, 1H), 7.73 (dd, 1= 9.7, 1.4 Hz, 1H), 7.62 (s, 1H), 7.18 (dd, 1= 8.0, 1.4 Hz, 1H), 7.11-7.06 (m, 1H), 7.05-6.92 (m, 2H), 6.74 (t, 1= 8.0 Hz, 2H), 5.60 (d, 1= 1.7 Hz, 2H), 4.53-4.51 (m, 2H), 4.20 (dd, 1= 5.4, 4.0 Hz, 2H), 3.90-3.86 (m, 2H), 3.13-3.09 (m, 2H), 2.22 (s, 3H), 2.10 (s, 3H)
	LCMS, [M+H] ⁺	544.3	596.3
LADLE 13-continued	Formula I	HO N N N N N N N N N N N N N N N N N N N	
	Name	3-((4-(4-((2-(2,3- Dimethylphenoxy)ethoxy) carbony))-3,4-dihydro-2H- benzo[l],14[hiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzoic acid	3-Chloro-4-((4-(4-(2-(2,3-dimethylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-IH-pyrazol-1-yl)methyl)-5-fihorobenzoic acid
	Example	363	<u>\$</u>

-
Ō
Ξ
.=
ntin
8
7
Ý
15-
H
H
H
H
ABLE 1:
H

HPLC-1: Rt min, purity; HPLC-2: ¹ H NMR (400 MHz, MeOD) δ Rt min, purity	8.10 (s, 1H), 7.92-7.85 (m, 2H), 11.6 min, 99.0% 7.69 (d, J = 0.8 Hz, 1H), 7.56-7.46 10.8 min, 99.1% (m, 2H), 7.27 (dd, J = 8.0, 1.4 Hz, 1H), 7.19-7.10 (m, 2H), 7.06-7.00 (m, 2H), 7.95 (s, 2H), 4.47 (dd, J = 8.3 Hz, 1H), 4.29-4.23 (m, 2H), 3.88-7.80 (m, 2H), 3.13 (d, J = 1.1 Hz, 2H), 2.20 (s, 3H)	9.09 (s, 1H), 7.83 (s, 1H), 7.72 (dd, J = 12.2 min, 99.1% 9.5, 1.3 Hz, 1H), 7.63 (d, J = 0.7 11.3 min, 99.8% Hz, 1H), 7.25 (dd, J = 7.9, 1.3 Hz, 1H), 7.19-7.12 (m, 1H), 7.11-7.06 (m, 1H), 7.05-699 (m, 2H), 6.96 (d, J = 8.4 Hz, 1H), 5.54 (s, 2H), 4.49-4.43 (m, 2H), 4.27-4.20 (m, 2H), 3.85-3.78 (m, 2H), 3.16-3.08 (m, 2H), 2.18 (s, 3H)
$\frac{\text{LCMS}}{[\text{M} + \text{H}]^{+}}$	564.3	8 8
Formula I	HO S NO S	
Мате	3-((4-(4-(2-(3-Chloro-2-methylphenoxy)ethoxy) carbonyl)-3,4-dilydro-2H- benzolb [I]. 4[thiazin-8-yi)- IH-pyrazol-1-yi)methyl) benzoic acid	3-Chloro-4-((4-((2-(3-choro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid
Example	365	366

7	3
ď	١
-	ą
-	2
ς.	2
٠.	4
+	٠
- 2	3
~	ς
	•
C)
- 1	
V	١
	-
_	4
ΓT	1
Ţ	1
ī	
I I I	1
N 1 1 1	1
RI FI 1	
ARIE 1	
ARIE 1	
TARIE 1	
TARIE 1	
TARIE 1	
TARIE 1	

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	13.8 min, 94.1% 12.5 min, 94.0%	12.4 min, 96.6%
¹ H NMR (400 MHz, McOD) δ	7.96 (dd, J = 8.4, 2.2 Hz, 1H), 7.84 (d, J = 2.0 Hz, 1H), 7.79-7.71 (m, 2H), 7.55-7.47 (m, 1H), 7.38-7.30 (m, 1H), 7.13-6.98 (m, 4H), 6.73 (d, J = 7.7 Hz, 1H), 5.52 (s, 2H), 4.59-4.53 (m, 2H), 4.55-4.19 (m, 2H), 3.94 (dd, J = 6.3, 5.0 Hz, 2H), 3.89 (s, 3H), 3.19-3.12 (m, 2H), 2.31-2.26 (m, 3H)	8.16 (s, 1H), 7.89 (dd, J = 8.3, 2.1 Hz, 1H), 7.73 (s, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.27 (d, J = 7.0 Hz, 1H), 7.20 (m, 2H), 7.08 -7.00 (m, 2H), 6.97 (d, J = 8.1 Hz, 1H), 5.55 (s, 2H), 4.50 -4.5 (m, 2H), 4.50 -4.5 (m, 2H), 4.30 -4.5 (m, 2H), 3.10 (m, 2H), 3.18 -3.30 (m, 2H), 3.16 -3.10 (m, 2H), 2.23 -2.18 (m, 3H)
LCMS, [M+H]⁺	612.1	598.0
Formula I	S C C C C C C C C C C C C C C C C C C C	OH CI
Name	2-(3-Chloro-2- methylphenoxy)ethyl 8-(1- (2-chloro-5- IH-pyrazol-4-yl)-2H- benzo[b][1,4]thiazine- 4(3H)-carboxylate	4-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)earbonyl)-3,4- dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1- yl)methyl)benzoic acid
Example	367	368

	_
π	3
ď)
7	ą
7	=
- 5	=
٠,	₹
7	=
-	4
- (0
ē	5
ī	ī
1	'n
٠,	,
_	4
-	_
ī	1
ſΊ	į
ī	1
7 1	1
Z L	
4 P. F. 1	
TARIE 1	
TARIE 1	
TARIE1	

	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	12.9 min, 99.9% 11.6 min, 99.9%	11.1 min, 98.7% 10.3 min, 97.4%	
	¹ H NMR (400 MHz, MeOD) δ	7.77-7.73 (m, 2H), 7.65 (s, 1H), 7.32 (t, 1 = 7.8 Hz, 1H), 7.23 (d, 1 = 8.6 Hz, 1H), 7.18-7.06 (m, 3H), 7.60 (t, 1 = 7.9 Hz, 1H), 6.73 (d, 1 = 7.5 Hz, 1H), 6.65 (d, 1 = 8.1 Hz, 1H), 5.54 (s, 2H), 3.99-3.90 (m, 7H), 3.17 (t, 1 = 5.8 Hz, 2H), 2.68 (t, 1 = 7.2 Hz, 2H), 2.19 (s, 3H), 2.17- 2.10 (m, 2H), 1.96 (s, 3H)	7.80-7.71 (m, 2H), 7.66 (d, J = 0.6 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.28 (dd, J = 6.4, 2.8 Hz, 1H), 7.22- 7.13 (m, 3H), 6.92 (t, J = 7.9 Hz, 1H), 6.64 (t, J = 7.5 Hz, 2H), 5.55 (s, 2H), 4.15-3.82 (m, 4H), 3.18-3.09 (m, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.15-2.02 (m, 5H), 1.86 (s, 3H)	
	$\begin{array}{c} \text{LCMS,} \\ [\text{M} + \text{H}]^{+} \end{array}$	590.2	576.2	
LADLE 13-commueu	Formula I	$\sum_{N-N}^{C_l}$	HO N N N N N N N N N N N N N N N N N N N	
	Name	Methyl 2-ciloro-3-((4-(4-(2-(3-dimethylphenoxy)) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzoate	2-Chloro-3-((4-(4-(4-(2,3-dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b] [1,4]hiiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid	
	Example	369	370	

permitang	
ч)
_	4
ī	1
Ω	בַ
È	4

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	12.8 min, 99.9% 11.6 min, 99.8%	11.2 min, 100% 10.4 min, 1009%
¹ H NMR (400 MHz, MeOD) δ	7.99 (s, 1H), 7.94 (s, 1H), 7.74 (dd, J = 7.8, 1.7 Hz, 1H), 7.36 (d, J = 7.9 Hz, 1H), 7.32-7.28 (m, 2H), 7.12 (dd, J = 7.1, 1.5 Hz, 1H), 7.05-6.98 (m, 1H), 6.92 (t, J = 7.8 Hz, 1H), 6.74 (d, J = 7.7 Hz, 1H), 6.66 (d, J = 8.1 Hz, 1H), 5.56 (s, 2H), 4.35 (t, J = 4.8 Hz, 2H), 4.00 (d, J = 5.7 Hz, 4H), 3.96 (s, 3H), 2.88 (t, J = 7.0 Hz, 2H), 2.27-2.19 (m, 3H), 2.02 (br. s., 3H), 2.27-2.19 (m, 3H), 2.02 (br. s., 3H)	8.07 (8, 1H), 7.93 (d, J = 0.6 Hz, 1H), 7.73 (dd, J = 7.8, 1.7 Hz, 1H), 7.41 (dd, J = 7.8, 1.4 Hz, 1H), 7.35 (t, J = 7.8, 1.4 Hz, 1H), 7.13 (dd, J = 7.8, 1.7 Hz, 1H), 6.97-6.88 (m, 2H), 6.70-6.63 (m, 2H), 5.56 (s, 2H), 4.28 (t, J = 4.9 Hz, 2H), 3.99-3.22 (m, 4H), 2.90 (t, J = 6.9 Hz, 2H), 2.70-2.12 (m, 2H), 2.11 (s, 3H), 1.92 (s, 3H)
LCMS, [M+H] ⁺	574.2	560.2
Formula I	C C O O O O O O O O O O O O O O O O O O	THO CONTRACTOR OF THE PARTY OF
Name	Methyl 2-chloro-3-((4-(4-(4-(4-(2,3-dimethylphenoxy)) buranoyl)-3,4-dihydro-2H-benzolb[11,4]oxazin-8-yl)-1H-pyrazol-1-yl)methyl) benzoate	2-Chloro-3-((4-(4-(2,3-dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid
Example	371	372

continued
ν'n
$\overline{}$
Ħ
$\overline{}$
m
ĭ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.8 min, 100% 11.0 min, 99.9%	17.1 min, 99.1% 10.8 min, 95.3%
¹ Н NMR (400 MHz, MeOD) δ	8.01 (d, J = 0.7 Hz, 1H), 7.81-7.75 (m, 2H), 7.40 (t, J = 7.7 Hz, 1H), 7.32 (d, J = 7.9 Hz, 1H), 7.22-7.03 (m, 4H), 7.00 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 8.1 Hz, 1H), 5.61 (s, 2H), 4.60-4.54 (m, 2H), 4.31-4.26 (m, 2H), 3.98-3.90 (m, 2H), 3.19-3.15 (m, 3H), 2.25 (s, 3H)	8.05-7.99 (m, 2H), 7.77-7.72 (m, 1H), 7.60 (s, 1H), 7.48-7.41 (m, 2H), 7.23 (dd, 1=7.5, 1.4 Hz, 1H), 7.17-7.10 (m, 1H), 7.06 (d, 1=6.7 Hz, 1H), 7.04-6.97 (m, 1H), 6.92 (d, 1=7.5 Hz, 1H), 6.68 (d, 1=8.3 Hz, 1H), 5.45-5.38 (m, 2H), 4.93-4.81 (m, 1H), 4.10-3.90 (m, 4H), 3.89 (d, 1=2.5 Hz, 1H), 3.10 (dd, 1=1.59, 9.4, 6.74 Hz, 1H), 2.14 (quin, 1=6.5 Hz, 2H), 2.08 (s, 3H), 2.05-1.80 (m, 6H), 1.71-1.09 (m, 16H), 0.97 (t, 1=3.2 Hz, 6H), 0.70 (s, 3H)
LCMS, [M+H] ⁺	598.2	936.6
Formula I	HO O O O O O O O O O O O O O O O O O O	
Name	2-Chloro-3-((4-(4-(2-(3-chloro-2-methylphenoxy)) ethoxy)carbonyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid	(R) 4-((3R,5R,7R,8R,9S, 10S,13R,14S,17R)-3-(4-(4-(3-Chloro-2-methylphenoxybutanoyl)-3,4-dilydro-2H-benzoylovy)-1H-pyrazol-1-yl)methyl) benzoylovy-1-ydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthen-17-yl)pentanoic acid
Example	373	374

med
-contin
1.5
H
$\overline{\mathbf{m}}$
IA

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	100%*	12.6 min, 95.0% 12.6 min, 95.0%
¹ H NMR (400 MHz, MeOD) δ	7.77 (s. 1H), 7.69 (s. 1H), 7.34-7.24 (m, 2H), 7.13-7.00 (m, 3H), 6.97 (d, J = 7.9 Hz, 1H), 6.91-6.84 (m, 2H), 6.82 (d, J = 2.0 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 5.33 (s. 2H), 4.57-4.53 (m, 4H), 4.26-4.20 (m, 2H), 3.94-3.90 (m, 2H), 3.17-3.13 (m, 2H), 2.25 (s, 3H)	7.92 (d, J = 0.4 Hz, IH), 7.73 (d, J = 0.7 Hz, IH), 7.28 (d, J = 7.5 Hz, IH), 7.20 (d, J = 8.8 Hz, IH), 7.16-7.00 (m, 3H), 6.96 (d, J = 7.9 Hz, IH), 6.86 (d, J = 8.1 Hz, IH), 6.72 (dd, J = 8.7, 3.0 Hz, IH), 6.46 (d, J = 8.7, 3.0 Hz, IH), 6.46 (d, J = 8.3, 3.7 Hz, 2H), 4.54 (dd, J = 5.3, 3.7 Hz, 2H), 4.27 4.21 (m, 2H), 3.93-3.86 (m, 2H), 3.16-3.11 (m, 2H), 2.22 (s, 3H)
LCMS, [M+H] ⁺	594.3	570.2
Formula I	N—N N—N N—N	HO O O O O O O O O O O O O O O O O O O
Name	2-(3-((4-(4-((2-(3-Chloro-2-methylphenoxy)ethoxy)) carbomyl)-3,4-dihydro-2H-benzo[bl][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) phenoxy)acetic acid	2-(3-Chloro-2- methylphenoxy)ethyl 8-(1- (2-chloro-5-hydroxybenzyl)- 1H-pyrazol-4-yl)-2H- benzo[b][1,4]thiazine- 4(3H)-carboxylate
Example	375	376

nned
5-conti
41
$\overline{}$
띰
\sim
_
Z

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	12.2 min, 97.2% N/A	12.8 min, 92.4%
¹ Н NMR (400 MHz, MeOD) 8	8.12 (s, 1H), 7.73 (s, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.29 (d, J = 9.2 Hz, 1H), 7.29 (1, J = 9.2 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.92 (dd, J = 8.8, 3.1 Hz, 1H), 6.54 (s, 2H), 4.64 (s, 2H), 4.52 -4.46 (m, 2H), 4.57 (d, J = 4.8 Hz, 2H), 3.83 -3.17 (d, J = 4.8 Hz, 2H), 3.83 -3.17 (d, J = 4.8 Hz, 2H), 3.83 -3.17 (d, J = 4.8 Hz, 2H), 3.84 -3.17 (d, J = 4.8 Hz, 2H), 3.20 -3.12 (d, J = 4.8 Hz, 2H), 3.84 -3.12 (d, J = 4.8 Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz,	8.12 (s, 1H), 7.72 (s, 1H), 7.40 (d, J = 8.8 Hz, 1H), 7.29 (d, J = 6.8 Hz, 1H), 7.23-7.11 (m, 2H), 7.06 (t, J = 8.6 Hz, 2H), 7.02-6.91 (m, 2H), 6.60 (d, J = 3.1 Hz, 1H), 5.44 (s, 2H), 4.22-44.64 (m, 2H), 4.29-4.22 (m, 2H), 3.93 (t, J = 6.5 Hz, 2H), 3.88-3.81 (m, 2H), 3.19-3.11 (m, 2H), 2.35 (t, J = 7.3 Hz, 2H), 3.81, 1.98-1.85 (m, 2H)
LCMS, [M + H] ⁺	628.2	656.2
Formula I	Co ₂ H	S C C C C C C C C C C C C C C C C C C C
Name	2-(4-Chloro-3-(4-(4-(2-(3-chloro-2-methylphenoxy) ethoxy)carbony))-3,4- ditydro-2H-benzo[b][1,4] thiazin-8-yl)-HP-pyrazol-1- yl)methylphenoxy)acetic acid	4-(4-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)-carbonyl)-3,4- dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1- yl)methyl)phenoxy)butanoic acid
Example	377	378

jed
tint
5-col
$\ddot{-}$
щ
ᆜ
Д
Z

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	12.6 min, 100%	11.7 min, 99.7%
¹ H NMR (400 MHz, MeOD) δ	8.41 (s, 1H), 8.09 (s, 1H), 7.89 (dd, J = 8.4, 2.2 Hz, 1H), 7.65 (d, J = 8.4), 7.59 (d, J = 2.0 Hz, 2H), 7.30 (dd, J = 9.6, 3.0 Hz, 1H), 7.24, 7.16 (m, 1H), 7.03 (dd, J = 10.6, 8.1), Hz, 2H), 5.55 (s, 2H), 4.58-4.52 (m, 2H), 4.34 (dt, J = 8.1, 4.2 Hz, 4H), 3.93-3.86 (m, 2H), 2.23 (s, 3H)	8.21 (s, 1H), 8.06-7.95 (m, 3H), 7.69-7.39 (m, 3H), 7.23 (dd, J = 9.2, 2.4 Hz, 1H), 7.06 (t, J = 8.0 Hz, 1H), 6.86 (dd, J = 18.9, 7.7 Hz, 2.H), 6.86 (dd, J = 18.9, 7.7 Hz, 2.H), 4.34 (hz, s., 2H), 4.13-4.06 (m, 2H), 3.99 (t, J = 4.7 Hz, 2.H), 2.99-2.87 (m, 2H), 2.28-2.19 (m, 2H), 2.16-2.01 (m, 3H)
LCMS, [M+H] ⁺	0'009	564.2
Formula I	H ₂ CO ₂ H	H ^c OO JO N
Name	4-Chloro-3-((4-(t-(t2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-6-fluoro- 3,4-dilydro-2H-benzo[b] [1,4]oxazin-8-yl)-1H- pyrazol-1-yl)methyl)benzoic acid	3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-6-fluoro-3,4-dihydro-2H-berzolb[I,4]oxazin-8-yl)-IH-pyrazol-1-yl)methyl) benzoic acid
Example	379	380

continued
κ̈́
T
Ħ
$\overline{}$
Ą
Ξ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.2 min, 98.3% 10.4 min, 98.0%	*%666
¹ H NMR (400 MHz, MeOD) 8	8.01 (d, J = 0.8 Hz, 1H), 7.83-7.77 (m, 2H), 7.63 (d, J = 0.8 Hz, 1H), 7.47-7.38 (m, 2H), 7.21-7.14 (m, 2H), 7.00-7.00 (m, 2H), 6.80 (dd, J = 9.2, 4.4 Hz, 1H), 5.37 (s, 2H), 3.87 (t, J = 6.1 Hz, 2H), 3.79 (br. s., 2H), 3.04 (t, J = 6.1 Hz, 2H), 2.90 (s, 3H), 1.90 (quin, J = 6.7 Hz, 2H)	7.96 (dd, J = 8.2, 1.7 Hz, 1H), 7.83 (d, J = 1.5 Hz, 1H), 7.73-7.68 (m, 2.H), 7.52 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 7.4 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.66 (dd, J = 8.9, 4.0 Hz, 1H), 5.68 (dd, J = 8.9, 4.0 Hz, 1H), 5.52 (s, 2H), 4.72 (bz. s., 2H), 3.90 (bz. s., 2H), 3.10 (bz. s., 2H), 2.742.66 (m, 2H), 2.15-2.07 (m, 2H), 2.00 (bz. s., 3H)
LCMS, [M+H] ⁺	580.1	614.0
Formula I	CO ₂ H	CO ₂ H CO ₂ H CO ₂ H
Name	3-((4-(4-(3-Chloro-4- fluoro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H- benzolo[1],4-flthazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzoic acid	4-Chloro-3-((4-(4-(3-chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2-he-bnzo[b] [1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid
Example	381	382

continued
ý
$\overline{}$
H
=
Э
1

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	12.3 min, 100% 11.3 min, 100%	13.0 min, 100% 12.4 min, 99.6%
¹ Н NMR (400 MHz, MeOD) δ	8.16 (s, 1H), 7.88 (dd, J = 8.3, 2.1 Hz, 1H), 7.73 (d, J = 0.7 Hz, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.20 (fd, J = 8.1, 1.3 Hz, 1H), 7.20 (f, J = 9.0 Hz, 1H), 7.15-7.11 (m, 1H), 7.08-6.97 (m, 2H), 5.55 (s, 2H), 4.50-4.43 (m, 2H), 3.55 (s, 2H), 4.50-4.43 (m, 2H), 3.16-3.11 (m, 2H), 2.21 (s, 3H)	8.18 (s, 1H), 7.90 (dd, J = 8.3, 2.1 Hz, 1H), 7.74 (s, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.40.730 (m, 2H), 7.14 (dd, J = 7.7, 1.3 Hz, 1H), 7.10.700 (m, 3H), 5.56 (s, 2H), 4.54-4.66 (m, 2H), 4.39 (d, J = 4.8 Hz, 2H), 3.90-3.81 (m, 2H), 3.18-3.13 (m, 2H)
LCMS, [M+H] ⁺	616.0	602.0
Formula I	$\begin{array}{c} N \\ N \\ C \\$	H ₂ CO ₂ H ₃ CO ₂ H ₃ CO ₂ H ₃ CO ₃ CO ₃ H ₃ CO
Name	4-Chloro-3-(4-(4-(2-(3-chloro-2-chloro-2-methylphenoxy)ethoxy) carbonyl)-3,4-diinydro-2H-benzo[b][I,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzoic acid	4-Chloro-3-(4-(4-(2-(2-chloro-3-fluorophenoxy) ethoxy)carbonyl)-3,4-diihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid
Example	383	28. 48.

ਹ
o
=
⊐
Έ.
□
0
ಾ
v)
$\overline{}$
(T)
བ
-
Щ
$\overline{}$
74

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	13.7 min, 98.0% 12.8 min, 97.4%	8.7 min, 95.0%
¹ Н NMR (400 MHz, MeOD) 8	8.18 (d, J = 0.7 Hz, 1H), 7.90 (dd, J = 8.3, 2.1 Hz, 1H), 7.74 (d, J = 0.7 Hz, 1H), 7.74 (d, J = 0.7 Hz, 1H), 7.76 (d, J = 2.0 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.60 (t, J = 8.3 Hz, 1H), 7.47 (13, 1H), 7.47 (14, 1H), 7.97 (14), 1H), 5.57 (s, 2H), 4.51 -4.44 (m, 2H), 5.57 (s, 2H), 4.51 -4.44 (m, 2H), 4.40 (d, J = 2.6 Hz, 2H), 3.87 3.81 (m, 2H), 3.17 -3.11 (m, 2H)	8.10-7.90 (m, 3H), 7.82 (s, 1H), 7.65-7.45 (m, 2H), 7.33 (d, 1= 3.5 Hz, 3H), 6.98 (t, 1= 7.7 Hz, 1H), 6.71 (d, 1= 7.9 Hz, 2H), 5.51 (s, 2H), 4.09 (dd, 1= 11.7, 6.1 Hz, 1H), 3.98 (t, 1= 5.7 Hz, 2H), 3.87-3.70 (m, 1H), 3.02-2.64 (m, 2H), 2.32-2.07 (m, 6H), 2.07-1.92 (m, 3H), 1.86-1.65 (m, 1H)
LCMS, [M+H] ⁺	652.0	540.3
Formula I	Co ₂ H Co ₂ H Co ₃ H Co ₄ H	Ho N N N N N N N N N N N N N N N N N N N
Name	4-Chloro-3-((4-(4-((2-(3-chloro-2-(rifluoromethyl)))) phenoxy)ethoxy)carbomyl)-3,4-dibydro-2H-benzo[b] [1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzoic acid	3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 4-hydroxy-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl)benzoic acid
Example	385	386

continued
Ϋ́
$\overline{}$
TABLE

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.0 min, 94.8% 8.6 min, 95.0%	***************************************
¹ H NMR (400 MHz, MeOD) δ	8.09-7.96 (m, 1H), 7.90 (s, 1H), 7.63 (s, 1H), 7.60-7.39 (m, 4H), 7.33 (dd, J = 7.7, 0.9 Hz, 1H), 6.98 (t, J = 7.9 Hz, 1H), 6.70 (t, J = 8.6 Hz, 2H), 5.96 (s, 2H), 4.22 (t, J = 6.3 Hz, 2H), 3.98 (t, J = 7.2 Hz, 2H), 2.89 (t, J = 6.4 Hz, 2H), 2.28-2.11 (m, 5H), 1.95 (s, 3H)	8.04-7.93 (m, 1H), 7.89 (s, 1H), 7.65-7.50 (m, 4H), 7.50-7.33 (m, 2H), 7.31-7.17 (m, 2H), 7.10 (br. s., 1H), 6.93 (t, 1 = 7.9 Hz, 1H), 6.57 (d, 1 = 7.4 Hz, 1H), 6.56 (d, 1 = 7.4 Hz, 1H), 5.80 (s, 1H), 3.99-3.77 (m, 4H), 2.83 (t, 1 = 7.2 Hz, 2H), 2.07 (br. s., 2H), 2.18 (s, 3H), 2.07 (br. s., 2H), 1.91 (br. s., 3H), 2.07 (br. s., 2H), 1.91 (br. s., 3H)
LCMS, [M+H] ⁺	538.3	536.1
Formula I		H ₂ OO
Name	3-((4-(1-3)- Dimethylphenoxy) butanoyl)-4-oxo-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl)benzoic acid	3-((4-(1-(4-(2,3-Dimethylphenoxy)) butanoyl)-4-methylene-11,2,3,4-tetrahydroquinolin-5-yl)-IH-pyrazol-1-yl) methyl)benzoic acid
Example	387	388

ntinued
5-c
Π
LE 1
BLE 1

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.9 min, 93.6% 9.1 min, 94.8%	9.9 min, 99.8% 9.1 min, 98.6%
¹ H NMR (400 MHz, MeOD) δ	8.07-7.93 (m, 2H), 7.85 (s, 1H), 7.74-7.42 (m, 3H), 7.37-7.14 (m, 3H), 6.97 (t, 1 = 7.8 Hz, 1H), 6.79-6.51 (m, 2H), 5.64-5.34 (m, 3H), 2.36 (br. s., 3H), 2.69 (br. s., 2H), 2.32-2.06 (m, 6H), 2.05-1.74 (m, 5H), 0.61 (br. s., 2H), 0.31 (br. s., 2H)	8.01 (d, J = 7.5 Hz, IH), 7.94 (s, IH), 7.81 (s, IH), 7.65-7.44 (m, 3H), 7.34-7.12 (m, 3H), 7.03-6.89 (m, IH), 6.77-6.58 (m, 2H), 5.51 (s, 2H), 4.24 (br. s., IH), 3.99 (d, J = 4.4 Hz, IH), 3.89-3.37 (m, 4H), 3.18 (br. s., IH), 2.02-7.0 (m, 2H), 2.02-1.87 (m, 4H), 1.80 (br. s., 7H), 1.46-1.18 (m, 2H), 1.07-0.79 (m, 2H)
LCMS, [M+H] ⁺	550.3	538.3
Formula I	H ₂ COO	H ² OOO Z
Name	3-((4-(1'-(4-(2,3-)methylphenoxy)) butanoy))-2',3'-dihydro-1'H-spiricly-dopropane-1,4'-quinoline -5'-y)-1H-pyrazol-1-yl)methyl)benzoic	3-((4-(1-(4-(2,3-) Dimethylphenoxy)) butanoyl) -4-methyl-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzoic acid
Example	389	390

continued
ý
$\overline{}$
H
=
Э
1

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	10.3 min, 100%	10.0 min, 98.8% 9.2 min, 99.1%
¹ H NMR (400 MHz, MeOD) δ	8.01 (s. 1H), 7.96 (t, J = 1.3 Hz, 1H), 7.86 (d, J = 0.4 Hz, 1H), 7.78 (dd, J = 9.7, 1.5 Hz, 1H), 7.63 (dd, J = 6.4, 3.1 Hz, 1H), 7.63 (dd, J = 6.4, 3.1 Hz, 1H), 7.63 (dd, J = 7.1), 7.04-6.93 (m, 1H), 6.83 (d, J = 7.3 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 5.70-5.2 (m, 2H), 4.45 (d, J = 11.9 Hz, 1H), 4.00-3.8 (m, 2H), 2.55.3.48 (m, 1H), 2.92-2.75 (m, 1H), 2.58-2.19 (m, 3H), 2.17-1.99 (m, 2H), 1.92 (s, 3H), 1.79 (d, J = 14.7 Hz, 1H)	7.97 (s, 1H), 7.93 (s, 1H), 7.84 (s, 1H), 7.76 (dd, J = 9.7, 1.3 Hz, 1H), 7.60 (dd, J = 6.1, 3.4 Hz, 1H), 7.16 (dd, J = 6.1, 3.4 Hz, 1H), 7.16 (dd, J = 6.9 Hz, 2H), 6.94 6.82 (m, 1H), 6.61 (t, J = 6.9 Hz, 2H), 5.68-5.48 (m, 2H), 4.75 (d, J = 1.1.4 Hz, 1H), 3.97 (d, J = 1.1.6 Hz, 1H), 2.92 (m, 2H), 3.63-3.42 (m, 1H), 2.81 (t, J = 11.16 Hz, 1H), 2.53-2.14 (m, 3H), 2.11-1.66 (m, 8H), 1.86 (m, 3H), 1.86 (m, 4H)
LCMS, [M+H] ⁺	612.1	592.2
Formula I		THO NO
Name	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)) butanoyl)-2,3,4,5-tetrahydrobenzolp[11,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	3-Chloro-4-((4-(5-(4-(2,3-dimethylphenoxy)butanoyl)- 2,3,4,5-tetrahydrobcnzo[b] [1,4]oxazepin-9-yl)-IH- pyrazol-1-yl)methyl)-5- fluorobenzoic acid
Example	391	392

panu
5-cont
$\overline{}$
TE
$\overline{A}B$
Н

, щ. ;; ,		%
HPLC-1: Rt min. purity; HPLC-2: Rt min, purity	η, 99.79 1, 99.79	9.2 min, 100%
HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.0 min, 99.5%	9.2 mii
		6.52 1.52 1.52 1.53
¹ H NMR (400 MHz, MeOD) δ	7.92 (s, 1H), 7.89-7.76 (m, 3H), 7.51 (dd, J = 7.6, 1.7 Hz, 1H), 7.29 br. s., 1H), 7.14-6.95 (m, 3H), 6.93 (s, 1H), 6.63 (d, J = 8.4 Hz, 1H), 6.5 (d, J = 8.4 Hz, 1H), 6.5 (d, J = 12.3 Hz, 1H), 4.45 (d, J = 12.3 Hz, 1H), 4.01-3.81 (m, 2H), 3.60 (t, J = 10.9 Hz, 1H), 2.78 (t, J = 12.4 Hz, 1H), 2.52-2.20 (m, 3H), 2.16-1.99 (m, 5H), 1.77 (d, J = 14.5 Hz, 1H)	7.88 (d, J = 8.4 Hz, 2H), 7.74-7.62 (m, 2H), 7.49 (dd, J = 1.7, 1.8 Hz, 1H), 7.13-6.94 (m, 3H), 6.92-6.84 (m, 1H), 6.04 (d, J = 8.1 Hz, 1H), 6.04 (d, J = 8.1 Hz, 1H), 4.86 (d, J = 1.3 Hz, 2H), 4.86 (d, J = 1.3 Hz, 1H), 4.00-3.81 (m, 2H), 3.66-3.51 (m, 1H), 2.77 (t, J = 11.3 Hz, 1H), 2.52-2.20 (m, 3H), 2.16-1.98 (m, 5H), 1.77 (d, J = 14.7 Hz, 1H)
) MHz,]	89-7.76 6, 1.7 Hz 6, 6.95 (m. 6, 6.95 (d.) 10, 4.86 (d.) 11, 1 = 12 12, 1 = 12 13, 16 (d.) 14, 15 (d.) 15, 16 (d.) 16, 17 (d.) 17, 18 (d.) 18, 18 (d.)	Hz, 2H) id, J = 1 id, J = 8, id, J = 11, id, J = 11, id, J = 11, id, J = 14,
AR (400	; 1H), 7 ; 1 = 7.6 H), 7.14 H), 7.14 f), 1H), 6 f) 7 (s, 2E f) 8 (J = 8.4 (3-6.94 (6) (3-6.94 (7) (7) = 3.5 H (7) = 3.5 H (7) = 3.7 (6) (7) = 3.8 H (7) = 3.8 H (7) = 3.8 H (8) = 3.8 H (8) = 3.8 H (9) = 3.8 H (1) = 3.
N H _I	7.92 (s, 1H), 789-7.76 (m, 3H), 7.51 (dd, 1 = 7.6, 1.7 Hz, 1H), 7.29 (br. s., 1H), 7.14-6.95 (m, 3H), 6.93-6.85 (m, 1H), 6.65 (d, 1 = 8.4 Hz, 1H), 6.45 (s, 2H), 4.86 (d, 1 = 13.2 Hz, 1H), 4.45 (d, 1 = 12.3 Hz, 1H), 4.01-3.81 (m, 2H), 3.60 (t, 1 = 10.9 Hz, 1H), 2.78 (t, 1 = 12.4 Hz, 1H), 2.52-2.20 (m, 3H), 2.16-1.99 (m, 5H), 1.77 (d, 1 = 14.5 Hz, 1H)	7.88 (d. J. = 8.4 Hz, 2H), 7.74-7.62 (m. 2H), 7.49 (dd, J. = 1.7, 1.8 Hz, 1H), 7.13-6.94 (m. 3H), 6.92-6.84 (m. 1H), 6.64 (d. J. = 8.1 Hz, 1H), 6.64 (d. J. = 8.1 Hz, 1H), 4.00-3.81 (m. 2H), 3.66-3.51 (m. 1H), 4.00-3.81 (m. 2H), 3.66-3.51 (m. 1H), 2.77 (f. J. = 11.3 Hz, 1H), 2.52-2.20 (m. 3H), 2.16-1.98 (m. 5H), 1.77 (d. J. = 14.7 Hz, 1H)
LCMS, [M+H] ⁺	753.7	596.2
L [M		Ψ;
	=	=
Formula I		
For		
	Z	
ne	4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)- 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H- pyrazol-1-yl)methyl)-3- fluorobenzoic acid	4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)- 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H- pyrazol-1-yl)methyl)-3,5- difluorobenzoic acid
Name	(5-(4-(3)) tphenox tphenox oxazepi sol-1-yl) torobenz	((4-(5-(4-(3-Chi thylphenoxy)bu ,4,5-tetrahydrob ,4]oxazepin-9-y razol-1-yl)meth difluorobenzoic
	4-((4) methy 2,3,4,5 [1,4]. pyra:	4-((4 methy 2,3,4,4 [1,4]) pyraz diff
Example	393	394
I H		

ਹ
o
=
⊐
Έ.
□
0
ಾ
v)
$\overline{}$
(T)
བ
-
Щ
$\overline{}$
74

HPLC-1: Rt min, purity; HPLC-2:	Rt min, purity	10.1 min, 100% 9.2 min, 100%	9.9 min, 100% 9.1 min, 100%
	$^{1}\mathrm{H}\ \mathrm{NMR}\ (400\ \mathrm{MHz},\ \mathrm{MeOD})\ \delta$	8.14-8.01 (m, 2H), 7.59 (s, 1H), 7.56-7.47 (m, 2H), 7.43 (s, 1H), 7.26-7.14 (m, 2H), 7.10-6.96 (m, 2H), 6.01 (d, 1 = 7.14 (m, 2H), 7.10-6.96 (m, 2H), 6.01 (d, 1 = 13.2 Hz, 1H), 5.45 (s, 2H), 4.71 (d, 1 = 13.2 Hz, 1H), 4.04, 3.85 (m, 2H), 2.92-6.04 (m, 1H), 2.56-2.33 (m, 2H), 2.12-0.07 (m, 3H), 2.00-1.86 (m, 2H), 1.76 (d, 1 = 14.7 Hz, 1H), 1.36 (d, 1 = 12.1 Hz, 1H)	7.98 (s, 1H), 7.89 (s, 1H), 7.69-7.55 (m, 3H), 7.19-7.10 (m, 2H), 7.06 (d, 1 = 7.7 Hz, 1H), 7.01-6.91 (m, 1H), 6.81 (d, 1 = 7.7 Hz, 1H), 6.72 (d, 1 = 13.6 Hz, 1H), 5.42 (s, 2H), 4.76 (d, 1 = 13.6 Hz, 1H), 4.44 (d, 1 = 11.9 Hz, 1H), 3.95 (s, 3H), 3.92 (m, 2H), 2.82 (t, 1 = 11.7 Hz, 1H), 2.52-2.17 (m, 3H), 2.12-1.97 (m, 2H), 1.92 (s, 3H), 1.77 (d, 1 = 15.4 Hz, 1H)
LCMS,	$[M + H]^{+}$	558.3	590.3
	Formula I	N-N	MeO OH OH
	Name	3-(4-(1-(4-(3-Chloro-2-methylphenoxy)butanoyl)- 2,3,4,5-tetrahydro-1H-benzo[b]azepin-6-yl)-1H- pyrazol-1-y)lmethyl)benzoic	4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl) 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-IH- pynzol-1-yl)methyl)-3- methoxybenzoic acid
	Example	395	396

continued
κ̈́
_
Ħ
-
g
ĭ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	7.0 min, 98.8% 7.7 min, 99.2%	8.9 min, 97.3% 8.3 min, 97.3%
¹ H NMR (400 MHz, MeOD) δ	8.06 (s. 1H), 7.92 (s, 1H), 7.63 (dd, 1 = 5.7, 3.7 Hz, 1H), 7.52-7.42 (m, 1H), 7.32-7.20 (m, 2H), 7.19-7.10 (m, 3H), 7.04-6.91 (m, 1H), 6.82 (d, 1 = 7.7 Hz, 1H), 6.72 (d, 1 = 8.1 Hz, 1H), 5.43 (d, 1 = 1.5 Hz, 2H), 4.76 (d, 1 = 13.4 Hz, 1H), 4.47 (d, 1 = 1.2 Hz, 1H), 3.96-3.81 (m, 2H), 3.63-3.51 (m, 1H), 2.88-2.73 (m, 1H), 2.80-2.16 (m, 3H), 2.10-1.97 (m, 2H), 1.96-1.89 (m, 3H), 1.77 (d, 1 = 14.5 Hz, 1H)	7.94 (s, 2H), 7.65 (dd, J = 7.0, 2.4 Hz, 1H), 7.19-7.08 (m, 2H), 7.03-6.94 (m, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 4.76 (d, J = 13.6 Hz, 1H), 4.76 (d, J = 13.6 Hz, 1H), 4.83 (d, J = 12.1 Hz, 1H), 3.97-3.82 (m, 2H), 3.58 (dd, J = 11.8, 1.8 Hz, 1H), 2.90-2.77 (m, 1H), 2.50-2.19 (m, 3H), 2.10-1.98 (m, 2H), 1.95 (s, 3H), 1.78 (d, J = 14.5 Hz, 1H)
LCMS, [M + H] ⁺	531.4	426.3
Formula I	N-N O	
Name	1-(9-(1-(3-Aminobenzyl)- 1H-pyrazol-4-yl)-3,4- dihydrobenzolb[l1,4] oxazepin-5(2H)-yl)-4-(3- chloro-2-methylphenoxy) butan-1-one	1-(9-(1H-Pyrazol-4-yl)-3,4-dihydrobenzolb [1,4] oxazepin-5(2H)-yl)-4-(3-chloro-2-methylphenoxy) butan-1-one
Example	397	398

ਹ
o
=
⊐
Έ.
□
0
ಾ
v)
$\overline{}$
(T)
བ
-
Щ
$\overline{}$
74

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	100%*	9.9 min, 100% 9.1 min, 99.9%
¹ H NMR (400 MHz, MeOD) δ	8.03-7.95 (m, 2H), 7.73 (d, J = 3.5 Hz, 2H), 7.50-7.42 (m, 3H), 7.33 (t, J = 7.7 Hz, 1H), 7.16 (dd, J = 7.7, 1.2 Hz, 1H), 7.06-6.97 (m, 1H), 6.88 (d, J = 7.9 Hz, 1H), 5.42 (s, 2H), 3.98-3.7 (m, 2H), 2.88-2.71 (m, 2H), 2.67-2.56 (m, 1H), 2.35-1.92 (m, 10H)	7.93 (d, J = S.1 Hz, 2H), 7.89 (s, 1H), 7.83 (d, J = S.1 Hz, 1H), 7.63 (dd, J = 6.5, 3.0 Hz, 1H), 7.18-7.10 (m, 2H), 7.08-6.92 (m, 2H), 6.83 (d, J = 7.9 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 5.47 (s, 2H), 4.75 (d, J = 1.3.9 Hz, 1H), 4.41 (d, J = 11.4 Hz, 1H), 3.97-3.82 (m, 2H), 3.56 (t, J = 10.8 Hz, 1H), 2.82 (t, J = 11.4 Hz, 1H), 2.82 (t, M), 2.13-1.97 (m, 2H), 1.92 (s, 3H), 1.76 (d, J = 15.2 Hz, 1H)
LCMS, [M+H] ⁺	576.2	574.4
Formula I	H ₂ OO ₂ H ₃ OO ₃ OO	
Name	3-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl) 2,3,4,5-terahydrobenzo[b] [1,4]thiazepin-9-yl)-1H- pyrazol-1-yl)methyl)benzoic acid	4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl) 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H- pyrazol-1-yl)methyl)-3- methylbenzoic acid
Example	336	400

ontinued
ပု
S
15
E 15
3LE 15

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.5 min, 100% 8.9 min, 100%	**%86
¹ H NMR (400 MHz, McOD) δ	8.13-7.99 (m, 3H), 7.94 (s, 1H), 7.66 (dd, 1 = 6.4, 3.1 Hz, 1H), 7.37 (d, 1 = 8.4 Hz, 2H), 7.22-7.11 (m, 4.18, 7.06.94 (m, 1H), 6.83 (d, 1 = 7.9 Hz, 1H), 6.74 (d, 1 = 7.9 Hz, 1H), 5.49 (d, 1 = 1.5 Hz, 2H), 4.78 (d, 1 = 12.8 Hz, 1H), 4.48 (d, 1 = 11.7 Hz, 1H), 5.99-3.82 (m, 2H), 3.65-3.54 (m, 1H), 2.85 (t, 1 = 11.6 Hz, 1H), 2.85 (t, 1 = 11.6 Hz, 1H), 1.94 (m, 2H), 1.194 (m, 2H), 1.194 (m, 2H), 1.194 (m, 2H), 1.194 (m, 2H), 1.94 (m, 2H), 1.94 (m, 2H), 1.94 (m, 2H), 1.94 (m, 2H), 1.95 (m, 2H), 1.80 (d, 1 = 1.99 (m, 2H), 1.94 (m, 2H), 1.95 (m, 2H), 1.80 (m, 2H	8.24 (d, J = 1.0 Hz, 1H), 7.95-7.86 (m, 3H), 7.57 (dd, J = 74, 1.5 Hz, 1H), 7.18-7.04 (m, 2H), 7.04-6.93 (m, 2H), 6.84 (d, J = 7.9 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 5.48 (s, 2H), 4.81-4.75 (m, 1H), 4.43 (d, J = 11.4 Hz, 1H), 2.85-3.81 (m, 2H), 2.35-2.04 (t, J = 7.2 Hz, 2H), 2.35-2.05 (m, 1H), 2.10-2.02 (m, 2H), 1.96 (s, 3H), 1.78 (d, J = 1.4.9 Hz, 1H)
LCMS, [M+H]⁺	560.4	640.1
Formula I	HO OHO OHO	Br OH
Name	4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl) 2,3,4,5-terrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzoic acid	3-Bromo-4-((4-(5-(4-(3-chloro-2-methylphenoxy)) butamoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzoic acid
Example	401	402

ਹ
o
=
⊐
Έ.
□
0
ಾ
v)
$\overline{}$
(T)
བ
-
Щ
$\overline{}$
74

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	100%*	10.3 min, 99.2% 9.4 min, 99.3%
¹ H NMR (400 MHz, MeOD) δ	8.05 (s. 2H), 7.83 (d. J = 10.9 Hz, 2H), 7.51 (dd. J = 7.7, 1.7 Hz, 1H), 7.14-7.01 (m, 2H), 6.97-6.90 (m, 1H), 6.83 (d. J = 7.9 Hz, 1H), 6.64 (d. J = 8.4 Hz, 1H), 5.69 (d. J = 5.0 Hz, 2H), 4.76 (d. J = 13.4 Hz, 1H), 3.95-7.90 (m, 2H), 3.61-3.50 (m, 1H), 2.84-2.73 (m, 2H), 3.61-3.50 (m, 1H), 2.84-2.73 (m, 2H), 2.11-1.98 (m, 2H), 1.96 (s, 3H), 1.77 (d. J = 14.9 Hz, 1H)	8.06 (d, J = 1.5 Hz, 1H), 7.98-7.90 (m, 2H), 7.70 (s, 2H), 7.50 (dd, J = 7.6, 1.9 Hz, 1H), 7.17-7.02 (m, 3H), 7.00-6.91 (m, 1H), 6.82 (d, J = 7.9 Hz, 1H), 6.88 (s, 1H), 5.53 (s, 2H), 4.43 (d, J = 12.1 Hz, 1H), 3.95-3.81 (m, 2H), 3.58 (t, J = 10.9 Hz, 1H), 2.82 (t, J = 11.4 Hz, 1H), 2.82 (t, J = 11.4 Hz, 1H), 2.50-2.19 (m, 3H), 2.12-1.98 (m, 2H), 1.93 (s, 3H), 1.77 (d, J = 14.5 Hz, 1H)
$\begin{array}{c} LCMS, \\ [M+H]^{+} \end{array}$	627.8	594.2
Formula I		TO HO OHO
Name	3,5-Dichloro-4-((4-(5-(4-(3-fi)-6-fi)-6-fi)-6-fi)-6-fi)-6-fi)-7-3,4,5-fetralydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol- 1-yl)methyl)benzoic acid	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzoic acid
Example	403	404

ontinued
15-c
BLE
IA

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.9 min, 97.4%	10.5 min, 98.7%
¹ H NMR (400 MHz, MeOD) δ	8.02 (s, 1H), 7.90 (s, 1H), 7.78 (d, 1 = 2.2 Hz, 1H), 7.62 (dd, 1 = 6.4, 3.3 Hz, 1H), 7.6.74 (dd, 1 = 6.4, 3.3 Hz, 1H), 7.6.74 (m, 1H), 7.39 (dd, 1 = 8.4, 2.2 Hz, 1H), 7.19-7.08 (m, 2H), 7.00-6.91 (m, 1H), 6.80 (d, 1 = 7.7 Hz, 1H), 6.71 (d, 1 = 8.1 Hz, 1H), 5.40 (s, 2H), 4.79-4.71 (m, 1H), 4.46 (d, 1 = 11.9 Hz, 1H), 3.97-3.81 (m, 2H), 3.54 (r, 1 = 10.9 Hz, 1H), 2.89-2.76 (m, 1H), 2.54-2.16 (m, 3H), 2.17-1.95 (m, 2H), 1.91 (s, 3H), 1.77 (d, 1 = 14.1 Hz, 1H)	8.01-7.93 (m, 1H), 7.91 (s, 1H), 7.84 (s, 1H), 7.74-7.66 (m, 1H), 7.41 (d, J = 7.4 Hz, 1H), 7.20-6.79 (m, 4H), 6.67 (d, J = 7.9 Hz, 1H), 5.55 (s, 2H), 4.55 (br. s., 1H), 4.4-2 (br. s., 2H), 4.33-4.24 (m, 1H), 4.14-3.97 (m, 3H), 2.31 (s, 1H), 2.18-1.98 (m, 5H)
LCMS, [M+H] ⁺	594.2	614.1
Formula I		
Name	2-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)) butanoyl)-2,3,4,5- tetrahydvoberno[b][1,4] oxazepin-9-yl)-1H-pyrazol- 1-yl)methyl)benzolo acid	3-Chloro 4-((4-(5-((2-(3-choroxy)carbony))-2,3,4,5-tertahydrobenzo[b][1,4] oxazepin-9-yl) - 1H-pyrazol-l-yl)methyl)-5-fluorobenzoic acid
Example	405	904

	-continued	TOTAL TOTAL	
ļ	•	,	
7	-	4	
r	т	1	
۱	_		
۲		1	
(Υ	1	
	_	ä	
	S	۲	
t		4	

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	10.6 min, 98.2% 9.8 min, 98.2%	*%666
¹ H NMR (400 MHz, MeOD) δ	8.13 (br. s., 1H), 7.98 (d, J = 6.2 Hz, 2H), 7.87.778 (m, 2H), 7.73 (s, 1H), 7.60-7.48 (m, 3H), 7.23-6.87 (m, 2H), 6.74 (s, 1H), 5.58 (s, 2H), 4.58 (br. s., 1H), 4.44 (br. s., 2H), 4.33 (br. s., 1H), 4.12 (br. s., 3H), 2.33 (br. s., 1H), 2.20-1.99 (m, 5H)	7.91 (s, 1H), 7.86-7.78 (m, 2H), 7.71 (dd, J = 9.9, 1.0 Hz, 1H), 7.54 (dd, J = 7.9, 1.5 Hz, 1H), 7.11 (t, J = 7.7 Hz, 1H), 7.02 (dd, J = 7.9, 1.5 Hz, 1H), 6.95-6.92 (m, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.07 (d, J = 8.4 Hz, 1H), 5.60-5.47 (m, 2H), 4.34 (d, J = 13.4 Hz, 2H), 3.96-3.84 (m, 2H), 3.78-3.63 (m, 2H), 3.05-2.98 (m, 1H), 2.51-2.33 (m, 2H), 2.12- 2.03 (m, 2H), 1.95 (s, 3H), 0.98 (bz, s, 1H), 0.71-0.62 (m, 1H), 0.53- 0.44 (m, 1H), 0.41-0.32 (m, 1H)
LCMS, [M+H]⁺	596.2	638.2
Formula I	N—N PENDOSH OOO9H	C C C C C C C C C C C C C C C C C C C
Name	4-Chloro-3-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzoic acid	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)) butanoyl)-4,5-dihydro-2H- spiro[benzo[b][1,4] oxazepine-3,1'- cyclopropane]-9:yl)-1H- pyrazo(-1-y)methyl)-5- fluorobenzoic acid
Example	407	408

tinued
15-con
BLE
I

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	91%*	10.7 min, 100% 9.9 min, 99.9%
¹ H NMR (400 MHz, MεOD) δ	7.94 (s, 1H), 7.89 (s, 1H), 7.82 (s, 1H), 7.74 (dd, 1 = 9.7, 1.2 Hz, 1H), 7.50 (dd, 1 = 9.7, 1.2 Hz, 1H), 7.13-7.05 (dd, 1 = 77, 1.7 Hz, 1H), 7.13-6.92 (m, 2H), 6.82 (d, 1 = 7.9 Hz, 1H), 6.63 (d, 1 = 8.4 Hz, 1H), 5.64-5.51 (m, 2H), 5.08 (d, 1 = 13.4 Hz, 1H), 4.33-4.24 (m, 1H), 2.65.3.79 (m, 2H), 3.40-3.36 (m, 1H), 2.63 (d, 1 = 13.4 Hz, 1H), 2.56-2.46 (m, 1H), 2.44-2.34 (m, 1H), 2.29 (d, 1 = 6.9 Hz, 1H), 2.13-1.95 (m, 5H), 1.91 (s, 3H), 1.82-1.69 (m, 1H), 1.65-1.53	8.18 (d, J = 2.0 Hz, 2H), 8.12-7.94 (m, 3H), 7.52 (d, J = 8.1 Hz, 1H), 7.13 (dd, J = 9.0, 3.1 Hz, 1H), 7.07-6.91 (m, 2H), 6.80 (br. s., 1H), 6.67 (br. s., 1H), 5.53 (s, 2H), 4.65-4.42 (m, 2H), 4.33-3.98 (m, 4H), 3.75 (br. s., 2H), 2.41-1.97 (m, 5H)
LCMS, [M + H] ⁺	652.2	614.3
Formula I	N-N CI O	$\begin{array}{c} N - N \\ C \\ C \\ O \\ O \end{array}$
Name	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)) butanoy))-4,5-ditydro-2H- spiro[beazolp]1,4] oxazepine-3,1'- cyclobutane]-9-yl)-1H- pyrazol-1-yl) methyl)-5- fluorobenzoic acid	4-Chloro-3-((4-(5-((2-(3-choro-2-methylphenoxy)) ethoxy)carbonyl)-7-fluoro- 2,3,4,5-fetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H- pyrazol-1-yl)methyl)benzoic
Example	410	411

continued
15-
щ
B
ĭ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.6 min, 98.1% 9.1 min, 98.1%	9.6 min, 99.8%
¹ H NMR (400 MHz, McOD) δ	8.05-7.88 (m, 3H), 7.79 (dd, J = 9.2, 1.5 Hz, 1H), 7.51 (dd, J = 7.7, 1.8 Hz, 1H), 7.24 (s, 1H), 7.17-7.05 (m, 2H), 6.99 (d, J = 10.3 Hz, 3H), 5.61 (s, 2H), 4.88 (d, J = 11.9 Hz, 1H), 4.49 (d, J = 11.9 Hz, 1H), 4.12-3.93 (m, 2H), 3.62 (t, J = 10.9 Hz, 1H), 2.80 (t, J = 11.6 Hz, 1H), 2.60-2.31 (m, 2H), 2.29-2.00 (m, 3H), 1.80 (d, J = 14.1 Hz, 1H)	8.24 (s, 1H), 7.92-7.80 (m, 2H), 7.77-7.68 (m, 1H), 7.61 (dd, J= 7.8, 1.7 Hz, 1H), 7.25-6.94 (m, 5H), 5.54 (s, 2H), 4.62 (d, J= 12.5 Hz, 1H), 4.46 (d, J= 11.9 Hz, 1H), 3.97 (q, J= 6.34 z, 2H), 3.97 (q, J= 6.34 z, 2H), 3.97 (h, J= 11.8 Hz, 1H), 2.45-2.77 (m, 1H), 2.19-1.65 (m, 5H)
LCMS, [M+H] ⁺	1.1849	616.1
Formula I	L COO HE	N CO2H
Name	3-Chloro-4-((4-(5-(4-(3-chloro-2-diffuoromethy))) phenoxy)butanoyl)-2,3,4,5-tertahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol- 1-yl)methyl)-5- fluorobenzoic acid	3-Chloro-4-((4-(5-(4-(3-chloro-2-fluorophenoxy)) butanoyl)-2,3,4,5-ternhydrobenzo[b][1,4] oxazepin-9-yl)-HH-pyrazol-1-yl)methyl)-5-fluorobenzoic acid
Example	213	413

-continued
Ś
$\overline{}$
Ħ
-
ŋ
ĭ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.0 min, 99.1% 9.9 min, 99.7%	9.7 min, 99.4% 9.1 min, 99.4%
¹ H NMR (400 MHz, MeOD) δ	8.27 (s, 1H), 7.93-7.79 (m, 2H), 7.72 (dd, J = 9.5, 1.3 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.24-6.89 (m, 4H), 6.80 (d, J = 7.3 Hz, 1H), 5.55 (s, 3H), 4.30-3.54 (m, 4H), 2.06-1.83 (m, 2H), 1.38 (br. s., 1H), 1.30 (m, 2H), 1.11 (br. s., 6H), 0.93-0.77 (m, 2H)	8.04-7.97 (m, 2H), 7.93 (d, J = 0.4 Hz, 1H), 7.79 (dd, J = 9.1, 1.4 Hz, 1H), 7.52 (dd, J = 7.3, 2.2 Hz, 1H), 7.18-7.08 (m, 2H), 7.05-6.95 (m, 1H), 6.80 (ddd, J = 10.1, 9.2, 2.2 Hz, 1H), 5.62 (d, J = 1.3 Hz, 2H), 4.88 (d, J = 13.6 Hz, 1H), 4.49 (d, J = 11.4 Hz, 1H), 4.23-4.07 (m, 2H), 3.63 (t, J = 1.9 Hz, 1H), 2.04 (t, J = 11.1 Hz, 1H), 2.04-2.51 (m, 1H), 2.46-1.93 (m, 4H), 1.80 (d, J = 15.0 Hz, 1H)
$\frac{\text{LCMS}}{[\text{M} + \text{H}]^{+}}$	642.1	634.1
Formula I	D HO OH	
Name	3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy)-2-methylphenoxy))-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-IH-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	3-Chloro-4-((4-(5-(4-(3-choro-2,6-difluorophenoxy)) butanoyl)-2,3,4,5-tertahydrobenzo[b][1,4] oxazepin-9-yl-)H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid
Example	414	415

ontinued
ပု
S
15
E 15
3LE 15

	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	10.0 min, 96.5% 9.2 min, 98.5%	9.9 min, 99.7%
	¹ H NMR (400 MHz, MeOD) δ	8.01 (d, J = 2.2 Hz, 2H), 7.94 (s, 1H), 7.79 (dd, J = 9.2, 1.5 Hz, 1H), 7.52 (dd, J = 5.6, 3.9 Hz, 1H), 7.17-7.20 (m, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.62 (d, J = 1.1 Hz, 2H), 4.89 (d, J = 11.7 Hz, 1H), 4.99 (d, J = 11.7 Hz, 1H), 4.07 (dt, J = 17.8, 6.0 Hz, 2H), 2.87-2.77 (m, 1H), 2.70-2.59 (m, 1H), 2.44-2.33 (m, 1H), 2.70-2.59 (m, 1H), 2.19-1.98 (m, 2H), 1.81 (d, J = 15.0 Hz, 1H)	8.02-7.86 (m, 3H), 7.76 (dd, J = 9.2, 1.3 Hz, 1H), 7.41-7.34 (m, 1H), 7.13-6.81 (m, 4H), 6.65 (d, J = 7.5 Hz, 1H), 5.60 (s, 2H), 4.78-3.54 (m, 5H), 2.40-1.92 (m, 5H), 1.50-1.15 (m, 4H), 0.97-0.79 (m, 1H)
	LCMS, [M+H] ⁺	630.1	6282
ETEL IS CHIMACA	Formula I		HO OHO OHO OHO OHO OHO OHO OHO OHO OHO
	Name	3-Chloro-4-((4-(5-(4-(2-chloro-3-chloro-6-fluoro-3-methylphenoxy)butanoyl)-2,3,4,5-terahydrobenzolb] [1,4]oxazepin-9-yl)-Hi-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	3-Chloro-4-((4-(5-(12-(3-chloro-2-methylphenoxy)) propoxy)carbonyl)-2,3,4,5-tertaltydrobenzo[b][1,4] oxazepin-9-yl)-HI-pyrazol-1-yl)methyl)-5-fluorobenzoic acid
	Example	416	717

continued	
Ϋ́	
_	
LE	
B	
Ţ	

ı	1	
HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	10.5 min, 97.9% N/A N/A	9.9 min, 98.6% N/A
¹ H NMR (400 MHz, M₅OD) δ	8.01-7.88 (m, 3H), 7.76 (dd, J = 9.2, 1.3 Hz, 1H), 7.38 (dd, J = 7.7, 1.8 Hz, 1H), 7.22 (br. s., 4H), 6.85-6.59 (m, 1H), 5.60 (s, 2H), 4.66-4.37 (m, 2H), 4.33-3.59 (m, 4H), 2.41-1.98 (m, 5H)	7.99 (s, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.78 (dd, J = 9.1, 1.4 Hz, 1H), 7.47 (dd, J = 7.4, 2.1 Hz, 1H), 7.24-7.17 (m, 2H), 7.15-6.98 (m, 3H), 5.60 (s, 2H), 4.85 (d, J = 113.2 Hz, 1H), 4.45 (d, J = 11.14 Hz, 1H), 4.12-3.93 (m, 2H), 3.99 (t, J = 11.4 Hz, 1H), 2.64-2.50 (m, 1H), 2.43-2.26 (m, 2H), 2.22-2.02 (m, 2H), 1.78 (d, J = 14.7)
LCMS, [M+H] ⁺	616.1	666.1
Formula I	D D D D D D D D D D D D D D D D D D D	CI N OH OH
Name	3-Chloro-4-(4-(5-((2-(3-choro-2-methylphenoxy)-2,2-dideutenechoxy) carbonyl)-2,3,4,5-ternahydrobenzolp[1],4] oxazepin-9-yl)-HP-pyrazol-1-yl)methyl)-5-filuorobenzoic acid	3-Chloro-4-((4-(5-(4-(2-chloro-3-(trifluoromethyl))-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol- 1-yl)methyl)-5- fluorobenzoic acid
Example	418	419

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.9 min, 98.5% 11.1 min, 98.4%	12.1 min, 95.6% 11.4 min, 96.7%
¹ H NMR (400 MHz, MeOD) δ	8.16 (s, 1H), 8.02-7.97 (m, 1H), 7.93 (d, J = 0.4 Hz, 1H), 7.82 (dd, J = 9.6, 1.4 Hz, 1H), 7.85-7.48 (m, 1H), 7.37-7.28 (m, 1H), 7.19 (d, J = 7.7 Hz, 1H), 7.01-6.93 (m, 1H), 6.96-79 (m, 3H), 6.62 (d, J = 7.7 Hz, 1H), 6.48-6.36 (m, 2H), 5.68 (d, J = 1.3 Hz, 2H), 4.97 (d, J = 11.2 Hz, 1H), 5.46 (d, J = 9.9 Hz, 1H), 3.74-3.60 (m, 1H), 3.04-2.89 (m, 1H), 2.31 (s, 1H), 2.02 (s, 3H), 1.98-1.86 (m, 1H)	8.11 (s, 1H), 7.96-7.83 (m, 2H), 7.82-7.69 (m, 2H), 7.29 (dd, J = 7.7, 1.3 Hz, 1H), 7.15-7.04 (m, 1H), 6.96 (d, J = 7.7 Hz, 1H), 6.92-6.80 (m, 2H), 5.58 (d, J = 1.3 Hz, 2H), 4.98-489 (m, 1H), 4.63-4.26 (m, 3H), 4.19 (dt, J = 11.6, 3.6 Hz, 1H), 2.25 (s, 3H)
LCMS, [M+H] ⁺	046.0	0.960
Formula I	HO NO	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Name	3-Chloro-4-((4-(5-(3-(3-chloro-2-methylphenoxy)) benzoyl)-2,3,4,5-tertahydrobenzo b [1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	3-Chloro-4-((4-(12-(3-ciloro-2-methylphenoxy)-1,1,2,2-tetradeuteroethoxy) carbonyl)-3-(fluoromethyl)-3,4-dihydro-2H-benzo[b] [1,4]coazin-8-yl)-1H- pyrazol-1-yl)methyl)-5- fluorobenzoic acid
Example	420	421

ę
ontinu
15-c
IΈ
IAB
•

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	N/N	10.1 min, 97.8%
¹ H NMR (400 MHz, MeOD) δ	7.98 (s, 1H), 7.94-7.82 (m, 2H), 7.71 (dd, J = 9.7, 1.2 Hz, 1H), 7.41 (d, J = 7.4 Hz, 1H), 7.26-6.90 (m, 4H), 6.88-6.63 (m, 1H), 5.56 (s, 2H), 4.31-3.99 (m, 3H), 3.75 (s, 1H), 2.39-2.07 (m, 4H)	8.05-7.85 (m, 3H), 7.65 (s, 1H), 7.61-7.44 (m, 2H), 7.26 (br. 3.3H), 6.96-6.69 (m, 2H), 5.48 (s, 2H), 3.89-3.59 (m, 4H), 2.98-2.66 (m, 4H), 2.29-1.77 (m, 13H)
LCMS, [M+H]⁺	634.0	538.1
Formula I	N—N N—N P O O O D D D D D D D D D D D D D D D D	H ₂ CO ₂ H
Мате	3-Chloro-4-((4-(5-((2-(3-choro-2-methylphenoxy)-1,1,2,2-tetradeuteroethoxy)-chorhyly-3-hydroxy-2,3,4,5-tetrahydrobenzolb] [I,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid	3-((4-(1-(4-(2,3,6- Trimethylphenoxy)butanoyl)- 1,2,3,4-tetrathydroquinolin- 5-yl)-1H-pyrazol-1-yl) methyl)benzoic acid
Example	422	1 1

eq
ıtinu
io-
43
$\overline{}$
IΈ
m
ĭ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.7 min, 100% 9.9 min, 100%	K/X
¹ H NMR (400 MHz, MeOD) δ	8.00 (d, J = 7.1 Hz, 1H), 7.93 (br. s., 1H), 7.66 (br. s., 1H), 7.61-7.46 (m, 3H), 7.32-7.16 (m, 3H), 7.16-7.02 (m, 1H), 6.95 (d, J = 6.6 Hz, 1H), 6.90-67 (m, 2H), 5.46 (s, 2H), 4.03-3.87 (m, 2H), 2.54 (br. s., 2H), 2.90-2.71 (m, 2H), 2.54 (br. s., 2H), 2.90-2.71 (m, 2H), 2.24-2.09 (m, 2H), 1.93-1.74 (m, 2H), 0.94 (br. s., 3H)	8.04-7.98 (m, 1H), 7.94 (s, 1H), 7.65 (br. s., 1H), 7.56-7.43 (m, 3H), 7.29-7.20 (m, 2H), 7.01 (t, 1 = 7.8 Hz, 1H), 6.74-6.59 (m, 2H), 5.45 (s, 2H), 3.88 (br. s., 2H), 3.76 (t, 1 = 6.8 Hz, 3H), 2.82 (t, 1 = 6.8 Hz, 2H), 2.54 (br. s., 2H), 2.44 (d, 1 = 7.1 Hz, 2H), 2.13 (t, 1 = 5.9 Hz, 2H), 1.88-1.74 (m, 4H), 1.02 (t, 1 = 7.5 Hz, 3H)
LCMS, [M + H] ⁺	524.1	538.1
Formula I	$H^{\overline{c}}OO$	
Name	3-((4-(1-(4-(2- Ethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin- 5-yl-1H-pyrazol-1-yl) methyl)benzoic acid	3-((4-(1-(4-(3-Ethyl-2-methylphenoxy)butanoyl) 1,2,3,4-tetrahydroquinolin- 5-yl)-1H-pyrazol-1-yl) methyl)benzoic acid
Example	424	425

ч	
121	
	-
_	4
	4
_	4
-	
ī	1
Ţ	1
ī	į
ŗ	į
LI LI	1
ū	1
<u>~</u> 1	111
P. 17	1111
P. 17	1
_	
_	1777
_	
_	
_	
_	
TARIE 1	
_	
_	
_	י חחקטו
_	י מחתטו

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.3 min, 100% 9.5 min, 100%	10.1 min, 100% 10.2 min, 100%
¹H NMR (400 MHz, M€OD) δ	8.01 (dd, J = 7.2, 1.6 Hz, 1H), 7.94 (br. s., 1H), 7.67 (br. s., 1H), 7.64-7.47 (m, 3H), 7.37-7.18 (m, 3H), 7.47-03 (m, 1H), 6.93 (d, J = 6.8 Hz, 1H), 6.89-6.66 (m, 2H), 5.47 (s, 2H), 4.03-3.87 (m, 2H), 2.89-2.75 (m, 2H), 2.80-2.75 (m, 2H), 2.80 (br. s., 2H), 2.91-1.74 (dd, J = 12.3, 5.9 Hz, 2H), 1.97-1.74 (m, 5H)	8.09 (dt, J = 7.1, 1.6 Hz, 1H), 8.05 (s, 1H), 7.73 (s, 1H), 7.55-7.49 (m, 3H), 7.47 (dt, J = 6.2, 3.2 Hz, 1H), 7.14-7.10 (m, 2H), 7.01 (t, J = 8.0 Hz, 1H), 6.62 (d, J = 8.2 Hz, 2H), 5.48 (s, 2H), 4.13 (dd, J = 10.4, 4.4 Hz, 1H), 4.01-3.87 (m, 1H), 3.78-3.60 (m, 2H), 2.85-2.64 (m, 2H), 2.25 (s, 3H), 2.13-2.07 (m, 4H), 2.07-2.02 (m, 1H), 2.00-1.93 (m, 1H), 1.87 (dd, J = 13.7, 6.6 Hz, 1H), 1.80 (dt, J = 8.8, 4.4 Hz, 1H), 0.93 (ddd, J = 8.0, 6.3, 4.4 Hz, 1H)
LCMS, [M+H] ⁺	510.1	536.3
Formula I	H ₂ COO	H ² COO
Name	3-((4-(1-(4-(o-Tolyloxy)) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)-IH- pyrazol-1-yl)methyl)benzoic acid	3-((4-(1-(2-((2,3- Dimethylphenoxy)methyl) cyclopropanecarbonyl)- 1,2,3,4-tetrahydroquinolin- 5-yl)-1H-pyrazol-1-yl) methyl)benzoic acid
Example	426	427

continued
κ̈́
T
3LE
"
Z

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.0 min, 96.2%	10.5 min, 100% 10.7 min, 100%
¹ H NMR (400 MHz, MeOD) δ	7.62 (td, J = 4.5, 1.6 Hz, 1H), 7.58 (s, 1H), 7.52 (s, 1H), 7.51-7.48 (m, 2H), 7.35 (s, 1H), 7.20-7.15 (m, 2H), 7.06 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 5.37 (s, 2H), 3.93 (t, J = 5.6 Hz, 2H), 3.79 (t, J = 6.8 Hz, 2H), 2.74 (t, J = 7.1 Hz, 2H), 2.58 (t, J = 6.4 Hz, 2H), 1.96-1.81 (m, 5H)	8.06 (d, J = 1.8 Hz, 1H), 8.02 (dd, J = 8.3, 2.0 Hz, 1H), 7.84 (s. 1H), 7.72 (s. 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.11-7.06 (m, 2H), 7.04 (d, J = 8.1 Hz, 1H), 7.01-6.96 (m, 1H), 6.71 (d, J = 7.8 Hz, 1H), 5.75 (s, 2H), 4.66-4.86 (m, 1H), 4.56-4.33 (m, 3H), 4.24-4.14 (m, 3H), 3.08 (d, J = 1.2 Hz, 1H), 2.27 (s, 3H), 2.10 (d, J = 8.6, 4.8 Hz, 1H), 1.84-1.68 (m, 1H), 1.02 (dd, J = 8.2, 5.3 Hz, 1H), 1.07 (qd, J = 8.2, 5.3 Hz, 1H), 0.77 (qd, J = 4.5 Hz, 1H)
LCMS, [M+H] ⁺	505.3	591.9
Formula I		HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Name	3-((4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) benzonitrile	4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic acid
Example	428	429

jed
tint
5-col
$\ddot{-}$
щ
ᆜ
Д
Z

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.8 min, 96.9% 10.1 min, 97.99%	9.4 min, 92.8% 9.6 min, 92.1%
¹H NMR (400 MHz, M€OD) δ	8.07 (d, J = 7.7 Hz, 111), 8.01 (s, 114), 7.69 (s, 114), 7.59.7.52 (m, 214), 7.49.7.43 (m, 114), 7.19 (s, 314), 6.97 (t, J = 8.0 Hz, 114), 5.53 (s, 214), 5.44 (s, 214), 3.80 (t, J = 6.5 Hz, 214), 3.60 (t, J = 6.6 Hz, 214), 2.70 (t, J = 6.9 Hz, 214), 2.50 (m, 514), 1.86 (bz, s., 214), 2.14-2.03 (m, 514), 1.86 (bz, s., 214), 1.81-1.76 (m, 214)	7.74 (d, J = 2.2 Hz, 1H), 7.55 (s, 1H), 7.49 (s, 1H), 7.23 (dd, J = 8.8, 2.2 Hz, 1H), 7.13 (s, 2H), 6.96-6.90 (m, 1H), 6.70 (d, J = 8.2 Hz, 1H), 6.97-6.61 (m, 2H), 5.14 (s, 2H), 3.85 (t, J = 5.8 Hz, 2H), 3.65 (t, J = 6.6 Hz, 2H), 2.65 (t, J = 7.1 Hz, 2H), 2.51 (br. s., 2H), 2.08-1.99 (m, 5H), 1.81 (br. s., 2H), 1.77-1.71 (m, 2H)
LCMS, [M+H] ⁺	607.1	539.1
Formula I	H ₂ CO2 N N N N N	CO ₂ H NH ₂
Name	2-(5-(3-((4-(1-(4-(2,3- Dimethylphenoxy)) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) phenyl)-2H-terazol-2-yl) acetic acid	2-Amino-5-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)benzoic acid
Example	430	431
	LCMS, $ICMS,$ Name Formula I $[M+H]^{+} ^{1}H \text{ NMR (400 MHz, MeOD) } \delta$	Name Formula I ECMS, H NMR (400 MHz, MeOD) &

continued
ď
T
Щ
\sim
\neg
ĭ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	9.9 min, 95.0% 10.1 min, 90.4%	9.9 min, 99.2% 10.0 min, 99.5%
¹ H NMR (400 MHz, MeOD) 8	8.07 (d, J = 7.8 Hz, 1H), 7.99 (s, 1H), 7.59 (s, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.44 (s, 1H), 7.33 (s, 1H), 7.17 (s, 2H), 6.99 (s, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.63 (s, 1H), 5.45 (s, 2H), 4.09 (s, 2H), 3.91 (to s., 2H), 3.91 (t, J = 6.9 Hz, 2H), 2.76 (t, J = 7.1 Hz, 2H), 2.54 (bz, 2H), 2.19, 2.12 (m, 5H), 1.91-1.79 (m, 5H)	8.16 (s, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.88 (d, J = 8.8 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 6.90 (d, J = 7.7 Hz, 1H), 6.69 (d, J = 7.7 Hz, 1H), 6.60 (d, J = 8.2 Hz, 1H), 6.2 (d, J = 8.2 Hz, 1H), 4.2 (s, 2H), 3.94 (br. s., 2H), 3.81 (t, J = 6.6 Hz, 2H), 3.98 (br. s., 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.24-2.13 (m, 5H), 1.94 (t, J = 6.3 Hz, 5H)
LCMS, $[\mathrm{M} + \mathrm{H}]^{+}$	606.2	526.1
Formula I		H ² OO)
Name	2-(3-(3-(4-(1-(4-(2,3-) bhranoyl)-1,2,3,4-) bhranoyl)-1,2,3,4-) tetrahydroquinolin-5-yl)-IH- pyrazol-1-yl)nethyl) phenyl) 1,2,4-oxadiazol-5-yl)acetic acid	3-((5-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetralydroquinolin-5-yl)- 1,2,4-oxadiazol-3-yl)methyl) benzoic acid
Example	432	433

_	
_	ŕ
- a.	1
~	
=	1
=	
~	
_	
-	
- 5-	
-	
_	
•	٦
_	•
V	•
4	۰
_	
_	
IΤ	
_	
Ξ	
Ξ	
2	
E	
LE I	
ARI	
ABI	
TARE	
TARE	
TABL	

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.8 min, 95.0% 12.7 min, 93.1%	11.0 min, 98.0% 10.3 min, 95.4%
¹H NMR (400 MHz, M€OD) δ	7.69 (s. 1H), 7.51 (s. 1H), 7.45-7.40 (m, 2H), 7.32 (t, 1 = 7.8 Hz, 1H), 7.12 (d, 1 = 7.3 Hz, 1H), 7.09-6.95 (m, 4H), 6.70 (d, 1 = 8.1 Hz, 1H), 5.35 (s, 2H), 4.64-4.55 (m, 1H), 4.55-4.38 (m, 2H), 4.23-4.15 (m, 2H), 3.05 (d, 1 = 12.6 Hz, 1H), 2.27 (s, 3H), 2.19-2.10 (m, 1H), 1.72 (d, 1 = 6.3 Hz, 2H), 1.56 (s, 6H), 1.26 (d, 1 = 6.3 Hz, 1H), 1.02-0.93 (m, 1H), 0.74 (q, 1 = 4.5 Hz, 1H)	7.78 (s, 1H), 7.65 (s, 1H), 7.17 (d, J = 8.3 Hz, 1H), 7.12-7.02 (m, 3H), 7.01-6.96 (m, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.61 (dd, J = 8.5, 2.7 Hz, 1H), 6.57 (s, 1H), 4.56-4.37 (m, 2H), 4.56-4.57 (m, 1H), 4.56-4.39 (m, 2H), 4.19 (d, J = 5.1 Hz, 2H), 3.08 (d, J = 11.6 Hz, 1H), 2.27 (s, 3H), 2.15-2.02 (m, 1H), 1.76 (d, J = 5.3 Hz, 1H), 1.02 (d, J = 5.3 Hz, 1H), 1.02 (d, J = 5.3 Hz, 1H), 1.05 (d, J = 5.3 Hz, 1H), 0.76
LCMS, [M+H]⁺	572.3	563.2
Formula I	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	NH ₂
Name	(1aR,7bS)-2-(3-Chloro-2- methylphenoxy)ethyl 7-(1- (3-(2-hydroxypropan-2- yl)benzyl)-H-pyrazol-4-yl)- 1a,2-dhydro-H-cyclopropa [c]quinoline-3(7bH)- carboxylate	(1aR,7bS)-2-(3-Chloro-2- methylphenoxy)ethyl 7-(1- (5-amino-2-chlorobenzyl)- 1H-pyrazol-4-yl)-1a,2- dihydro-1H-cyclopropa[c] quinoline-3(7bH)- carboxylate
Example	434	435

continued
ď
$\overline{}$
Щ
\mathbf{H}
Щ
ĭ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	10.9 min, 98.8% 11.1 min, 100%	N/A
¹ Н NMR (400 MHz, MeOD) δ	8.16 (d, J = 1.5 Hz, 1H), 7.99 (d, J = 6.6 Hz, 1H), 7.84 (s, 1H), 7.70 (s, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.10 (s, 2.8 Hz, 1H), 7.13 (s, 2.8 Hz, 1H), 7.13 (s, 2.8 Hz, 1H), 7.05-6.99 (m, 1H), 6.74 (d, J = 8.1 Hz, 1H), 5.63 (s, 2H), 4.67 (s, 2.8 Hz, 1H), 4.57-4.16 (m, 2H), 3.11 (d, J = 12.1 Hz, 1H), 2.29 (s, 3H), 2.16-2.06 (m, 1H), 1.85-1.74 (m, 1H), 1.10-1.00 (m, 1H), 0.80 (d, J = 4.5 Hz, 1H)	8.10 (d, J = 7.3 Hz, IH), 8.04 (s, IH), 7.81 (s, IH), 7.65 (s, IH), 7.60 7.49 (m, 2H), 7.24 7.11 (m, 2H), 7.07 (t, J = 8.3 Hz, IH), 7.02 (br. s, IH), 6.59-6.41 (m, 2H), 5.52 (br. s, 2H), 4.08-3.97 (m, 1H), 3.80 (s, 3H), 2.86-2.71 (m, 2H), 2.71-2.59 (m, 1H), 2.82-2.09 (m, 2H), 2.09-2.00 (m, 1H), 1.86 (br. s., 3H), 1.81-1.68 (m, 1H), 1.01-0.85 (m, 1H), 0.64-0.50 (m, 1H)
LCMS, $[\mathrm{M} + \mathrm{H}]^{+}$	592.2	552.3
Formula I	N—N H H N—N O O O	M—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N
Name	3-Chloro-4-((4-((1aR,7bS))-3-((2-(3-chloro-2-methylphenoxy))ethoxy) methylphenoxy)ethoxy) retralydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzoic acid	3((4-((1aR,7bS)-3-(4-(3-Methoxy-2-methylphenoxy)) butanoyl)-1a,2,3,7b- tetralydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzoic acid
Example	436	437

◡
e)
_ =
٠,
≒
=
\sim
ပ္
٠.
41
$\overline{}$
רדו
щ
-
\sim
_
◂
ŭ
Γ.

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	10.0 min, 99.8%	10.0 min, 99.3%
¹ H NMR (400 MHz, MeOD) δ	8.10 (d, J = 7.3 Hz, IH), 8.04 (s, IH), 7.84 (s, IH), 7.62 (s, IH), 7.58-7.50 (m, 2H), 7.32 (br. s, IH), 7.14-7.06 (m, 3H), 6.57 (d, J = 8.3 Hz, IH), 6.52 (d, J = 8.3 Hz, IH), 6.55 (br. s, 2H), 4.74-74-51 (m, 3H), 4.25-4.17 (m, 2H), 3.84 (s, 3H), 3.10 (d, J = 13.1 Hz, IH), 2.17-2.06 (m, 4H), 1.83-1.73 (m, IH), 1.04 (d, J = 4.8 Hz, IH), 0.87-0.75 (m, IH)	7.92 (s, 1H), 7.70 (d, J = 9.3 Hz, 1H), 7.58 (s, 1H), 6.98 (t, J = 8.0 Hz, 2H), 6.94-6.88 (m, 1H), 6.64 (d, J = 7.7 Hz, 1H), 5.57 (br. s., 2H), 448-432 (m, 2H), 4.12 (br. s., 2H), 3.00 (d, J = 12.6 Hz, 1H), 1.99 (s, 3H), 2.02 (d, J = 17.0 Hz, 1H), 1.69 (br. s., 1H), 0.94 (br. s., 1H), 0.69 (br. s., 1H), 0.94 (br. s., 1H)
LCMS, [M+H] ⁺	554.3	610.2
Formula I	N—N H W—N N—N OMe	HILL
Name	3-((4-(1aR,7bS)-3-((2-(3-Methoxy)-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)1H-pyrazol-1-yl)methyl)benzoic acid	3-Chloro-4-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-4l)-H-pyrazol-1-yl)methyl)-5-fluorobenzoic acid
Example	438	439

eq
ntinu
5-00
H
BI

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	13.3 min, 98.3% N/A N/A	K X
¹H NMR (400 MHz, M€OD) δ	7.95 (dd, J = 8.2, 2.2 Hz, 1H), 7.83 (d, J = 2.2 Hz, 1H), 7.77 (s, 1H), 7.61 (s, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.96 (7.00 (m, 3.H), 7.06-594 (m, 1H), 6.69 (d, J = 8.2 Hz, 1H), 5.54 (s, 2H), 4.664.56 (m, 1H), 4.554.39 (m, 2H), 4.33 (q, J = 7.1 Hz, 2H), 4.244.11 (m, 3H), 3.05 (d, J = 1.26 Hz, 1H), 2.25 (s, 3H), 2.08 (td, J = 8.5, 4.9 Hz, 1H), 1.81-1.69 (m, 1H), 1.41-1.28 (m, 3H), 0.99 (td, J = 8.2, 4.9 Hz, 1H), 0.75 (q, J = 4.9 Hz, 1H)	8.00 (dd, J = 8.3, 2.3 Hz, 1H), 7.91 (d, J = 2.0 Hz, 1H), 7.84 (d, J = 0.5 Hz, 1H), 7.68-7.66 (m, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.10 (d, J = 3.8 Hz, 2H), 7.06 (d, J = 8.1 Hz, 1H), 7.05 (d, J = 8.1 Hz, 1H), 5.06 (s, 2H), 4.63 (ddd, J = 11.9, 5.7, 3.5 Hz, 2H), 4.57-4.44 (m, 3H), 4.22 (dd, J = 5.3, 3.8 Hz, 2H), 3.96-3.88 (m, 3H), 3.11 (d, J = 12.4 Hz, 1H), 2.9 (s, 3H), 2.0 (dd, J = 5.3, 2.8 Hz, 1H), 1.04 (dd, J = 8.3, 2.8 Hz, 1H), 1.04 (dd, J = 8.2, 3.2 Hz, 1H), 1.04 (dd, J =
LCMS, [M + H] ⁺	620.3	606.2
Formula I	N—N CI NIMH CI NIMH O O O O O O O O O O O O O O O O O O O	CO ₂ Me CO M H CO N CO O O O O O O O O O O O O
Name	(1aR,7bS)-2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(2-chloro-5-(ethoxycarbonylbenzyl)-1H-pyrazol-4yl)-1a,2-dihydro-1H-cyclopropa[c] quinoline-3(7bH)-carboxylate	(1aR,7bS)-2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(2-chloro-5-(methoxycarbonyl)benzyl)-1H-pyrazol-4y1)-1a,2-dihydro-1H-cyclopropa[c] quinoline-3(7bH)-carboxylate
Example	440	144

◡
e)
_ =
٠,
≒
=
\sim
ပ္
٠.
41
$\overline{}$
רדו
щ
-
\sim
_
◂
ŭ
Γ.

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	10.7 min, 96.3% 10.8 min, 98.5%	V/N
¹ H NMR (400 MHz, MeOD) δ	8.14 (d, J = 8.6 Hz, 1H), 8.03 (s, 1H), 7.85 (br. s., 1H), 7.65 (br. s., 1H), 7.13-7.04 (m, 3H), 7.03-6.97 (m, 2H), 6.21 (br. s., 2H), 4.74-4.9 (m, 1H), 4.57-4.44 (m, 2H), 4.29-4.13 (m, 3H), 2.10 (d, J = 8.1 Hz, 2.1), 4.07-3.90 (m, 3H), 3.10 (d, J = 12.6 Hz, 1H), 2.29 (s, 3H), 2.11 (d, J = 8.6 Hz, 1H), 1.79 (br. s., 1H), 1.04 (br. s., 1H)	7.71 (s, 1H), 7.59 (s, 1H), 7.36 (s, 2H), 7.11-7.03 (m, 3H), 7.03-6.97 (m, 1H), 6.73 (d, J = 8.1 Hz, 1H), 5.54 (s, 2H), 4.68-4.58 (m, 1H), 4.58-4.42 (m, 2H), 4.02-3.88 (m, 6H), 3.08 (d, J = 13.4 Hz, 1H), 2.29 (s, 3H), 2.20-2.10 (m, 1H), 1.75 (d, J = 5.6 Hz, 1H), 0.99 (d, J = 4.8 Hz, 1H), 0.78 (d, J = 4.8 Hz, 1H)
LCMS, [M+H] ⁺	588.2	618.3
Formula I	N—N Meo H H N N O	MeO N N N N N N N N N N N N N N N N N N N
Name	3-((4-((1aR,7bS)-3-((2-(3-Chloro-2-methylphenoxy)) ethoxy)carbonyl)-1a,2,3,7b-terahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-4-methoxybenzoic acid	4-((4-((1aR,7bS)-3-((2-(3-Choro-2-methylphenoxy)) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-dimethoxybenzoic acid
Example	442	4 4

٦	Ç	3
	4	١
	÷	3
	7	٦
	2	3
٠,	÷	ĕ
	ς	3
	7	5
	7	í
	ĭ	í
Ļ	i	'n
_	_	j
۲		7
r	T	٦
	-	₹
		4
1	Υ	٦
۲	+	۲
4	d	4
r	9	٦
ľ	_	7

	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.2 min, 99.6% 11.4 min, 100%	11.1 min, 99.0% 11.2 min, 100%
	¹ H NMR (400 MHz, MeOD) δ	8.07 (dd, J = 8.1, 2.0 Hz, 1H), 7.96 (s, 1H), 7.73 (s, 2H), 7.63 (d, J = 8.3 Hz, 1H), 7.73 (s, 2H), 7.63 (d, J = 8.1 Hz, 1H), 7.06 (d, J = 6.6 Hz, 1H), 7.06 (d, J = 8.1 Hz, 2H), 6.94 (d, J = 8.1 Hz, 1H), 5.62 (s, 2H), 5.38 (s, 2H), 4.58-4.43 (m, 3H), 4.23 (hz, 2.24), 3.04 (d, J = 13.1 Hz, 1H), 2.52-2.11 (m, 4H), 1.88-1.73 (m, 1H), 1.02 (d, J = 8.2 Hz, 1H), 0.61 (d, J = 4.5 Hz, 1H)	7.88 (s, 1H), 7.71 (s, 1H), 7.35 (d, J = 8.8 Hz, 1H), 7.19 (d, J = 7.1 Hz, 1H), 7.16-7.11 (m, 1H), 7.10-7.02 (m, 1H), 6.97-6.89 (m, 1H), 6.89 (d, J = 3.3 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.56 (d, J = 2.7 Hz, 1H), 5.50-5.46 (m, 2H), 4.29 (s, 2H), 4.57-4.43 (m, 3H), 4.22 (br. s., 1H), 3.02 (d, J = 13.2 Hz, 1H), 2.55-2.07 (m, 4H), 1.84-1.75 (m, 1H), 1.02 (m, J = 8.5, 4.9 Hz, 1H), 0.61 (d, J = 8.5, 4.9 Hz, 1H)
	$\frac{\text{LCMS}}{[\text{M} + \text{H}]^{+}}$	674.3	622.3
nonuma of diditi	Formula I	Hoo Name of the state of the st	
	Name	2-(5-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro- 2-methylphenoxy))ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyolopropa[c] quinolin-7-yl)-1H-pyraxol-1- yl)methyl)phenyl)-2H- tetrazol-2-yl)acetic acid	2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro- 2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazoi-1- yl)methylphenoxy)acetic acid
	Example	44 44	244

jed
ntin
ဒု
Ś
H
LE 15
H

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	12.3 min, 92.5% 13.8 min, 95.1%	10.3 min, 97.6% 11.9 min, 98.3%
¹ H NMR (400 MHz, MeOD) δ	7.73 (d, J = 0.5 Hz, 1H), 7.63 (s, 1H), 7.31 (d, J = 8.6 Hz, 1H), 7.12-7.09 (m, 2H), 7.08-7.03 (m, 2H), 7.01-6.97 (m, 1H), 6.83 (dd, J = 8.7, 2.9 Hz, 1H), 6.72 (d, J = 7.8 Hz, 1H), 6.69 (d, J = 3.0 Hz, 1H), 5.43 (s, 2H), 4.65-4.58 (m, 1H), 4.56-4.20 (m, 2H), 3.95-3.89 (m, 2H), 3.09 (d, J = 1.24 Hz, 1H), 2.28 (s, 3H), 2.17 (dd, J = 8.6, 4.5 Hz, 1H), 1.87-1.68 (m, 1H), 1.01 (dd, J = 8.3, 5.1 Hz, 1H), 0.77 (q, J = 4.9)	8.04-7.90 (m, 2H), 7.74 (s, 1H), 7.66 (s, 1H), 7.13-6.98 (m, 5H), 6.74 (d, J = 7.8 Hz, 1H), 5.55 (s, 2H), 4.70-4.60 (m, 1H), 4.57-4.40 (m, 2H), 4.30-4.15 (m, 2H), 3.92 (s, 3H), 3.08 (d, J = 13.4 Hz, 1H), 2.29 (s, 3H), 2.08 (d, J = 8.6, 4.8 Hz, 1H), 1.77 (d, J = 5.8 Hz, 1H), 1.05 (td, J = 8.3, 5.2 Hz, 1H), 0.79 (q, J = 4.9 Hz, 1H)
LCMS, [M+H] ⁺	608.3	588.2
Formula I	N—N HILLING OH	N—N HHO N—N N—N O
Name	(1aR, 7bS)+2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(2-chloro-5-(2-hydroxyethoxy)benzyl)-1H-pyrazol 4-yl)-1a,2-dihydro-1H-cyclopropal@quinoline-3(7bH)-carboxylate	(1aR,7bS)-2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(2-hydroxy-5-(methoxycarbonyl)benzyl)-1H-pyrazol-4-yl) 1a,2-dihydro-1H-cyclopropa[c] quinoline-3(7bH)-carboxylate
Example	446	74

- 2
Ψ,
=
• 7
=
=
\sim
ب
ıΑ
٧,
$\overline{}$
(T)
Ħ H
LE~1
3LE 1
BLE 1
ABLE 1
IABLE 1
TABLE 1

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	11.4 min, 94.8% 11.6 min, 98.7%	11.2 min, 100%
¹H NMR (400 MHz, M€OD) δ	7.81 (d, J = 0.5 Hz, 1H), 7.71 (s, 1H), 7.33 (d, J = 8.8 Hz, 1H), 7.10 (d, J = 4.0 Hz, 2H), 7.07 (s, 1H), 6.9-6.97 (m, 1H), 6.93-6.84 (m, 3H), 6.74 (d, J = 8.1 Hz, 1H), 5.47 (s, 2H), 4.69-4.50 (m, 1H), 4.57-4.41 (m, 2H), 4.22 (s, 4H), 4.17 (dd, J = 5.3, 3.8 Hz, 2H), 3.94-3.82 (m, 1H), 3.11 (d, J = 13.4 Hz, 1H), 2.29 (s, 3H), 2.12 ((d, J = 8.5, 4.8 Hz, 1H), 1.90-1.69 (m, 1H), 1.05 (td, J = 8.3, 5.3 Hz, 1H), 1.05 (td, J = 8.3, 5.3 Hz, 1H), 1.05 (td, J = 8.3, 5.3 Hz, 1H)	8.20 (s, 1H), 8.01 (dd, J = 8.2, 2.2 Hz, 1H), 7.75 (d, J = 2.7 Hz, 1H), 7.50 (d, J = 8.2 Hz, 1H), 7.50 (d, J = 8.2 Hz, 1H), 7.15 (d, J = 8.2 Hz, 1H), 7.15 (s, 2H), 4.56 (s, 2H), 4.50 (d, J = 12.6 Hz, 1H), 4.39 4.30 (m, 1H), 4.26 4.14 (m, 1H), 3.00 (d, J = 12.6 Hz, 1H), 2.11 -2.20 (m, 1H), 2.10 -2.00 (m, 1H), 2.11 -2.00 (m, 1H), 2.10 (d, J = 5.5 Hz, 3H), 1.01 0.03 (m, 1H), 0.73 -0.59 (m, 1H)
LCMS, [M + H] ⁺	666.3	606.1
Formula I	N—N N—N N—N N—N N N N N N N N	
Name	2-(2-(4-Chloro-3-((4-Chloro-3-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-ylmethylphenoxy) ethoxy)acetic acid	4-Chloro-3-((4-((1aR,7bS)-3-(2-63-chloro-2-methylphenoxy)propoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic acid
Example	844	644

continued
15-
щ
B
ĭ

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	10.3 min, 92.0%	13.8 min, 99.9%
¹ Н NMR (400 МНг, МеОD) δ	8.11 (d, J = 1.9 Hz, 1H), 8.05 (dd, J = 8.3, 2.2 Hz, 1H), 7.86 (s, 1H), 7.76 (s, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.33 (d, J = 4.4 Hz, 1H), 7.18-7.10 (m, 3H), 7.05-6.94 (m, 3H), 6.93-6.83 (m, 1H), 5.05-5.88 (m, 2H), 5.06 (s, 2H), 4.67-4.59 (m, 1H), 5.06 (s, 2H), 4.57-4.59 (m, 1H), 4.58-4.43 (m, 2H), 4.21 (dd, J = 5.6, 3.4 Hz, 2H), 3.11 (d, J = 1.2.7 Hz, 1H), 2.53-2.03 (m, 1H), 1.80 (dd, J = 8.3, 5.2 Hz, 1H), 1.06 (dd, J = 8.3, 5.2 Hz, 1H), 0.82 (q, J = 5.0 Hz, 1H)	8.16-7.94 (m, 2H), 7.67 (s, 1H), 7.57-7.37 (m, 3H), 7.21-7.06 (m, 4H), 7.04-6.90 (m, 2H), 5.43 (s, 2H), 3.75 (t, J = 6.6 Hz, 2H), 2.90 (t, J = 6.3 Hz, 2H), 2.77-2.55 (m, 4H), 2.33 (s, 3H), 2.10-1.79 (m, 4H)
LCMS, [M+H] ⁺	596.1	560.1
Formula I	N—N CO ₂ H HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	H _c oo
Name	4-Chloro-3-((4-(1aR,7bS)-3-(2-(3-chloro-2-fluorophenoxy)ethoxy) carbonyl)-1a,2,3,7b-terahydro-1H-tyyzolopropa[c] quinolin-7-yl)-1H-tyyzazol-1-yl)methyl)benzoic acid	3-((4-(1-(4-(3-Chloro-2-methylphenylthio)butanoyl)- 1,2,3,4-terahydroquinolin- 5-yl)-1H-pyrazol-1-yl) methyl)benzoic acid
Example	450	451

╗
continued
ď
П
IΉ
\vdash
g
Z

	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	N/A 8.5 min, 94.3%	7.1 min, 96.8%
	¹ H NMR (400 MHz, MeOD) δ	7.57 (br. s., 1H), 7.46-7.40 (m, 3H), 7.39-7.31 (m, 2H), 7.29-7.16 (m, 3H), 6.99 (t, J = 8.0 Hz, 1H), 6.77- 6.25 (m, 2H), 5.38 (s, 2H), 4.08 (s, 2H), 3.84 (br. s., 2H), 3.73 (t, J = 6.9 Hz, 2H), 2.83 (t, J = 6.6 Hz, 2H), 2.40 (br. s., 3H), 2.17-2.07 (m, 2H), 2.00 (br. s., 3H), 1.77 (br. s., 3H), 1.62 (br. s., 2H)	8.58 (s, 1H), 7.96 (s, 1H), 7.56 (s, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.31 - 7.05 (m, SH), 6.91 (t, J = 7.7 Hz, 1H), 6.64 (t, J = 6.9 Hz, 2H), 5.35 (s, 1H), 6.64 (t, J = 6.9 Hz, 1H), 3.92 - 3.74 (m, 2H), 3.60 (t, J = 6.6 Hz, 2H), 3.74 (t, J = 7.7 Hz, 2H), 2.98 (s, 9H), 2.61 (t, J = 6.9 Hz, 2H), 2.53 (br. s., 3H), 2.03 (s, 3H), 1.98-1.88 (m, 2H), 1.87-1.50 (m, 7H)
	LCMS, [M+H] ⁺	574.3	677.5
מאווווווס-כו ממתעו	Formula I	V_{N}	
	Name	(3-((4-(1-(4-(2,3-) Dimethylphenoxy) butanoyl)-1,2,5,4-tetrahydroquinolin-5-yl)-IH-pyrazol-1-yl)methyl)phenyl) methanesulfonic acid	(S)-3-(1-(3-((4-(1-(4-(2,3- Dimethylphenoxy)) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)-IH- pyrazol-1-yl)methyl) phenyl)-2,5- dioxoimidazolidin-4yl- N,N,N-trimethylpropan-1- aminium
	Example	452	453

-	
3	
ontinu	
Ö	
ώ	
$\overline{}$	
(I)	
\Box	
\mathbf{m}	
-	
Ø	
Ø	
Ø	
Ø	
Ø	
Ø	
Ø	
Ø	

min, C-2: ity	%00	%6°		
HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	13.3 min, 100% 11.8 min, 100%	12.2 min, 99.0% 11.1 min, 99.9%		
¹ H NMR (400 MHz, MeOD) δ	7.44-7.40 (m, 1H), 7.25-7.15 (m, 3H), 7.02 (t, J = 7.7 Hz, 1H), 6.76 (d, J = 1.1 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 3.79 (t, J = 5.8 Hz, 2H), 3.79 (t, J = 6.9 Hz, 2H), 2.39-2.14 (m, 5H), 2.64 (t, J = 6.3 Hz, 2H), 2.29-2.14 (m, 5H), 1.97 (br. s., 3H), 1.92-1.83 (m, 2H)	7.61 (s, 1H), 7.52 (s, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.17 (s, 2H), 6.97 (t, J = 8.0 Hz, 1H), 6.89-6.78 (m, 4H), 6.74-6.62 (m, 2H), 5.27 (s, 2H), 3.97 (t, J = 6.3 Hz, 2H), 3.89 (t, J = 5.8 Hz, 2H), 3.89 (t, J = 6.9 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 2.56 (d, J = 6.0 Hz, 2H), 2.44 Hz, 2H), 2.10 (s, 3H), 2.09-2.02 (m, 2H), 1.98 (t, J = 6.9 Hz, 2H), 1.85 (br. s., 3H), 1.78 (quin, J = 6.6 Hz, 2H)		
LCMS, [M + H] ⁺	421.2	582.3		
Formula I		H ^c OO		
Name	4-(2,3-Dimethylthiazol-5-yl)- (5-(2-methylthiazol-5-yl)- 3,4-dihydroquinolin-1(2H)- yl)butan-1-one	4-(3-(4-(1-(4-(2.3-Dimethylphenoxy)) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenoxy)butanoic acid		
Example	454	25		

	ספונעודע	TOTAL CO.	
	7	2	
	Y		
t		_	

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	10.7 min, 99.8%
¹ H NMR (400 MHz, McOD) δ	7.54 (s, 1H), 7.45 (s, 1H), 7.19 (t, J = 8.0 Hz, 1H), 7.09 (s, 3H), 6.89 (t, J = 8.0 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.79-6.71 (m, 2H), 6.66-6.56 (m, 2H), 5.20 (s, 2H), 4.54 (s, 2H), 3.80 (t, J = 5.5 Hz, 2H), 3.60 (t, J = 7.1 Hz, 2H), 2.69 Hz, 2H), 2.60 (t, J = 7.1 Hz, 2H), 2.90 (t, J = 6.9 Hz, 2H), 2.11 Hz, 2H), 1.97 (quin, J = 7.1 Hz, 2H), 1.98 (br. s., 3H), 1.75-1.64 (m, 2H)
$\begin{array}{c} \text{LCMS,} \\ [\text{M} + \text{H}]^{+} \end{array}$	554.2
Formula I	H ₂ COO
Name	2-(3-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) phenoxy)acetic acid
Example	456

* Injection 1 conditions: Column: Waters Acquiry UPLC BEH C18, 2.1 x 50 mm, 1.7-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 0.05% TFA; Mobile Phase B: 95:5 acetonitrile: water with 0.05% TFA; Mobile Phase B: 95:5 acetonitrile: water with 0.05% TFA; Tengerature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.11 mL/min.

507The compounds exemplified in Table 16 were prepared in a manner analogous to Example 35.

TABLE 16

Ex- ample	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
457	3-((5-((1aR,7bS)-3-((2-(3-Chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-2-fluorobenzyloxy) carbonylamino)propanoic acid	F O N CO2H H CO2H O O O O O O	597.2	$\begin{aligned} 7.39 & (\mathrm{d}, \mathrm{J} = 7.6 \; \mathrm{Hz}, 2\mathrm{H}), 7.34-\\ 7.31 & (\mathrm{m}, \mathrm{1H}), 7.30 & (\mathrm{d}, \mathrm{J} = 1.5 \; \mathrm{Hz}, \mathrm{1H}), 7.18-7.10 & (\mathrm{m}, \mathrm{2H}),\\ 7.10-7.05 & (\mathrm{m}, \mathrm{2H}), 7.05-6.99 & (\mathrm{m}, \mathrm{1H}), 6.76 & (\mathrm{d}, \mathrm{J} = 8.1 \; \mathrm{Hz}, \mathrm{1H}), 5.34 & (\mathrm{br. s.}, 2\mathrm{H}), 5.24-5.14 & (\mathrm{m}, \mathrm{1H}), 4.71-4.56 & (\mathrm{m}, \mathrm{2H}),\\ 4.56-4.46 & (\mathrm{m}, \mathrm{1H}), 4.30-4.19 & (\mathrm{m}, \mathrm{2H}), 3.56-3.39 & (\mathrm{m}, \mathrm{3H}),\\ 3.04 & (\mathrm{d}, \mathrm{J} = 12.1 \; \mathrm{Hz}, \mathrm{1H}), 2.58 & (\mathrm{br. s.}, 2\mathrm{H}), 2.37-2.21 & (\mathrm{m}, \mathrm{3H}),\\ 1.94-1.82 & (\mathrm{m}, \mathrm{1H}), 1.73 & (\mathrm{d}, \mathrm{J} = 5.3 \; \mathrm{Hz}, \mathrm{1H}), 1.04-0.94 & (\mathrm{m}, \mathrm{1H}),\\ 0.88 & (\mathrm{br. s.}, \mathrm{1H}) & 0.88 & (\mathrm{br. s.}, \mathrm{1H}) \end{aligned}$	12.9 min, 99.8% 14.8 min, 100%
458	3-((2-Chloro-5-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)benzyloxy) carbonylamino)propanoic acid	CI O N CO_2H H O	613.2	$7.82 \ (s, 1H), 7.71 \ (s, 1H), 7.30 \ (d, J=8.8 \ Hz, 2H), 7.08 \ (d, J=4.3 \ Hz, 2H), 7.05 \ (d, J=8.1 \ Hz, 1H), 7.02 \ (-9.8 \ (m, 1H), 6.95 \ (br. s., 1H), 6.85 \ (dd, J=8.7, 2.7 \ Hz, 1H), 6.72 \ (d, J=7.8 \ Hz, 1H), 5.43 \ (s, 2H), 4.68-4.56 \ (m, 1H), 4.55-4.40 \ (m, 4H), 3.97 \ (d, J=4.8 \ Hz, 2H), 3.95-3.86 \ (m, 2H), 3.09 \ (d, J=13.1 \ Hz, 1H), 2.28 \ (s, 3H), 2.15-2.05 \ (m, 1H), 1.81-1.70 \ (m, 1H), 1.03 \ (td, J=8.3, 5.2 \ Hz, 1H), 0.77 \ (q, J=4.8 \ Hz, 1H)$	11.4 min, 99.7% 11.6 min, 100%
459	2-((4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzyloxy)carbonylamino) acetic acid	N-N CO ₂ H	679.3	$7.88 (s, 1H), 7.72 (s, 1H), 7.46 \\ (d, J = 8.3 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.21 (d, J = 7.1 Hz, 1H), 7.17-7.14 (m, 2H), 7.12-7.04 (m, 3H), 6.97 (d, J = 8.1 Hz, 1H), 6.86 (d, J = 8.1 Hz, 1H), 5.54 (s, 2H), 5.07 (s, 2H), 4.61-4.44 (m, 3H), 4.24 (br. s., 2H), 3.80 (s, 2H), 3.06 (d, J = 81.29 Hz, 1H), 2.29-2.09 (m, 4H), 1.82 (d, J = 6.1 Hz, 1H), 1.09-0.96 (m, 1H), 0.63 (d, J = 4.8 Hz, 1H) \\ \end{cases}$	N/A
460	2-((2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H- pyrazol-1-yl)methyl) phenoxy)ethoxy) carbonylamino)acetic acid	N-N Cl	709.3	$\begin{array}{l} 7.82 \ (s,1H), 7.71 \ (s,1H), 7.30 \\ (d,J=8.8\ Hz,2H), 7.08 \ (d,J=4.3\ Hz,2H), 7.05 \ (d,J=8.1\ Hz,1H), 7.02-6.98 \ (m,1H), 6.95 \\ (br.\ s.,1H), 6.85 \ (dd,J=8.7,2.7\ Hz,1H), 6.72 \ (d,J=7.8\ Hz,1H), 5.43 \ (s,2H), 4.68-4.56 \ (m,1H), 4.55-4.40 \ (m,4H), 3.97 \ (d,J=4.8\ Hz,2H), 3.95-3.86 \ (m,2H), 3.09 \ (d,J=13.1\ Hz,1H), 2.28 \ (s,3H), 2.15-2.05 \ (m,1H), 1.81-1.70 \ (m,1H), 1.03 \ (td,J=8.3,5.2\ Hz,1H), 0.77 \ (q,J=4.8\ Hz,1H) \end{array}$	11.2 min, 94.8% 11.7 min, 100%

The compounds exemplified in Table 17 were prepared in a manner analogous to Example 63.

TABLE 17

			IABLE I /			
		(N-N N-N O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-			
Ex- ample	. Name	—X—Y		LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
461	2-Chloro-3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)benzoic acid	70000 CI	СО2Н	558.0	7.97-7.85 (m, 1H), 7.65-7.55 (m, 1H), 7.46-7.40 (m, 1H), 7.38-7.31 (m, 1H), 7.25-7.22 (m, 1H), 7.21-7.14 (m, 2H), 7.04-6.97 (m, 1H), 6.73 (d, J = 7.4 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 5.58-5.51 (m, 2H), 4.00-3.88 (m, 2H), 3.79 (t, J = 6.7 Hz, 2H), 2.79-2.71 (m, 2H), 2.59 (br. s., 2H), 2.26-2.12 (m, 5H), 1.99-1.88 (m, 3H), 1.88-1.82 (m, 2H)	12.5 min, 96.7% 11.5 min, 99.7%
462	2-(2-Chloro-3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	200 CI	NH SO ₃ H	665.0	7.69 (br. s., 1H), 7.55 (br. s., 1H), 7.52-7.46 (m, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.28-7.20 (m, 2H), 7.17 (dd, J = 7.8, 1.5 Hz, 2H), 6.97 (t, J = 7.8 Hz, 1H), 6.69 (d, J = 7.4 Hz, 1H), 6.67 (s, 1H), 5.59-5.52 (m, 2H), 5.61-5.50 (m, 2H), 3.87 (br. s., 2H), 3.79 (t, J = 6.9 Hz, 2H), 3.74 (t, J = 6.7 Hz, 2H), 3.10 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 6.7 Hz, 2H), 2.50 (br. s., 2H), 2.17-2.04 (m, 5H), 1.86-1.78 (m, 2H), 1.75 (br. s., 2H), 1.91-1.58 (m, 5H)	13.6 min, 99.3% 8.7 min, 100%
463	5-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) isophthalic acid	Son Co	CO ₂ H	568.1	8.59 (t, J = 1.5 Hz, 1H), 8.12 (d, J = 1.7 Hz, 2H), 7.65 (br. s., 1H), 7.50 (s, 1H), 7.29-7.20 (m, 2H), 7.16 (br. s., 1H), 6.95 (t, J = 7.8 Hz, 1H), 6.64 (d, J = 7.4 Hz, 2H), 5.51 (s, 2H), 3.85 (br. s., 2H), 3.74 (t, J = 6.7 Hz, 2H), 2.84-2.78 (m, 2H), 2.48 (br. s., 2H), 2.16-2.08 (m, 2H), 2.01 (s, 5H), 1.84-1.76 (m, 2H), 1.71 (br. s., 3H)	10.6 min, 94.8% 10.2 min, 95.4%
464	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-N,N,N- trimethylethanaminium, TFA salt	Sold of the second of the seco	O NH NH	608.3	7.84-7.81 (m, 1H), 7.80-7.76 (m, 1H), 7.71-7.61 (m, 1H), 7.53-7.45 (m, 3H), 7.28-7.17 (m, 2H), 7.19-7.09 (m, 1H), 7.03-6.90 (m, 1H), 6.71-6.58 (m, 2H), 5.46-5.40 (m, 2H), 3.92-3.79 (m, 4H), 3.74 (t, J = 6.7 Hz, 2H), 3.57 (t, J = 6.7 Hz, 2H), 3.28-3.19 (m, 9H), 2.80 (t, J = 6.9 Hz, 2H), 2.49 (br. s., 2H), 2.18-2.07 (m, 2H), 2.03 (br. s., 3H), 1.90-1.60 (m, 6H)	8.0 min, 96.0% 9.6 min, 96.6%
465	4-(2,3-Dimethylphenoxy)-1-(5-(1-(pyridin-3-ylmethyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl) butan-1-one	Son	N	481.1	8.66-8.49 (m, 1H), 7.66-7.59 (m, 1H), 7.56 (s, 1H), 7.34 (s, 2H), 7.23-7.11 (m, 3H), 7.07-6.94 (m, 1H), 6.81-6.69 (m, 1H), 6.68-6.56 (m, 1H), 5.36 (s, 2H), 3.93 (t, J = 5.4 Hz, 2H), 3.78 (t, J = 6.9 Hz, 2H), 2.84-2.68 (m, 2H), 2.64-2.42 (m, 2H), 2.25-2.05 (m, 5H), 1.90 (br. s., 2H), 1.88-1.79 (m, 2H), 1.67-1.46 (m, 2H)	7.7 min, 95.0% 9.1 min, 97.6%

1.84 (quin, J = 6.7 Hz, 2H), 1.68 (br. s.,

2H)

Ex- ample	· Name	—X—Y	0/ 10/	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, CDCl3) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
476	(R)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)succinic acid	Solo Solo Solo Solo Solo Solo Solo Solo	NH CO ₂ H	639.3	7.84-7.78 (m, 3H), 7.60-7.53 (m, 1H), 7.46-7.34 (m, 2H), 7.31 (d, J = 7.7 Hz, 1H), 7.24-7.12 (m, 2H), 6.99 (t, J = 7.8 Hz, 1H), 6.71 (d, J = 7.4 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 5.52-5.38 (m, 2H), 5.12-5.01 (m, 1H), 3.89 (br. s., 2H), 3.78 (t, J = 6.7 Hz, 2H), 3.19-2.91 (m, 2H), 2.79 (t, J = 7.2 Hz, 2H), 2.52 (br. s., 2H), 2.22-2.07 (m, 5H), 1.89-1.77 (m, 5H)	10.3 min, 99.3% 10.1 min, 99.0%
477	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)succinic acid	Solve Service	O NH CO ₂ H	639.3	7.84-7.77 (m, 3H), 7.59-7.52 (m, 1H), 7.45-7.34 (m, 2H), 7.30 (d, J = 7.7 Hz, 1H), 7.24-7.11 (m, 2H), 6.99 (t, J = 7.8 Hz, 1H), 6.71 (d, J = 7.7 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 5.51-5.38 (m, 2H), 5.10-4.99 (m, 1H), 3.89 (br. s., 2H), 3.78 (t, J = 6.7 Hz, 2H), 3.17-3.06 (m, 1H), 3.05-2.93 (m, 1H), 2.78 (t, J = 7.2 Hz, 2H), 2.52 (br. s., 2H), 2.21-2.06 (m, 5H), 1.88-1.76 (m, 5H)	10.3 min, 99.1% 10.0 min, 99.1%
478	(R)-Dimethyl 2-(3-((4-(1-(4-(2,3-dimethylphenoxy)) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)succinate	Yorkon I	NH CO ₂ Me	667.4	7.79 (s, 1H), 7.74 (dd, J = 7.4, 1.4 Hz, 1H), 7.56 (s, 1H), 7.49-7.39 (m, 2H), 7.35 (s, 1H), 7.25-7.20 (m, 1H), 7.18-7.13 (m, 2H), 7.00 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.4 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 5.39 (s, 2H), 5.08-5.01 (m, 1H), 3.93 (t, J = 5.4 Hz, 2H), 3.80 (s, 3H), 3.79-3.74 (m, 2H), 3.70 (s, 3H), 3.14 (dd, J = 17.3, 4.4 Hz, 1H), 2.98 (dd, J = 17.3, 4.4 Hz, 1H), 2.99 (dd, J = 17.3, 4.4 Hz, 1H), 2.74 (t, J = 7.2 Hz, 2H), 2.99 (br. s., 2H), 2.22-2.12 (m, 5H), 1.91 (br. s., 3H), 1.85 (quin, J = 6.7 Hz, 2H)	10.1 min, 97.6% 11.4 min, 98.3%
479	(S)-3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-4-methoxy-4- oxobutanoic acid	Sold Sold Sold Sold Sold Sold Sold Sold	O NH CO ₂ H	653.4	7.80-7.73 (m, 2H), 7.59 (s, 1H), 7.48-7.40 (m, 2H), 7.40-7.31 (m, 2H), 7.22-7.12 (m, 3H), 7.00 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.4 Hz, 1H), 6.63 (d, J = 8.3 Hz, 1H), 5.41 (s, 2H), 5.09-5.02 (m, 1H), 3.91 (br. s., 2H), 3.83-3.74 (m, 5H), 3.22-3.10 (m, 1H), 3.02 (dd, J = 17.6, 4.4 Hz, 1H), 2.78 (t, J = 7.2 Hz, 2H), 2.54 (br. s., 2H), 2.23-2.11 (m, 5H), 1.93-1.79 (m, 5H)	7.5 min, 98.1% 7.5 min, 99.7%
480	(S)-3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)-N- methylbenzamido)-4- methoxy-4-oxobutanoic acid	Solve I	N N CO ₂ H CO ₂ Me	667.4	7.61 (br. s., 1H), 7.47-7.39 (m, 2H), 7.37-7.31 (m, 3H), 7.24-7.13 (m, 3H), 7.06-6.97 (m, 1H), 6.73 (d, J = 7.4 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 5.46-5.32 (m, 2H), 5.03 (br. s., 0.5H), 4.82 (br. s., 0.5H), 3.92 (br. s., 2H), 3.84-3.77 (m, 5H), 3.37-3.19 (m, 0.5H), 3.09-2.89 (m, 4H), 2.79 (t, J = 7.3 Hz, 2H), 2.67 (br. s., 0.5H), 2.55 (br. s., 2H), 2.24-2.06 (m, 5H), 2.02-1.67 (m, 5H)	7.5 min, 98.4% 7.6 min, 99.8%

purity: LCMS, HPLC-2: Ex-[M + Rt min, ample Name —X—Y H]* ¹H NMR (500 MHz, CDCl₃) δ purity

481 (S)-2-(3-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-Nmethylbenzamido)succinic acid

- 482 Methyl 3-(3-((4-(1-(4-(2,3dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)benzamido) propanoate ĊO₂Me
- 653.4 7.60 (br. s., 1H), 7.39 (br. s., 4H), 7.28 (d, J = 3.3 Hz, 1H), 7.22-7.10 (m, 3H), 7.00(t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.4 Hz,1H), 6.63 (d, J = 8.0 Hz, 1H), 5.40 (s, 2H), 4.82 (br. s., 0.5H), 3.91 (br. s., 2H), 3.77 (t, J = 6.7 Hz, 2H), 3.20 (d, J = 11.3)Hz, 0.5H), 3.09-2.85 (m, 5H), 2.82-2.71 (m, 2H), 2.65-2.60 (m, 0.5H), 2.54 (br. s., 2H), 2.23-2.11 (m, 5H), 1.98-1.75 (m, 5H)
- 609.4 7.75 (s, 1H), 7.68 (dt, J = 7.5, 1.5 Hz, 1H), 7.56 (d, J = 0.6 Hz, 1H), 7.46-7.38(m, 2H), 7.35 (s, 1H), 7.19-7.12 (m, 2H), 7.00 (t, J = 7.8 Hz, 1H), 6.84 (br. s., 1H), 6.72 (d, J = 7.7 Hz, 1H), 6.64 (d, J =8.3 Hz, 1H), 5.38 (s, 2H), 3.93 (t, J = 5.4 Hz, 2H), 3.78 (t, J = 6.9 Hz, 2H),3.75-3.70 (m, 5H), 2.74 (t, J = 7.2 Hz, 2H), 2.66 (t, J = 5.8 Hz, 2H), 2.58 (br. s., 2H), 2.22-2.12 (m, 5H), 1.91 (br. s., 3H), 1.85 (quin, J = 6.7 Hz, 3H)

483 (2R,3S)-2-(3-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)-3hydroxybutanoic acid

- 625.4 7.95 (s, 1H), 7.87 (d, J = 7.7 Hz, 1H), 7.55 (s, 1H), 7.50-7.44 (m, 1H), 7.44-7.36 (m, 3H), 7.21-7.13 (m, 2H), 7.01 (t, J = 8.0 Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H),6.63 (d, J = 8.0 Hz, 1H), 5.53-5.34 (m, 2H), 4.84 (dd, J = 8.3, 2.2 Hz, 1H), 4.61-4.51 (m, 1H), 3.92 (br. s., 2H), 3.78 (t, J = 6.7 Hz, 2H), 2.76 (t, J = 7.2 Hz, 2H), 2.55 (br. s., 2H), 2.21-2.12 (m, 5H), 1.96-
 - 93.4% 1.77 (m, 5H), 1.30 (d, J = 6.3 Hz, 3H)

- 484 2-(3-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)-3sulfopropanoic acid
- CO₂H ŠO₃H
- 675.3 7.93-7.80 (m, 3H), 7.66 (br. s., 1H), 7.57-7.47 (m, 2H), 7.33-7.15 (m, 3H), 6.99 (t, J = 8.0 Hz, 1H), 6.72-6.62 (m, 2H),5.53 (s, 2H), 4.91 (dd, J = 8.0, 4.1 Hz, 1H), 3.89 (br. s., 2H), 3.77 (t, J = 6.9 Hz, 2H), 3.52-3.44 (m, 1H), 3.43-3.36 (m, 1H), 2.83 (t, J = 6.9 Hz, 2H), 2.54 (br. s., 2H), 2.14 (quin, J = 6.2 Hz, 3H), 2.07 (br. s., 3H), 1.90-1.66 (m, 5H)*
- N/A8.5 min, 91.5%

HPLC-1: Rt min.

7.3 min,

95.2%

7.5 min,

94.0%

12.0 min,

99.1%

11.1 min,

99.8%

10.4 min,

89.6%

9.9 min,

Ex- ample	· Name	-x-y	LCMS, [M + H] ⁺	$^{1}\text{H NMR (500 MHz, CDCl}_{3})}$ δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
485	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-3- hydroxypropanoic acid	Volume of the state of the stat	611.4	$\begin{array}{l} 7.97\ (s,1H),7.85\ (s,1H),7.61\ (d,J=7.2\\ Hz,1H),7.54\ (s,1H),7.45-7.40\ (m,\\ 2H),7.38-7.34\ (m,1H),7.21-7.10\ (m,\\ 2H),7.00\ (t,J=7.8\ Hz,1H),6.73\ (d,J=7.4\ Hz,1H),6.63\ (d,J=8.0\ Hz,1H),\\ 5.53-5.32\ (m,3H),4.90-4.83\ (m,1H),\\ 4.13\ (d,J=8.8\ Hz,1H),4.00\ (d,J=9.1\ Hz,1H),3.91\ (br.s.,2H),3.77\ (t,J=6.7\ Hz,2H),2.76\ (t,J=7.2\ Hz,2H),2.54\ (br.s.,2H),2.21-2.09\ (m,5H),1.96-1.76\ (m,5H) \end{array}$	7.8 min, 99.3% 7.4 min, 99.5%
486	(3R,5S)-6-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-3,5- dihydroxyhexanoic acid, Na salt	NH OH CO ₂ H	669.5	8.03 (s, 1H), 7.99 (d, J = 5.0 Hz, 1H), 7.69 (s, 1H), 7.64 (d, J = 7.4 Hz, 1H), 7.60 (s, 1H), 7.42-7.32 (m, 2H), 7.15 (br. s., 1H), 7.11-7.00 (m, 2H), 6.90 (t, J = 7.8 Hz, 1H), 6.62 (d, J = 7.4 Hz, 2H), 5.38 (s, 2H), 3.85 (br. s., 2H), 3.73 (br. s., 1H), 3.51-3.36 (m, 2H), 2.65 (d, J = 14.3 Hz, 2H), 2.09-1.96 (m, 5H), 1.95-1.83 (m, 3H), 1.82-1.59 (m, 7H), 0.91-0.77 (m, 1H), 0.32 (br. s., 1H)**	7.5 min, 95.0% 7.1 min, 95.0%
487	1-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoyl)-4- hydroxypiperidine-4- carboxylic acid	ZAZAZA NOH CO2H	651.4	7.61 (br. s., 1H), 7.46-7.36 (m, 3H), 7.32 (d, J = 7.2 Hz, 1H), 7.21-7.13 (m, 3H), 7.01 (t, J = 7.8 Hz, 1H), 6.74 (d, J = 7.4 Hz, 1H), 6.65 (d, J = 7.7 Hz, 1H), 5.40 (s, 2H), 4.53 (br. s., 1H), 4.03-3.87 (m, 2H), 3.78 (br. s., 2H), 3.55 (br. s., 2H), 3.39 (br. s., 1H), 3.22 (br. s., 1H), 2.76 (t, J = 7.2 Hz, 2H), 2.61 (d, J = 7.4 Hz, 2H), 2.25-2.12 (m, 5H), 2.10-1.78 (m, 8H)	10.2 min, 99.3% 9.7 min, 99.5%
488	4-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)butanoic acid	Solve CO ₂ H	476.2	7.53 (s, 1H), 7.32 (s, 1H), 7.22-7.06 (m, 3H), 7.01 (t, J = 7.8 Hz, 1H), 6.74 (d, J = 7.4 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 4.29 (t, J = 6.6 Hz, 2H), 3.93 (t, J = 5.2 Hz, 2H), 3.79 (t, J = 6.9 Hz, 2H), 2.75 (t, J = 7.0 Hz, 2H), 2.58 (br. s., 2H), 2.46-2.37 (m, 2H), 2.23 (quin, J = 6.7 Hz, 3H), 2.20-2.14 (m, 5H), 1.91 (br. s., 3H), 1.89-1.82 (m, 2H)	11.0 min, 99.5% 9.5 min, 99.5%
489	5-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)pentanoic acid	^{CO₂H}	490.3	$\begin{array}{l} 7.51\ (s,1H),7.31\ (s,1H),7.21\text{-}7.06\ (m,\\ 3H),7.01\ (t,J=7.8\ Hz,1H),6.74\ (d,J=\\ 7.4\ Hz,1H),6.64\ (d,J=8.3\ Hz,1H),\\ 4.18\ (t,J=7.0\ Hz,2H),3.97\text{-}3.88\ (m,\\ 2H),3.78\ (t,J=6.7\ Hz,2H),2.75\ (t,J=\\ 7.2\ Hz,2H),2.59\ (br.s.,2H),2.41\ (t,J=\\ 7.3\ Hz,2H),2.22\text{-}2.15\ (m,5H),2.03\text{-}\\ 1.95\ (m,2H),1.91\ (br.s.,2H),1.85\ (quin,J=6.7\ Hz,2H),1.75\text{-}1.65\ (m,2H) \end{array}$	11.2 min, 96.5% 10.0 min, 97.8%

		N-N N-N N-N			
Ex- ample	Name	_X_Y	LCMS [M + H] ⁺	1 H NMR (500 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
490	(3R,5S)-6-(3-(3-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)-3,5-dihydroxyhexanoic acid, Na salt	HOW. HOW.	684.5	$\begin{array}{l} 8.59\ (s,1H), 7.88\ (s,1H), 7.54\ (d,J=0.6\ Hz,1H), 7.28-7.22\ (m,2H), 7.14-7.07\ (m,2H), 6.91\ (t,J=7.8\ Hz,1H), 6.72\ (d,J=7.8\ Hz,1H), 6.72\ (d,J=7.4\ Hz,1H), 6.63\ (t,J=8.5\ Hz,2H),\\ 6.10\ (t,J=5.6\ Hz,1H), 5.22\ (s,2H),\\ 3.89-3.79\ (m,3H), 3.59\ (t,J=6.5\ Hz,3H), 3.15-3.07\ (m,1H), 2.93-2.85\ (m,3H), 3.15-3.07\ (m,1H), 2.93-2.85\ (m,2H), 2.58-2.50\ (m,2H), 2.14\ (dd,J=14.9,4.1\ Hz,1H), 2.07-1.97\ (m,4H), 1.97-1.88\ (m,3H), 1.85-1.75\ (m,3H), 1.74-1.67\ (m,2H), 1.46-1.30\ (m,2H)** \end{array}$	8.8 min, 95.2% 8.2 min, 94.0%
491	(3R,5S)-6-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)-3,5- dihydroxyhexanoic acid, Na salt	Voca CO ₂ H OH	536.3	7.72 (s, 1H), 7.48 (s, 1H), 7.17 (br. s., 1H), 7.14-7.08 (m, 2H), 6.92 (t, J = 7.8 Hz, 1H), 6.65 (d, J = 7.2 Hz, 2H), 4.11-4.03 (m, 1H), 4.02-3.91 (m, 2H), 3.86 (dd, J = 7.8, 3.7 Hz, 1H), 3.83 (t, J = 5.5 Hz, 2H), 3.60 (t, J = 6.6 Hz, 2H), 2.60 (t, J = 7.2 Hz, 2H), 2.57-2.50 (m, 2H), 2.12 (dd, J = 14.9, 4.1 Hz, 1H), 2.06 (s, 3H), 1.97-1.89 (m, 3H), 1.86-1.76 (m, 3H), 1.75-1.64 (m, 2H), 1.49-1.29 (m, 2H)**	8.5 min, 99.5% 7.9 min, 91.6%
492	2-Amino-3-(3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)propanoic acid, 2 TFA salt	NH NH ₂ CO ₂ H	610.4		7.7 min, 97.9% 8.7 min, 98.3%
493	5-(4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)-3,3- dimethyl-4-oxopentanoic acid	Solve CO ₂ H	532.3	7.57 (s, 1H), 7.40 (s, 1H), 7.22-7.12 (m, 3H), 7.02 (t, J = 8.0 Hz, 1H), 6.74 (d, J = 7.7 Hz, 1H), 6.65 (d, J = 8.3 Hz, 1H), 4.38 (br. s., 2H), 3.98-3.89 (m, 2H), 3.79 (t, J = 6.9 Hz, 2H), 2.84 (br. s., 1H), 2.75 (t, J = 7.0 Hz, 2H), 2.58 (br. s., 2H), 2.23-2.14 (m, 5H), 1.92 (br. s., 3H), 1.90-1.80 (m, 3H), 1.57 (br. s., 6H)	11.9 min, 100% 10.5 min, 100%
494	1-(5-(1-(Benzo[d]thiazol-6-ylmethyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-4-(2,3-dimethylphenoxy) butan-1-one	S N	537.3	9.08 (s, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 1.1 Hz, 1H), 7.60 (s, 1H), 7.47 (dd, J = 8.2, 1.6 Hz, 1H), 7.37 (s, 1H), 7.22-7.13 (m, 3H), 7.00 (t, J = 8.0 Hz, 1H), 6.71 (d, J = 7.1 Hz, 1H), 6.63 (d, J = 8.2 Hz, 1H), 5.52 (s, 2H), 3.92 (d, J = 4.9 Hz, 2H), 3.78 (t, J = 6.9 Hz, 2H), 2.76 (t, J = 7.1 Hz, 2H), 2.56 (br. s., 2H), 2.24-2.11 (m, 5H), 1.96-1.79 (m, 5H)	13.5 min, 95.0% 12.3 min, 95.7%

Ex- ample	e Name	—X—Y	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, CDCl3) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
495	Diethyl 2,2'-(4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazole-1-carbonylazanediyl)diacetate	N CO ₂ Et	605.3	9.08 (s, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 1.1 Hz, 1H), 7.60 (s, 1H), 7.47 (dd, J = 8.2, 1.6 Hz, 1H), 7.37 (s, 1H), 7.22-7.13 (m, 3H), 7.00 (t, J = 8.0 Hz, 1H), 6.71 (d, J = 7.1 Hz, 1H), 6.63 (d, J = 8.2 Hz, 1H), 5.52 (s, 2H), 3.92 (d, J = 4.9 Hz, 2H), 3.78 (t, J = 6.9 Hz, 2H), 2.76 (t, J = 7.1 Hz, 2H), 2.56 (br. s., 2H), 2.24-2.11 (m, 5H), 1.96-1.79 (m, 5H)	12.4 min, 91.7% 11.1 min, 94.5%
496	N-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)-4,4,4-trifluoro-2,3- dihydroxy-3- (trifluoromethyl)butanamide	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	$\begin{tabular}{lll} OH & Not \\ OH & Shown \\ CF_3 & \\ \end{tabular}$	8.04 (br. s., 1H), 7.66-7.47 (m, 3H), 7.46-7.31 (m, 2H), 7.24-7.05 (m, 4H), 7.05-6.93 (m, 1H), 6.79-6.54 (m, 2H), 5.47-5.22 (m, 2H), 3.92 (br. s., 2H), 3.78 (t, J = 6.9 Hz, 2H), 2.76 (t, J = 7.1 Hz, 2H), 2.58 (br. s., 2H), 2.33-1.71 (m, 12H)	10.4 min, 98.9% 9.1 min, 98.5%
497	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenylamino)-2-oxoacetic acid	Sold And And And And And And And And And An	$ ho^{\mathrm{CO_2H}}$	9.14 (s, 1H), 7.70 (s, 1H), 7.63 (s, 1H), 7.60-7.51 (m, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.38-7.29 (m, 1H), 7.25-7.06 (m, 4H), 7.06-6.91 (m, 1H), 6.81-6.56 (m, 2H), 5.55-5.24 (m, 2H), 3.99-3.86 (m, 2H), 3.80 (t, J = 6.9 Hz, 2H), 2.92-2.72 (m, 2H), 2.62-2.47 (m, 2H), 2.26-2.04 (m, 5H), 1.99-1.59 (m, 5H)	9.0 min, 100% 10.6 min, 100%
498	N-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)-2,2,2- trifluoroacetamide	YANGO MANAGAN	CF ₃	$8.22 \; (br. s., 1H), 7.59 \; (d, J=6.6 \; Hz, 2H), \\ 7.53 \; (d, J=8.2 \; Hz, 1H), 7.41 \; (t, J=8.0 \; Hz, 1H), 7.36 \; (br. s., 1H), 7.23-7.08 \; (m, 4H), 7.01 \; (t, J=7.7 \; Hz, 1H), 6.72 \; (d, J=7.1 \; Hz, 1H), 6.63 \; (d, J=8.2 \; Hz, 1H), \\ 5.39 \; (s, 2H), 3.91 \; (br. s., 2H), 3.79 \; (t, J=6.9 \; Hz, 2H), 2.78 \; (t, J=7.1 \; Hz, 2H), \\ 2.56 \; (br. s., 2H), 2.25-2.07 \; (m, 5H), 1.97-1.75 \; (m, 5H) \\ \end{cases}$	N/A
499	N-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)-3,3- bis(trifluoromethyl)oxirane- 2-carboxamide	Zozozo N	$ \begin{array}{c} O \\ CF_3 \end{array} $ $ \begin{array}{c} 701.4 \\ CF_3 \end{array} $	$\begin{array}{l} 7.82\ (s,1H), 7.58\ (s,1H), 7.50\ (s,1H),\\ 7.46\ (d,J=8.2\ Hz,1H), 7.39\ (d,J=7.7\ Hz,1H), 7.35\ (d,J=2.2\ Hz,1H), 7.22-\\ 7.14\ (m,2H), 7.09\ (d,J=7.7\ Hz,1H),\\ 7.00\ (t,J=8.0\ Hz,1H), 6.72\ (d,J=7.7\ Hz,1H), 6.63\ (d,J=8.2\ Hz,1H), 5.36\ (s,2H), 4.14\ (s,1H), 3.92\ (t,J=4.9\ Hz,2H), 2.76\ (t,J=7.1\ Hz,2H), 2.57\ (br.\ s.,2H), 2.24-2.09\ (m,5H), 1.98-1.78\ (m,5H) \end{array}$	N/A

			N-N N-N N-N			
Ex- ample	. Name	—X—Y		LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, CDCl3) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
500	2-Amino-N-(3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenyl)-4,4,4-trifluoro-3-hydroxy-3-(trifluoromethyl) butanamide	700000	$\begin{array}{c c} H & NH_2 \\ \hline NH_2 & CF_3 \\ OH & CF_3 \end{array}$	718.4	7.61-7.53 (m, 2H), 7.52-7.44 (m, 2H), 7.34 (t, J = 8.0 Hz, 1H), 7.28-7.17 (m, 2H), 7.14 (br. s., 1H), 7.06 (d, J = 7.7 Hz, 1H), 6.95 (t, J = 7.7 Hz, 1H), 6.64 (dd, J = 7.4, 4.7 Hz, 2H), 5.36 (s, 2H), 3.99 (s, 1H), 3.84 (br. s., 2H), 3.73 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 6.6 Hz, 2H), 2.46 (br. s., 2H), 2.16-2.07 (m, 2H), 2.01 (br. s., 3H), 1.88-1.73 (m, 3H), 1.69 (br. s., 3H)	N/A
501	4-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)-1H-1,2,4-triazol- 5(4H)-one	Solono So	O NH	563.4	7.60 (s, 1H), 7.56-7.46 (m, 3H), 7.40 (s, 1H), 7.33-7.27 (m, 1H), 7.24-7.13 (m, 2H), 7.01 (t, J = 8.0 Hz, 1H), 6.73 (d, J = 7.1 Hz, 1H), 6.63 (d, J = 8.2 Hz, 1H), 5.44 (s, 2H), 3.92 (br. s., 2H), 3.79 (t, J = 6.9 Hz, 2H), 2.77 (t, J = 7.1 Hz, 2H), 2.56 (br. s., 2H), 2.23-2.09 (m, 5H), 2.01 (s, 3H), 1.92-1.75 (m, 5H)	9.8 min, 99.0% 8.8 min, 95.7%
502	2-(4-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)-5-oxo-4,5-dihydro- 1H-1,2,4-triazol-1-yl)acetic acid	Solve	O N N N	621.3	7.81 (s, 1H), 7.63-7.44 (m, 3H), 7.39 (br. s., 1H), 7.25-7.11 (m, 2H), 7.06-6.94 (m, 1H), 6.80-6.57 (m, 2H), 5.43 (s, 2H), 4.66 (s, 2H), 3.91 (br. s., 2H), 3.78 (t, J = 6.9 Hz, 2H), 2.76 (t, J = 7.1 Hz, 2H), 2.55 (br. s., 2H), 2.27-2.09 (m, 5H), 2.01 (s, 1H), 1.86 (dd, J = 13.7, 6.6 Hz, 5H)	11.0 min, 100% 10.0 min, 100%
503	4-(2,3-Dimethylphenoxy)-1-(5-(1-(pyridin-2-ylmethyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl) butan-1-one, TFA salt	Soo	N	481.3	8.75 (d, J = 4.8 Hz, 1H), 8.28 (t, J = 7.6 Hz, 1H), 7.92-7.71 (m, 2H), 7.66-7.48 (m, 2H), 7.37-7.11 (m, 3H), 6.98 (t, J = 7.7 Hz, 1H), 6.79-6.58 (m, 2H), 5.70 (s, 2H), 3.88 (br. s., 2H), 3.76 (t, J = 6.6 Hz, 2H), 2.80 (t, J = 6.7 Hz, 2H), 2.56 (br. s., 3H), 2.27-1.96 (m, 4H), 1.92-1.70 (m, 5H)*	9.9 min, 99.6% 10.0 min, 99.9%
504	3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) phenyl)imidazolidine-2,4- dione	, , , , , , , , , , , , , , , , , , ,	O NH	578.3	7.66 (br. s., 1H), 7.54 (br. s., 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.39-7.10 (m, 5H), 6.98 (t, J = 7.4 Hz, 1H), 6.69 (t, J = 8.8 Hz, 2H), 6.23 (br. s., 1H), 5.36 (br. s., 2H), 3.96 (br. s., 2H), 3.93-3.84 (m, 2H), 3.68 (t, J = 6.3 Hz, 2H), 2.68 (t, J = 6.6 Hz, 2H), 2.58 (br. s., 2H), 2.16 (br. s., 3H), 2.09-2.01 (m, 2H), 1.87 (br. s., 3H), 1.79 (d, J = 6.6 Hz, 2H)	10.7 min, 99.2% 10.2 min, 98.7%

 $^{^{*\,}I}\text{H NMR}$ (500 MHz, MeOD) $\delta.$

526

^{**} ^{1}H NMR (500 MHz, DMSO-d₆) $\delta.$

527The compounds exemplified in Table 18 were prepared in a manner analogous to Example 72.

TABLE 18

		TABLE 18			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
505	(S)-4-Carboxy-4- (3-((4-(4-(2,3- dimethylphenoxy) butanoyl)-3,4- dihydro-2H-benzo [b][1,4]oxazin-8- yl)-1H-pyrazol-1- yl)methyl)phenyl- sulfonamido)-N,N, N-trimethylbutan-1- aminium, TFA salt	O S N N N N N N N N N N N N N N N N N N	718.4	8.09 (s, 1H), 7.93 (d, J = 0.6 Hz, 1H), 7.82 (dd, J = 7.6, 1.2 Hz, 1H), 7.78 (s, 1H), 7.57- 7.52 (m, 1H), 7.51-7.47 (m, 1H), 7.41 (dd, J = 7.8, 1.4 Hz, 1H), 7.31 (br. s., 1H), 6.97- 6.88 (m, 2H), 6.67 (d, J = 8.0 Hz, 2H), 5.45 (s, 2H), 4.31 (t, J = 4.9 Hz, 2H), 4.01-3.91 (m, 5H), 3.38-3.33 (m, 2H), 3.10 (s, 9H), 2.89 (t, J = 7.1 Hz, 2H), 2.19-2.14 (m, 2H), 2.13 (s, 3H), 1.99-1.83 (m, 6H), 1.77-1.65 (m, 1H)	7.5 min, 99.2% 8.9 min, 99.5%
506	3-(N-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy))butanoyl)-2,3,4, 5-tetrahydrobenzo [b][1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)phenyl)sulfamoyl)benzoic acid	N-N CO ₂ H	715.4	8.37 (t, J = 1.7 Hz, 1H), 8.09 (dt, J = 7.9, 1.3 Hz, 1H), 7.97-7.88 (m, 2H), 7.87-7.79 (m, 1H), 7.65 (dd, J = 7.0, 2.6 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.30-7.12 (m, 3H), 7.11-6.89 (m, 4H), 6.80 (d, J = 7.5 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 5.31 (s, 2H), 4.82-4.73 (m, 1H), 4.46 (d, J = 11.9 Hz, 1H), 3.97-3.82 (m, 2H), 3.57 (td, J = 11.8, 2.0 Hz, 1H), 2.93-2.79 (m, 1H), 2.55-2.17 (m, 3H), 2.12-1.99 (m, 2H), 1.94 (s, 3H), 1.79 (d, J = 14.7 Hz, 1H)	9.7 min, 100% 9.2 min, 100%
507	(S)-4-Carboxy-4- (3-((4-(1-(4-(2,3- dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin- 5-yl)-1H-pyrazol- 1-yl)methyl)phenyl- sulfonamido)-N,N, N-trimethylbutan-1- aminium	O CO2H N-N	716.5	7.83 (d, J = 7.7 Hz, 1H), 7.75 (s, 1H), 7.70-7.45 (m, 4H), 7.33-7.16 (m, 3H), 6.97 (t, J = 7.7 Hz, 1H), 6.66 (d, J = 7.7 Hz, 2H), 5.46 (s, 2H), 3.93 (dd, J = 9.3, 3.8 Hz, 1H), 3.86 (br. s., 2H), 3.74 (t, J = 6.9 Hz, 2H), 3.28-3.50 (m, 2H), 3.12 (s, 9H), 2.81 (t, J = 6.6 Hz, 2H), 2.50 (br. s., 3H), 2.19-2.09 (m, 3H), 2.04 (br. s., 3H), 1.96-1.62 (m, 7H)	7.1 min, 98.9% 9.3 min, 100%

The compounds exemplified in Table 19 were prepared in a manner analogous to Example 80.

		TABLE 19			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR (500 MHz, MeOD)}\delta$	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
508	3-(3-((4-(4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin- 8-yl)-1H-pyrazol-1-yl) methyl)phenyl)uriedo) propanoic acid	$\begin{array}{c} H \\ N \\ N \\ O \end{array}$	628.2	7.61 (s, 1H), 7.56-7.55 (m, 1H), 7.31 (d, J = 11.9 Hz, 2H), 7.25-7.18 (m, 2H), 7.15-7.04 (m, 2H), 6.94 (t, J = 7.9 Hz, 1H), 6.82 (d, J = 7.9 Hz, 1H), 6.66 (d, J = 7.4 Hz, 1H), 5.27 (s, 2H), 3.87 (br. s., 4H), 3.43 (t, J = 6.2 Hz, 2H), 3.12 (br. s., 2H), 2.71-2.62 (m, 2H), 2.49 (t, J = 6.2 Hz, 2H), 2.16-2.04 (m, 5H), 1.84 (br. s., 3H)	99%*
509	2-(3-(3-((4-(4-(4-(2,3-dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl) methyl)phenyl)ureido) ethanesulfonic acid	HN SO ₃ H	664.3	7.72 (s, 1H), 7.63 (s, 1H), 7.37-7.30 (m, 2H), 7.30-7.21 (m, 2H), 7.19-7.14 (m, 2H), 6.96-6.86 (m, 2H), 6.65 (t, J = 8.7 Hz, 2H), 5.33-5.30 (m, 2H), 4.12-3.82 (m, 4H), 3.66-3.61 (m, 2H), 3.13 (t, J = 6.2 Hz, 2H), 3.01-2.95 (m, 2H), 2.68 (t, J = 7.1 Hz, 2H), 2.11 (s, 3H), 2.07 (quin, J = 6.5 Hz, 2H), 1.87 (s, 3H)	11.2 min, 99.2% 8.1 min, 99.1%

510 2-(3-(3-((4-(4-(4-(2,3-Dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl)phenyl) ureido)acetic acid

614.3 8.84 (s, 1H), 8.03 (s, 1H), 7.69 (d, J = 1.0 Hz, 1H), 7.40-7.33 (m, 2H), 7.31-7.19 (m, 3H), 7.18-7.11 (m, 1H), 6.97 (t, J = 7.9 Hz, 1H), 6.82 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 7.4 Hz, 2H), 6.36 (t, J = 5.7 Hz, 1H), 5.31 (s, 2H), 3.98-3.82 (m, 4H), 3.78 (d, J = 5.4 Hz, 2H), 3.17-3.08 (m, 2H), 2.66-2.56 (m, 2H), 2.17-2.07 (m, 3H), 2.02-1.94 (m, 2H), 1.87 (br. s., 3H)**

100%*

TABLE 19-continued					
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (500 MHz, MeOD) δ	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
511	(3-(3-((4-(4-(2,3- Dimethylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol- 1-yl)methyl)phenyl) ureido) methanesulfonic acid	HN SO ₃ H	650.5	7.83 (s, 1H), 7.73 (s, 1H), 7.39 (s, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.30-7.23 (m, 2H), 7.21-7.15 (m, 2H), 6.92 (q, J = 7.8 Hz, 2H), 6.65 (t, J = 8.2 Hz, 2H), 5.36 (s, 2H), 4.31 (s, 2H), 3.89 (t, J = 5.8 Hz, 4H), 3.14 (t, J = 6.2 Hz, 2H), 2.68 (t, J = 7.1 Hz, 2H), 2.12 (s, 3H), 2.10-2.03 (m, 2H), 1.88 (s, 3H)	11.4 min, 99.0% 8.2 min, 99.6%

512 (3-(3-((4-(4-(4-(3-Chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido) methanesulfonic acid

670.4 8.67 (br. s., 1H), 7.91 (d, J = 0.6 Hz, 1H), 7.61 (d, J = 0.8 Hz, 1H), 7.29-7.23 (m, 2H), 7.19 (dd, J = 7.6, 1.2 Hz, 1H), 7.17-7.00 (m, 4H), 6.87 (d, J = 7.5 Hz, 1H), 6.79 (d, J = 8.3 Hz, 1H), 6.72 (d, J = 7.8 Hz, 1H), 5.22 (s, 2H), 3.88 (t, J = 6.1 Hz, 2H), 3.78 (s, 4H), 3.05 (t, J = 6.1 Hz, 2H), 2.51 (t, J = 7.1 Hz, 2H), 1.98 (s, 3H), 1.91 (quin, J = 6.7 Hz, 2H)*

532

11.9 min, 95.3% 8.4 min, 98.0%

513 2-(3-(3-((4-(4-(4-(3-Chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl)phenyl) ureido)ethanesulfonic acid

684.3 8.67 (br. s., 1H), 7.90 (s, 1H), 7.60 (s, 1H), 7.32-7.27 (m, 2H), 7.22-7.17 (m, 1H), 7.15 (dd, J = 7.8, 1.4 Hz, 1H), 7.11-7.00 (m, 3H), 6.87 (d, J = 8.0 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.20 (s, 2H), 3.89 (t, J = 6.2 Hz, 2H), 3.79 (br. s., 2H), 3.31-3.27 (m, 2H), 3.05 (t, J = 6.1 Hz, 2H), 2.53-2.46 (m, 4H), 1.98 (s, 3H), 1.91 (quin, J = 6.7 Hz, 2H)*

11.6 min, 97.7% 8.2 min, 98.2%

		TIBEE 13 COMMISSION			
Ex- am- ple	Name	Formula I	LCMS, [M+ H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
514	2-(3-(3-((4-(4-(4-(3- Chloro-2-methylphenoxy) butanoyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin- 8-yl)-1H-pyrazol-1- yl)methyl)phenyl)ureido) acetic acid	N-N CO ₂ H		8.59 (s, 1H), 7.91 (s, 1H), 7.61 (s, 1H), 7.32-7.25 (m, 2H), 7.19 (d, J = 7.5 Hz, 1H), 7.16-7.10 (m, 2H), 7.09-7.00 (m, 2H), 6.87 (d, J = 8.0 Hz, 1H), 6.77 (dd, J = 17.5, 8.0 Hz, 2H), 6.20 (br. s., 1H), 5.22 (s, 2H), 3.88 (t, J = 6.2 Hz, 2H), 3.80 (br. s., 2H), 3.72 (d, J = 5.20 Hz, 2H), 3.05 (t, J = 6.1 Hz, 2H), 2.51 (t, J = 7.1 Hz, 2H), 1.97 (s, 3H), 1.91 (quin, J = 6.7 Hz, 2H)*	10.1 min, 96.6% 9.6 min, 96.8%
515	3-(3-((4-(4-(4-(3- Chloro-2-methylphenoxy) butanoyl)-3,4- dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H- pyrazol-1-yl) methyl)phenyl)ureido) propanoic acid	$\begin{array}{c} H \\ N \\ N \\ O \end{array}$		8.39 (s, 1H), 7.91 (d, J = 0.6 Hz, 1H), 7.61 (s, 1H), 7.29- 7.23 (m, 2H), 7.21-6.97 (m, 5H), 6.86 (d, J = 7.8 Hz, 1H), 6.79 (d, J = 8.3 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 6.05 (br. s., 1H), 5.21 (s, 2H), 3.88 (t, J = 6.1 Hz, 2H), 3.79 (br. s., 2H), 3.22 (t, J = 6.4 Hz, 2H), 3.08- 3.02 (m, 2H), 2.51 (t, J = 7.1 Hz, 2H), 2.33 (t, J = 6.5 Hz, 2H), 1.97 (s, 3H), 1.91 (quin, J = 6.7 Hz, 2H)*	10.1 min, 97.7% 9.7 min, 97.6%
516	(S)-2-Amino-5-(3-(3-(4-(4-(4-(2,3-dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl)phenyl) ureido)pentanoic acid	$\begin{array}{c} H_2N \\ CO_2H \\ N-N \\ O \\ O \\ \end{array}$		8.32 (s, 1H), 8.12-8.02 (m, 3H), 7.92 (d, J = 0.6 Hz, 1H), 7.61 (d, J = 0.6 Hz, 1H), 7.30-7.24 (m, 2H), 7.21-7.04 (m, 4H), 6.88 (t, J = 7.8 Hz, 1H), 6.62 (d, J = 7.8 Hz, 2H), 6.07 (br. s., 1H), 5.21 (s. 2H), 3.82 (t, J = 6.1 Hz, 4H), 3.07-3.01 (m, 4H), 2.50 (t, J = 7.1 Hz, 2H), 2.07 (s, 3H), 1.93-1.86 (m, 2H), 1.85 (s, 3H), 1.80-1.65 (m, 2H), 1.57-1.39 (m, 2H)	7.4 min, 100% 8.5 min, 100%
517	2-(3-(3-Chloro-4-((4-(4-(4-(4-(3-chloro-2-methylphenoxy))))))) butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorophenyl)ureido) acetic acid	$\begin{array}{c} Cl \\ O \\ N-N \\ F \end{array}$		7.68 (s, 1H), 7.61 (s, 1H), 7.40-7.32 (m, 2H), 7.27-7.22 (m, 1H), 7.15 (d, J = 5.0 Hz, 2H), 7.02-6.96 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 8.3 Hz, 1H), 5.45 (s, 2H), 4.03-3.83 (m, 6H), 3.12 (t, J = 6.1 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 2.07 (quin, J = 6.3 Hz, 2H), 1.98 (s, 3H)	10.9 min, 99.6% 10.1 min, 99.6%

TABLE 10 continued

		TABLE 19-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	, ¹ H NMR (500 MHz, MeOD) δ	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
518	(3-(3-((4-(5-(4-(2,3- Dimethylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo [b][1,4]oxazepin-9-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido) methanesulfonic acid	N-N SO ₃ H	648.3	8.23 (s, 1H), 8.11 (s, 1H), 7.64 (dd, J = 7.2, 2.3 Hz, 1H), 7.46 (s, 1H), 7.36-7.09 (m, 4H), 6.97-6.82 (m, 2H), 6.59 (d, J = 8.6 Hz, 2H), 5.41 (s, 2H), 4.76 (d, J = 13.4 Hz, 1H), 4.47 (d, J = 12.3 Hz, 1H), 4.32 (s, 2H), 3.91-3.72 (m, 2H), 3.58 (t, J = 10.9 Hz, 1H), 2.82 (t, J = 11.6 Hz, 1H), 2.57-2.16 (m, 3H), 2.11-1.93 (m, 5H), 1.87-1.68 (m, 4H)	5.8 min, 98.5% 6.9 min, 98.5%
519	2-(3-(3-((4-(5-(4-(2,3-Dimethylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)acetic acid	HN CO ₂ H	612.3	7.98 (s, 1H), 7.92 (s, 1H), 7.64 (dd, J = 6.4, 3.1 Hz, 1H), 7.40-7.32 (m, 2H), 7.30-7.23 (m, 1H), 7.18-7.10 (m, 2H), 6.98-6.87 (m, 2H), 6.64 (t, J = 7.7 Hz, 2H), 5.34 (s, 2H), 4.82-4.71 (m, 1H), 4.46 (d, J = 12.1 Hz, 1H), 3.99-3.76 (m, 4H), 3.57 (td, J = 11.7, 1.8 Hz, 1H), 2.94-2.76 (m, 1H), 2.51-2.35 (m, 2H), 2.27 (dd, J = 11.1, 3.6 Hz, 1H), 2.14-1.98 (m, 5H), 1.91-1.69 (m, 4H)	8.4 min, 98.5% 8.1 min, 98.0%
520	2-(3-(3-((4-(5-(4-(3- Chloro-2-methylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	659.3	7.98 (s, 1H), 7.89 (s, 1H), 7.61 (dd, J = 6.2, 3.3 Hz, 1H), 7.41-7.33 (m, 2H), 7.31-7.23 (m, 1H), 7.19-7.08 (m, 2H), 7.00-6.89 (m, 2H), 6.80 (d, J = 7.9	6.6 min, 94.0% 7.8 min,

[1,4]oxazepin-9-yl)1H-pyrazol-1-yl)methyl)
phenyl)ureido)-N,N,Ntrimethylethanaminium,
TFA salt

1H), 7.19-7.08 (m, 2H), 7.00-6.89 (m, 2H), 6.80 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 5.33 (d, J = 1.5 Hz, 2H), 4.80-4.70 (m, 1H), 4.45 (d, J = 12.1 Hz, 1H), 3.95-3.79 (m, 2H), 3.71-3.62 (m, 2H), 3.56 (td, J = 11.7, 1.9 Hz, 1H), 3.50-3.43 (m, 2H), 3.25-3.14 (m, 9H), 2.90-2.73 (m, 1H), 2.52-2.16 (m, 3H), 2.12-1.97 (m, 2H), 1.95-1.89 (m, 3H), 1.76 (d, J = 14.7 Hz, 1H)

min, 94.8%

		TABLE 19-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
521	2-(3-(3-((4-(5-(4-(3- Chloro-2-methylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b] [1,4]oxazepin-9-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido)acetic acid	HN CO ₂ H N N CO ₂ H	632.3	7.99 (d, J = 0.7 Hz, 1H), 7.91 (d, J = 0.7 Hz, 1H), 7.64 (dd, J = 6.8, 2.9 Hz, 1H), 7.64 (dd, J = 6.8, 2.9 Hz, 1H), 7.41-7.31 (m, 2H), 7.31-7.24 (m, 1H), 7.20-7.11 (m, 2H), 7.04-6.90 (m, 2H), 6.83 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 5.35 (d, J = 1.1 Hz, 2H), 4.81-4.72 (m, 1H), 4.54-4.41 (m, 1H), 4.01-3.82 (m, 4H), 3.63-3.48 (m, 1H), 2.93-2.77 (m, 1H), 2.56-2.18 (m, 3H), 2.05 (dq, J = 12.0, 6.0 Hz, 2H), 1.96 (s, 3H), 1.79 (d, J = 14.5 Hz, 1H)	8.7 min, 98.9% 8.4 min, 100%
522	(3-(3-((4-(5-(4-(3- Chloro-2-methylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b] [1,4]oxazepin-9-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido) methanesulfonic acid	HN SO ₃ H	668.3	$8.20 \; (d,J=0.4\;Hz,1H),8.10 \\ (d,J=0.7\;Hz,1H),7.72-7.64 \\ (m,1H),7.49 \; (s,1H),7.37-7.23 \; (m,2H),7.24-7.14 \; (m,2H),7.05-6.92 \; (m,2H),6.82 \\ (d,J=7.5\;Hz,1H),6.74 \; (d,J=8.1\;Hz,1H),5.43 \; (s,2H),4.83-4.73 \; (m,1H),4.56-4.43 \; (m,1H),4.33 \; (s,2H),4.00-3.81 \\ (m,2H),3.68-3.54 \; (m,1H),2.93-2.78 \; (m,1H),2.60-2.20 \\ (m,3H),2.15-2.00 \; (m,2H),1.91 \; (s,3H),1.82 \; (d,J=14.7\;Hz,1H)$	10.5 min, 99.6% 7.3 min, 99.1%
523	2-(3-(3-((4-(5-(4-(3- Chloro-2-methylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b] [1,4]oxazepin-9-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido) ethanesulfonic acid	HN SO_3H O	682.2	8.03 (s, 1H), 7.95 (s, 1H), 7.65 (dd, J = 6.5, 3.0 Hz, 1H), 7.41-7.32 (m, 2H), 7.31-7.23 (m, 1H), 7.21-7.11 (m, 2H), 7.02-6.89 (m, 2H), 6.83 (d, J = 7.7 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 5.37 (s, 2H), 4.78 (d, J = 13.6 Hz, 1H), 4.48 (d, J = 12.1 Hz, 1H), 3.99-3.83 (m, 2H), 3.69-3.59 (m, 2H), 3.05-2.96 (m, 3H), 2.93-2.79 (m, 1H), 2.57-2.20 (m, 3H), 2.12-2.01 (m, 2H), 1.95 (s, 3H), 1.80 (d, J = 15.0 Hz, 1H)	10.4 min, 99.6% 7.3 min, 99.4%

		TABLE 19-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	^1H NMR (500 MHz, MeOD) δ	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
524	3-(3-((4-(5-(4-(3- Chloro-2-methylphenoxy) butanoyl)-2,3,4,5- tetrahydrobenzo[b] [1,4]oxazepin-9-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido)propanoic acid	HN CO_2H O O O O O O O	646.4	7.99 (d, J = 0.4 Hz, 1H), 7.91 (d, J = 0.7 Hz, 1H), 7.64 (dd, J = 6.6, 2.9 Hz, 1H), 7.40-7.22 (m, 3H), 7.20-7.08 (m, 2H), 7.02-6.89 (m, 2H), 6.83 (dd, J = 7.9, 0.7 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 5.35 (d, J = 1.5 Hz, 2H), 4.82-4.71 (m, 1H), 4.53-4.42 (m, 1H), 4.00-3.82 (m, 2H), 3.58 (td, J = 11.8, 1.9 Hz, 1H), 3.46 (t, J = 6.4 Hz, 2H), 2.93-2.77 (m, 1H), 2.61-2.19 (m, 5H), 2.14-2.00 (m, 2H), 1.95 (s, 3H), 1.79 (d, J = 14.7 Hz, 1H)	8.9 min, 99.2% 8.5 min, 99.1%
525	(S)-2-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)succinic acid	$\begin{array}{c} \text{HN} \\ \text{HN} \\ \text{CO}_2 \text{H} \\ \text{CO}_2 \text{H} \\ \text{O} \\ \text{CO}_2 \text{H} \\ \text{O} \\ \text{O}$	690.4	7.98 (s, 1H), 7.91 (d, J = 0.4 Hz, 1H), 7.64 (dd, J = 6.7, 2.8 Hz, 1H), 7.40 (s, 1H), 7.36-7.23 (m, 2H), 7.20-7.08 (m, 2H), 7.03-6.90 (m, 2H), 6.83 (d, J = 7.7 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 5.35 (s, 2H), 4.81-4.73 (m, 1H), 4.69 (t, J = 5.1 Hz, 1H), 4.53-4.41 (m, 1H), 3.98-3.82 (m, 2H), 3.64-3.47 (m, 1H), 3.06-2.77 (m, 2H), 2.55-2.19 (m, 2H), 2.15-1.99 (m, 1H), 1.95 (s, 3H), 1.79 (d, J = 14.7 Hz, 1H)	8.5 min, 96.7% 8.2 min, 96.3%
526	(3-(3-((4-(5-(4-(2,3- Dimethylphenoxy)) butanoyl)-2,3,4,5- tetrahydrobenzo [b][1,4]oxazepin-9-yl)- 1H-pyrazol-1-yl)methyl) phenyl)-3-methylureido) methanesulfonic acid	N-N O SO ₃ H	646.1	7.78 (br. s., 1H), 7.50 (br. s., 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.39-7.31 (m, 2H), 7.28-7.16 (m, 3H), 6.96 (t, J = 7.7 Hz, 2H), 6.71-6.59 (m, 2H), 5.42 (s, 2H), 4.25 (s, 2H), 3.86 (br. s., 2H), 3.73 (t, J = 6.6 Hz, 2H), 3.25 (s, 3H), 2.80 (t, J = 6.9 Hz, 2H), 2.49 (br. s., 2H), 2.16-2.00 (m, 5H), 1.84-1.65 (m, 5H)	N/A

		TABLE 19-continued		
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺ ¹ H NMR (500 MHz, MeOD) δ	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
527	(3-(3-((4-((1aR,7bS)-3-((2-(3-Chloro-2-methyl-phenoxy)ethoxy)) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido) methanesulfonic acid	HN SO ₃ H	666.1 8.17 (s, 1H), 8.01 (s, 1H), 7.48 (s, 1H), 7.30-7.22 (m, 3H), 7.18-7.14 (m, 1H), 7.10 (t, J = 7.8 Hz, 2H), 6.99-6.92 (m, 2H), 6.86 (d, J = 8.3 Hz, 1H), 5.47 (s, 2H), 4.62-4.46 (m, 3H), 4.33 (s, 2H), 4.25 (d, J = 4.3 Hz, 2H), 3.05 (d, J = 12.1 Hz, 1H), 2.22 (s, 3H), 2.12 (td, J = 8.7, 4.7 Hz, 1H), 1.90-1.80 (m, 1H), 1.08 (td, J = 8.3, 4.9 Hz, 1H), 0.65 (q, J = 4.8 Hz, 1H)	N/A 9.8 min, 98.9%
528	(3-(4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido) methanesulfonic acid	HN SO ₃ H	700.1 8.06 (br. s., 1H), 7.93 (br. s., 1H), 7.41-7.34 (m, 1H), 7.34-7.21 (m, 3H), 7.21-7.14 (m, 1H), 7.10 (br. s., 2H), 6.98 (d, J = 5.6 Hz, 1H), 6.87 (d, J = 6.3 Hz, 1H), 5.55 (br. s., 2H), 4.63-4.43 (m, 2H), 4.31 (br. s., 2H), 4.25 (br. s., 2H), 3.05 (d, J = 12.1 Hz, 1H), 2.30-2.11 (m, 4H), 1.94-1.77 (m, 1H), 1.40-1.27 (m, 1H), 1.12-1.01 (m, 1H), 0.70-0.58 (m, 1H)	10.9 min, 97.8% 10.1 min, 97.8%
529	2-(3-(4-Chloro-3-((4-	HN	664.0 8.08 (br. s., 1H), 7.79-7.74 (m,	11.4

529 2-(3-(4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2methylphenoxy)ethoxy) carbonyl)-1a,2,3,7btetrahydro-1Hcyclopropa[c]quinolin-7-yl)-1H-pyrazol-1yl)methyl)phenyl)ureido) acetic acid

664.0 8.08 (br. s., 1H), 7.79-7.74 (m, 1H), 7.73-7.68 (m, 1H), 7.14-7.03 (m, 5H), 7.02-6.97 (m, 1H), 6.73 (d, J = 8.3 Hz, 1H), 5.36-5.31 (m, 2H), 4.70-4.43 (m, 3H), 4.21 (d, J = 5.2 Hz, 2H), 3.84 (br. s., 2H), 3.08 (d, J = 12.9 Hz, 1H), 2.29 (s, 3H), 2.16-2.05 (m, 1H), 1.74 (d, J = 5.5 Hz, 1H), 1.01 (d, J = 5.2 Hz, 1H), 0.77 (d, J = 4.7 Hz, 1H)

min, 98.5% 10.0 min, 98.9%

		IABLE 19-continued		
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺ ¹ H NMR (500 MHz, MeOD) δ	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
530	(3-(3-((4-(1-(4-(2,3- Dimethylphenxoy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)- 4-fluorophenyl)ureido) methanesulfonic acid	HN HN SO ₃ H	650.3 7.57-7.33 (m, 4H), 7.31-7.21 (m, 2H), 7.16-7.04 (m, 2H), 6.99 (t, J = 8.0 Hz, 1H), 6.66 (d, J = 6.6 Hz, 2H), 5.38 (s, 2H), 4.34 (s, 2H), 3.72 (t, J = 6.3 Hz, 2H), 2.83 (t, J = 6.6 Hz, 2H), 2.36 (br. s., 3H), 2.12 (d, J = 4.9 Hz, 2H), 2.02-1.89 (m, 2H), 1.76 (br. s., 3H), 1.50-1.62 (m, 2H),	N/A 9.1 min, 98.8%
531	(3-(4-Chloro-3-((4-(1-(4-(2,3-dimethylphenoxy)) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido) methanesulfonic acid	HN SO ₃ H	666.2 7.53-7.21 (m, 7H), 7.12 (br. s., 1H), 6.97 (m, 1H), 6.65 (br. s., 2H), 5.42 (s, 2H), 4.34 (s, 2H), 3.77-3.89 (m, 2H), 3.65-3.75 (m, 2H), 2.75-2.93 (m, 2H), 2.32 (br. s., 3H), 2.05-2.20 (m, 2H), 1.85-2.00 (br. s., 2H), 1.78 (br. s., 3H), 1.46-1.63 (br. s., 2H)	N/A 9.4 min, 99.2%
532	(S)-4-Carboxy-4-(3-(3- ((4-(1-(4-(2,3-dimethyl- phenoxy)butanoyl)-1,2, 3,4-tetrahydroquinolin- 5-yl)-1H-pyrazol-1-yl) methyl)phenyl)ureido)- N,N,N-trimethylbutan-1- aminium	HN HN CO ₂ H	695.4 7.55 (br. s., 1H), 7.47 (br. s., 1H), 7.39-7.30 (m, 2H), 7.29-7.16 (m, 4H), 6.95 (t, J = 8.0 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.71-6.58 (m, 2H), 5.31 (s, 2H), 4.22 (t, J = 5.5 Hz, 1H), 3.84 (br. s., 2H), 3.72 (t, J = 6.6 Hz, 2H), 3.45-3.32 (m, 2H), 3.06 (s, 9H), 2.80 (t, J = 6.9 Hz, 2H), 2.46 (br. s., 3H), 2.18-2.07 (m, 2H), 2.01 (br. s., 3H), 1.95-1.60 (m, 8H)	7.3 min, 95.6% 9.2 min, 97.9%
533	(3-(3-((4-(1-(4-(3- Chloro-2-methylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl) methyl)phenyl)ureido) methanesulfonic acid	HN SO ₃ H	652.3 7.51 (br. s., 1H), 7.41 (s, 1H), 7.30-7.22 (m, 2H), 7.17-7.06 (m, 4H), 6.95 (t, J = 8.2 Hz, 1H), 6.77 (t, J = 7.7 Hz, 2H), 6.67 (d, J = 8.2 Hz, 1H), 5.20 (s, 2H), 4.22 (s, 2H), 3.80 (br. s., 2H), 3.63 (t, J = 6.9 Hz, 2H), 2.70 (t, J = 6.9 Hz, 2H), 2.40 (br. s., 3H), 2.11-1.95 (m, 2H), 1.87-1.59 (m, 4H)	N/A 8.5 min, 100%

		TABLE 19-continued		
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺ ¹ H NMR (500 MHz, MeOD) δ	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
534	(R)-2-(3-(3-((4-(1-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1,2,3,4-tetra-hydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido) pentanedioic acid	$\begin{array}{c} \text{HN} \\ \text{CO}_2\text{H} \\ \text{CO}_2\text{H} \\ \end{array}$	688.4 7.60 (br. s., 1H), 7.51 (s, 1H), 7.34 (s, 1H), 7.31-7.17 (m, 5H), 7.03 (t, J = 8.2 Hz, 1H), 6.87 (dd, J = 12.9, 8.0 Hz, 2H), 6.74 (d, J = 8.2 Hz, 1H), 5.32 (s, 2H), 4.38 (dd, J = 8.5, 5.2 Hz, 1H), 3.88 (br. s., 2H), 3.71 (t, J = 6.6 Hz, 2H), 2.78 (t, J = 6.9 Hz, 2H), 2.60-2.28 (m, 5H), 2.27-2.05 (m, 4H), 2.04-1.67 (m, 4H)	10.9 min, 98.1% 10.5 min, 97.6%
535	(R)-Dimethyl 2-(3-(3-(4-(1-(4-(3-chloro-2-methylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)phenyl) ureido)pentanedioate	HN CO ₂ Me CO ₂ Me CO ₂ Me	716.4 7.62 (br. s., 1H), 7.52 (s, 1H), 7.33 (s, 1H), 7.31-7.16 (m, 5H), 7.03 (t, J=7.7 Hz, 1H), 6.88 (dd, J=17.6, 7.7 Hz, 2H), 6.75 (d, J=8.2 Hz, 1H), 5.32 (s, 2H), 4.40 (dd, J=8.2, 5.5 Hz, 1H), 3.89 (br. s., 3H), 3.77-3.68 (m, 4H), 3.63 (s, 3H), 2.78 (t, J=6.9 Hz, 2H), 2.60-2.34 (m, 5H), 2.26-1.66 (m, 8H)	12.2 min, 99.5% 11.3 min, 99.6%

536 Ethyl 2-(3-(3-((4-(1-(4-(2,3-dimethylphenoxy))butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)acetate

624.5 7.58 (s, 1H), 7.39 (s, 1H), 7.34 (br. s., 1H), 7.28-7.14 (m, 4H), 7.10 (s, 1H), 7.02 (t, J = 7.8 Hz, 1H), 6.93 (d, J = 7.4 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 5.60 (t, J = 5.1 Hz, 1H), 5.29 (s, 2H), 4.22 (q, J = 7.2 Hz, 2H), 4.05 (d, J = 5.0 Hz, 2H), 3.96 (br. s., 2H), 3.80 (t, J = 6.7 Hz, 2H), 2.77 (t, J = 7.2 Hz, 2H), 2.62 (br. s., 2H), 2.19 (s, 5H), 1.95 (br. s., 3H), 1.91-1.82 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H)

12.3 min, 99.6% 11.5 min, 98.9%

		TABLE 19-continued		
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺ ¹ H NMR (500 MHz, MeOD) δ	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
537	Methyl 2-(3-(3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)acetate	HN CO ₂ Me	610.5 7.64 (s, 1H), 7.61-7.51 (m, 2H), 7.43 (s, 1H), 7.36-7.15 (m, 4H), 7.00 (t, J = 7.8 Hz, 1H), 6.92 (d, J = 7.3 Hz, 1H), 6.79-6.65 (m, 2H), 5.62 (br. s., 1H), 5.30 (s, 2H), 4.05-3.85 (m, 4H), 3.80-3.64 (m, 5H), 2.72 (t, J = 6.9 Hz, 2H), 2.61 (t, J = 6.2 Hz, 2H), 2.52 (br. s., 3H), 2.13-2.04 (m, 2H), 1.91 (br. s., 3H), 1.87-1.71 (m, 2H)	11.7 min, 99.8% 11.1 min, 99.8%
538	(S)-2-(3-(3-((4-(1-(4-(3- Chloro-2-methylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5- yl)-1H-pyrazol-1- yl)methyl)phenyl)ureido) pentanedioic acid	$\begin{array}{c} \text{HN} \\ \text{HN} \\ \text{CO}_2 \text{H} \\ \\ \text{CO}_2 \text{H} \\ \end{array}$	688.5 7.52 (br. s., 1H), 7.43 (s, 1H), 7.26 (s, 1H), 7.23-7.08 (m, 5H), 6.99-6.91 (m, 1H), 6.79 (dd, J = 12.9, 7.4 Hz, 2H), 6.67 (d, J = 8.2 Hz, 1H), 5.24 (s, 2H), 4.30 (dd, J = 8.5, 5.2 Hz, 1H), 3.81 (br. s., 2H), 3.64 (t, J = 6.6 Hz, 2H), 2.70 (t, J = 6.9 Hz, 2H), 2.51-2.24 (m, 5H), 2.19-1.96 (m, 4H), 1.95-1.81 (m, 2H)	10.8 min, 98.4% 10.4 min, 100%
539	Diethyl 2-(3-(3-((4-(1-(4-(3-chloro-2-methyl-phenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenyl) ureido)malonate	$\begin{array}{c} H \\ CO_2Et \\ O \end{array}$	507.3 7.60 (s, 1H), 7.38 (s, 1H), 7.33 (s, 1H), 7.31-7.15 (m, 5H), 7.06-6.95 (m, 3H), 6.91 (d, J = 7.7 Hz, 1H), 6.66 (d, J = 8.2 Hz, 1H), 5.32 (s, 2H), 5.14 (s, 1H), 4.35-4.19 (m, 4H), 3.97-3.90 (m, 2H), 3.77 (t, J = 6.9 Hz, 2H), 3.50 (s, 1H), 2.75 (t, J = 7.1 Hz, 2H), 2.55 (br. s., 3H), 2.18 (quin, J = 6.0 Hz, 2H), 2.01 (br. s., 3H), 1.90-1.76 (m, 2H), 1.29 (t, J = 7.1 Hz, 6H)	12.8 min, 98.8% 11.7 min, 96.2%

		TABLE 19-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H]*	$^{1}\text{H NMR (500 MHz, MeOD)}\delta$	HPLC- 1: Rt min, purity; HPLC- 2: Rt min, purity
540	Isopropyl 2-(3-(3-(4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido) acetate	HN HN O	638.6	7.60 (s, 1H), 7.53 (s, 1H), 7.44 (s, 1H), 7.39 (s, 1H), 7.30-7.11 (m, 4H), 7.00-6.93 (m, 1H), 6.88 (d, J = 7.1 Hz, 1H), 6.73-6.62 (m, 2H), 5.51 (br. s., 1H), 5.26 (s, 2H), 4.96 (dt, J = 12.5, 6.1 Hz, 1H), 3.87 (t, J = 5.8 Hz, 2H), 3.81 (s, 2H), 3.67 (t, J = 6.9 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 2.56 (br. s., 3H), 2.09 (br. s., 2H), 2.56 (br. s., 3H), 1.82-1.71 (m, 2H), 1.19 (d, J = 6.6 Hz, 6H)	11.2 min, 99.2% 10.2 min, 99.3%
541	1-(3-((4-(1-(4-(3-Chloro-2-methyl-phenoxy)butanoyl)-1,2,3,4-tetrahydro-quinolin-5-yl)-1H-pyrazol-1-yl)methyl) phenyl)-3-(2,3-dihydroxypropyl)urea	HO OH HN O	632.4	7.68-7.60 (m, 1H), 7.54 (s, 1H), 7.36 (s, 1H), 7.34-7.17 (m, 5H), 7.04 (t, J = 8.1 Hz, 1H), 6.89 (t, J = 8.0 Hz, 2H), 6.76 (d, J = 8.1 Hz, 1H), 5.33 (s, 2H), 3.91 (br. s., 2H), 3.79-3.68 (m, 2H), 3.54 (d, J = 5.3 Hz, 2H), 3.46-3.35 (m, 2H), 3.21 (dd, J = 13.9, 6.6 Hz, 1H), 2.79 (t, J = 6.8 Hz, 2H), 2.52 (br. s., 3H), 2.21-2.06 (m, 2H), 1.91 (br. s., 2H), 1.85-1.74 (m, 2H)	10.6 min, 96.6% 10.3 min, 94.0%
542	2-(3-Chloro-2-methyl-phenoxy)ethyl 5-(1-(2-chloro-5-(3-(2-ethoxy-2-oxoethyl) ureido)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinoline-1(2H)-carboxylate	HN CO ₂ Et	680.2	7.65 (s, 1H), 7.52 (d, J = 0.5 Hz, 1H), 7.47-7.35 (m, 2H), 7.29-7.18 (m, 2H), 7.10 (d, J = 2.3 Hz, 1H), 7.07-6.96 (m, 3H), 6.91 (d, J = 7.3 Hz, 1H), 5.42 (br. s., 1H), 5.31 (s, 2H), 4.41 (dd, J = 5.3, 3.8 Hz, 2H), 4.20-4.12 (m, 2H), 4.04 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 4.8 Hz, 2H), 3.67-3.53 (m, 2H), 2.68 (t, J = 6.4 Hz, 2H), 2.43 (br. s., 3H), 1.74 (quin, J = 6.4 Hz, 2H), 1.12 (t, J = 7.1 Hz, 3H)	14.3 min, 98.8% 12.8 min, 99.1%

					HPLC-
					1:
					Rt min,
					purity;
					HPLC-
Ex-			LCMS,		2:
am-			[M +		Rt min,
ple	Name	Formula I	H]+	$^{1}\text{H NMR}$ (500 MHz, MeOD) δ	purity
543	2-(3-(4-Chloro-3-((4-(1-((2-(3-chloro-2-methyl-phenoxy)ethoxy) carbonyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)phenyl) ureido)acetic acid	HN CO ₂ H	652.1	7.99 (br. s., 1H), 7.66 (br. s., 1H), 7.51-7.25 (m, 3H), 7.22-6.89 (m, 6H), 5.38 (br. s., 2H), 4.46 (br. s., 2H), 4.24 (br. s., 2H), 3.71-3.60 (m, 2H), 3.16-3.08 (m, 2H), 2.80-2.71 (m, 2H), 2.20 (br. s., 3H), 1.84-1.71 (m, 2H)	13.0 min, 96.4% 11.9 min, 99.5%

544 3-(Dimethylamino)propyl 2-(3-(3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl) methyl)phenyl) ureido)acetate

681.3 7.86 (s, 1H), 7.60 (s, 1H), 7.52 (s, 1H), 7.44 (s, 1H), 7.34-7.10 (m, 4H), 6.97 (t, J = 8.0 Hz, 1H), 6.87 (d, J = 7.7 Hz, 1H), 6.68 (t, J = 8.0 Hz, 2H), 5.95 (t, J = 5.5 Hz, 1H), 5.26 (s, 2H), 4.11 (t, J = 6.6 Hz, 2H), 3.95-3.80 (m, 4H), 3.68 (t, J = 6.6 Hz, 2H), 2.57 (t, J = 6.0 Hz, 2H), 2.32 (t, J = 7.1 Hz, 2H), 2.32 (t, J = 7.1 Hz, 2H), 2.15 (s, 6H), 2.13-2.00 (m, 4H), 1.86 (br. s., 3H), 1.81-1.70 (m, 2H)

552

7.9 min, 96.1% 9.7 min, 93.2%

Injection 2 conditions: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7- μ m particles; Mobile Phase A: 5:95 acetonitrile:water with 0.05% TFA; Mobile Phase B: 95:5 acetonitrile:water with 0.05% TFA; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.11 mL/min.

** ^{1}H NMR (500 MHz, DMSO-d_6) $\delta.$

^{*}Injection 1 conditions: Column: Waters Acquity UPLC BEH C18, 2.1 × 50 mm, 1.7-µm particles; Mobile Phase A: 5.95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.11 mL/min.

The compounds exemplified in Table 20 were prepared in a manner analogous to Example 126.

	TABLE 20					
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity	
545	(S)-4-Carboxy-4-(3-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)-N,N,-trimethylbutan-1-aminium, TFA salt	N-N S CI	718.5		7.3 min, 100% 8.6 min, 100%	

546 2-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5yl)-1H-imidazol-1-yl)methyl) benzamido)ethanesulfonic acid

9.19 (d, J = 1.1 Hz, 1H),7.95- 7.7 min, 7.82 (m, 2H), 7.67 (d, J = 7.7 97.9% Hz, 1H), 7.62-7.41 (m, 3H), 7.40-7.27 (m, 2H), 6.94 (t, J = 7.8 Hz, 1H), 6.65 (dd, J = 16.5, 7.7 Hz, 2H), 5.54 (s, 2H), 3.91 (br. s., 2H), 3.79 (dt, J = 3.91 (br. s., 2H), 3.79 (dr., 3 = 10.2, 6.5 Hz, 4H), 3.12-3.01 (m, 2H), 2.79 (t, J = 7.2 Hz, 2H), 2.58 (br. s., 2H), 2.21-2.02 (m, 5H), 1.96-1.76 (m, 5H)

631.1

8.0 min, 100%

547 2-(3-((4-(1-(4-((2,3-Dimethylphenyl)(methyl) amino)butanoyl)-1,2,3,4tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid, TFA salt

7.90 (s, 1H), 7.76 (dt, J = 7.6, 6.3 min, 1.4 Hz, 1H), 7.73 (s, 1H), 7.64 (s, 1H), 7.54-7.43 (m, 4H), (8, 1H), 7.34-7.43 (III, 4H), 7.38-7.32 (m, 2H), 7.26 (br. s., 1H), 7.24-7.16 (m, 2H), 5.45 (s, 2H), 3.82-3.74 (m, 4H), 3.09-3.01 (m, 2H), 2.75 4H), 3.09-3.01 (m, 2H), 2.75 (t, J = 6.3 Hz, 3H), 2.70-2.57 (m, 2H), 2.39 (s, 3H), 2.36 (s, 3H), 1.90 (s, 3H), 1.83 (br. s., 2H)

99.8% 6.9 min, 100%

		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
548	2-(3-((4-(1-(4-(2,3- Dimethylphenylamino) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid, TFA salt	N-N SO ₃ H	630.2	7.90 (s, 1H), 7.78-7.74 (m, 1H), 7.72 (s, 1H), 7.64 (s, 1H) 7.53-7.44 (m, 2H), 7.34-7.29 (m, 1H), 7.28-7.18 (m, 5H), 5.45 (s, 2H), 3.81-3.74 (m, 5H), 3.43-3.35 (m, 3H), 3.05 (t, J = 6.6 Hz, 2H), 2.83-2.64 (m, 5H), 2.35 (s, 3H), 2.32 (s, 3H), 2.04 (d, J = 7.7 Hz, 2H), 1.96-1.84 (m, 2H)	7.0 min, 100%
549	2-(3-((4-(1-(4-((2,3- Dimethylphenyl))(methyl) amino)butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) benzamido)acetic acid, TFA salt	N—N CO ₂ H	594.2	7.82 (d, J = 7.2 Hz, 1H), 7.68 (s, 1H), 7.64 (s, 1H), 7.57 (s, 1H), 7.49-7.41 (m, 2H), 7.33-7.27 (m, 3H), 7.23-7.15 (m, 2H), 7.11 (br. s., 1H), 5.42 (s, 2H), 4.22-4.13 (m, 2H), 3.87-3.55 (m, 6H), 3.19 (s, 3H), 2.68 (t, J = 6.2 Hz, 2H), 2.58 (br. s., 2H), 2.47-2.38 (m, 3H), 2.34 (s, 3H), 1.96-1.78 (m, 4H)	99.1% 7.9 min, 99.2%
550	2-(3-((4-(1-(4-(2,3- Dimethylphenylamino) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) benzamido)acetic acid, TFA salt	$N-N$ CO_2H	580.2	7.82 (d, J = 12 Hz, 1H), 7.65 (d, J = 3.0 Hz, 2H), 7.59 (s, 1H), 7.52-7.42 (m, 2H), 7.32 (d, J = 7.7 Hz, 1H), 7.24-7.13 (m, 4H), 7.08 (br. s., 1H), 7.05 (s, 1H), 5.42 (s, 2H), 4.18 (d, J = 5.0 Hz, 2H), 3.82 (br. s., 3H), 343 (br. s. 4H), 2.81 (br	5

J = 5.0 Hz, 2H), 3.82 (br. s., 3H), 3.43 (br. s., 4H), 2.81 (br. s., 2H), 2.72 (t, J = 6.5 Hz, 2H), 2.34 (s, 3H), 2.32 (s, 3H), 2.10 (br. s., 1H), 1.97-1.83 (m, 2H)

	TABLE 20-continued						
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity		
551	2-(3-((4-(3-(4-(2,3- Dimethylphenoxy)-N- methylbutanamido)phenyl)- 1H-pyrazol-1-yl)methyl) benzamido)acetic acid	N-N CO ₂ H	555.3	7.85 (d, J = 1.1 Hz, 1H), 7.79 (s, 1H), 7.74 (br. s., 1H), 7.56 (s, 1H), 7.48-7.34 (m, 5H), 7.09 (br. s., 1H), 7.06-7.01 (m, 1H), 6.98 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.4 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 5.38 (s, 2H), 4.21 (d, J = 5.2 Hz, 2H), 3.87 (t, J = 5.5 Hz, 2H), 3.29 (s, 3H), 2.37 (t, J = 7.0 Hz, 2H), 2.17 (s, 3H), 2.13-2.04 (m, 2H), 1.89 (s, 3H)	9.6 min, 99.3% 9.2 min, 99.4%		
552	3-(3-((4-(3-(4-(2,3- Dimethylphenoxy)-N- methylbutanamido)phenyl)- 1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	N-N NH CO ₂ H	569.3	7.82-7.75 (m, 2H), 7.69 (s, 1H), 7.51 (s, 1H), 7.45 (d, J = 5.0 Hz, 3H), 7.41-7.36 (m, 1H), 7.24-7.20 (m, 1H), 7.15 (br. s., 1H), 7.06-7.01 (m, 1H), 6.98 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.4 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 5.35 (s, 2H), 3.86 (t, J = 5.5 Hz, 2H), 3.75-3.68 (m, 2H), 3.28 (s, 3H), 2.68 (t, J = 7.0 Hz, 2H), 2.38 (t, J = 7.0 Hz, 2H), 2.17 (s, 3H), 2.08 (quin, J = 6.3 Hz 2H), 1.87 (s, 3H)	9.2 min, 98.3%		
555	(3-((4-((1aR,7bS)-3-(2-((2,3-Dimethylphenoxy)methyl) cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)methanesulfonic acid	N-N $N+N$	641.0	8.14 (br. s., 1H), 7.94 (br. s., 1H), 7.91-7.83 (m, 2H), 7.52-7.45 (m, 2H), 7.31-7.16 (m, 3H), 6.88 (t, J = 7.4 Hz, 1H), 6.66 (d, J = 7.7 Hz, 1H), 6.57 (d, J = 8.2 Hz, 1H), 5.54 (s, 2H), 4.53 (s, 2H), 4.10 (dd, J = 10.4, 4.9 Hz, 1H), 3.55-3.47	8.9 min, 99.1%		

2HJ, 4.53 (s, 2HJ, 4.10 (dd, J = 10.4, 4.9 Hz, 1HJ, 3.55-3.47 (m, 1HJ, 2.23-2.12 (m, 4HJ, 2.06 (dd, J = 8.2, 4.4 Hz, 1HJ, 1.94 (br. s., 3H), 1.84 (d, J = 5.5 Hz, 1HJ, 1.29 (dt, J = 8.2, 4.1 Hz, 1HJ, 1.12-1.03 (m, 2HJ, 0.68 (d, J = 4.4 Hz, 1H)

	559			560	
		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
556	2-(3-((4-((1aR,7bS)-3-(2-((2,3- Dimethylphenoxy)methyl) cyclopropanecarbonyl)- 1a,2,3,7b-tetrahydro-1H- cyclopropa[c]quinolin-7-yl)- 1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	N-N SO ₃ H	655.1	8.18 (br. s., 1H), 7.98 (s, 1H), 7.80 (br. s.,2H), 7.49 (d, J = 3.3 Hz, 2H), 7.37-7.17 (m, 3H), 6.87 (d, J = 7.1 Hz, 1H), 6.72-6.51 (m, 2H), 5.56 (s, 2H), 4.10 (dd, J = 10.4, 4.4 Hz, 1H), 3.79 (br. s., 2H), 3.50 (br. s., 1H), 3.08 (br. s., 2H), 2.28-1.78 (m, 9H), 1.29 (br. s., 1H), 1.08 (br. s.,2H), 0.69 (br. s., 1H)	95.7% 8.9 min, 98.7%
557	(3-((4-((1aR,7bS)-3-(2-((3-Chloro-2-methyl)phenoxy) methyl) cyclopropanecarbonyl)- 1a,2,3,7b-tetrahydro-1H- cyclopropa[c]quinolin-7-yl)- 1H-pyrazol-1-yl)methyl) benzamido)methanesulfonic acid	N-N SO ₃ H	661.0	8.06 (s, 1H), 7.91-7.80 (m, 3H), 7.54-7.44 (m, 2H), 7.31-7.15 (m, 3H), 7.02-6.94 (m, 1H), 6.86 (d, J = 1.1 Hz, 1H), 6.70 (d, J = 1.1 Hz, 1H), 5.58-5.46 (m, 2H), 4.58-4.47 (m, 2H), 4.21-4.12 (m, 1H), 3.60-3.47 (m, 1H), 2.20 (br. s., 1H), 2.12-1.89 (m, 4H), 1.81 (d, J = 5.5 Hz, 1H), 1.36-1.23 (m, 1H), 1.13-0.98 (m, 2H), 0.59 (d, J = 4.4Hz, 1H)	9.9 min, 90.8% 9.1 min, 86.4%

8.19 (s, 1H), 8.00 (s, 1H), 7.80 11.6 min, (br. s., 2H), 7.54-7.46 (m, 98.5% 2H), 7.35-7.17 (m, 3H), 7.03-9.0 min, 6.93 (m, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 5.64-5.50 (m, 2H), 4.18 (dd, J = 10.7, 5.2 Hz, 1H), 3.80 (br. s., 2H), 3.54 (br. s., 1H), 3.18-2.99 (m, 2H), 2.74 (br. s., 1H), 2.13-1.90 (m, 4H), 1.84 (d, J = 6.0 Hz, 1H), 1.30 (d, J = 8.8, 4.4 Hz, 1H), 1.14-1.01 (m, 2H), 0.61 (d, J = 4.4 Hz, 1H)

675.0

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
559	2-(3-((4-(4-(2,3- Dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1- yl)methyl)benzamido) ethanesulfonic acid	SO ₃ H	649.3	7.83-7.74 (m, 3H), 7.67 (s, 1H), 7.49-7.39 (m, 2H), 7.31-7.27 (m, 1H), 7.21-7.14 (m, 2H), 6.92 (t, J = 7.9 Hz, 1H), 6.64 (t, J = 7.4 Hz, 2H), 5.43 (s, 2H), 3.89 (t, J = 5.8 Hz, 4H), 3.82 (t, J = 6.5 Hz, 2H), 3.14 (t, J = 6.2 Hz, 2H), 3.08 (t, J = 6.4 Hz, 2H), 2.68 (t, J = 7.1 Hz, 2H), 2.11 (s, 3H), 2.07 (t, J = 6.1 Hz, 2H), 1.87 (s, 3H)	
560	2-(4-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)methyl)- 3,5-difluorobenzamido) ethanesulfonic acid	N-N F O SO ₃ H	667.3	8.57 (s, 1H), 7.90 (s, 1H), 7.55 (s, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.25 (br. s., 1H), 7.20-7.14 (m, 2H), 6.97 (t, J = 7.9 Hz, 1H), 6.71 (dd, J = 7.8, 3.9 Hz, 2H), 5.46 (s, 2H), 3.92 (t, J = 6.0 Hz, 2H), 3.57 (t, J = 6.1 Hz, 2H), 3.57-3.50 (m, 2H), 2.69-2.59 (m, 7H), 2.13 (s, 3H), 2.01 (quin, J = 6.7 Hz, 2H), 1.91 (s, 3H), 1.84-1.75 (m, 2H)	98.4% 8.0 min, 98.1%
561	3-(4-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)methyl)- 3,5-difluorobenzamido) propanoic acid	N-N HN CO ₂ H	631.3	7.62 (s, 1H), 7.52-7.47 (m, 2H), 7.45 (s, 1H), 7.23-7.15 (m, 3H), 6.95 (t, J = 7.8 Hz, 1H), 6.66 (dd, J = 16.5, 7.9 Hz, 2H), 5.49 (s, 2H), 3.90 (t, J = 5.8 Hz, 2H), 3.74 (t, J = 6.6 Hz, 2H), 2.77 (t, J = 6.9 Hz, 2H), 2.63 (t, J = 6.8 Hz, 2H), 2.63 (t, J = 6.8 Hz, 2H), 2.52 (t, J = 6.7 Hz, 2H), 2.14-2.07 (m, 5H), 1.86-1.78 (m, 5H)	
562	3-(3-((4-(4-(4-(2,3- Dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)propanoic acid	N-N CO ₂ H	613.2	7.77-7.71 (m, 2H), 7.66- 7.60 (m, 2H), 7.43 (t, J = 7.7 Hz, 1H), 7.38-7.34 (m, 1H), 7.24 (d, J = 7.4 Hz, 1H), 7.18- 7.06 (m, 2H), 6.94 (t, J = 7.9 Hz, 1H), 6.66 (d, J = 7.9 Hz, 1H), 5.37 (s, 2H), 4.30 (br. s., 2H), 3.87 (br. s., 2H), 3.65-3.58 (m, 2H), 3.19-3.08 (m, 2H), 2.68 (t, J = 6.9 Hz, 2H), 2.65- 2.58 (m, 2H), 2.17-2.03 (m, 5H), 1.84 (br. s., 3H)	100%*

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
563	(3-((4-(4-(2,3- Dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido) methanesulfonic acid	N-N N-SO ₃ H	635.2	8.17 (br. s., 1H), 8.06 (d, J = 0.6 Hz, 1H), 7.88 (s, 1H), 7.89 (d, J = 1.5 Hz, 1H), 7.69 (d, J = 0.6 Hz, 1H), 7.46-7.37 (m 2H), 7.30-7.26 (m, 1H), 7.24-7.21 (m, 1H), 6.97 (t, J = 7.8 Hz, 1H), 6.70 (d, J = 7.8 Hz, 2H), 5.42 (s, 2H), 4.11 (d, J = 6.1 Hz, 2H), 3.90 (t, J = 6.2 Hz, 4H), 3.13 (t, J = 6.0 Hz, 2H), 2.58 (t, J = 12 Hz, 3H), 2.15 (s, 3H), 1.97 (quin, J = 6.7 Hz, 2H), 1.93 (s, 3H)	99.6% 7.8 min,
564	2-(3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	N-N SO ₃ H	669.1	7.83-7.72 (m, 3H), 7.65 (s, 1H), 7.48-7.36 (m, 2H), 7.30-7.23 (m, 1H), 7.15 (d, J = 5.0 Hz, 2H), 7.03-6.95 (m, 1H), 6.83 (d, J = 7.8 Hz, 1H), 5.41 (s, 2H), 3.91 (t, J = 6.0 Hz, 2H), 3.80 (t, J = 6.5 Hz, 2H), 3.12 (t, J = 6.1 Hz, 2H), 3.06 (t, J = 6.4 Hz, 2H), 2.67 (t, J = 6.9 Hz, 2H), 2.06 (quin, J = 6.4 Hz, 2H), 1.97 (s, 3H)	11.4 min, 99.7% 8.0 min, 99.6%
565	(3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido) methanesulfonic acid	SO ₃ H	655.2	7.97-7.82 (m, 3H), 7.76 (s, 1H), 7.53-7.41 (m, 2H), 7.30 (d, J = 4.8 Hz, 1H), 7.24-7.15 (m, 2H), 7.06-6.98 (m, 1H), 6.84 (d, J = 1.9 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 5.48 (s, 2H), 4.53 (s, 2H), 3.90 (br. s., 4H), 3.13 (br. s., 2H), 2.79-2.64 (m, 2H), 2.15-2.05 (m, 2H), 1.92 (br. s., 3H)	11.5 min, 98.3% 8.0 min, 98.2%
566	2-(3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)acetic acid	$\begin{array}{c} O \\ N \\ N \\ N \end{array} \begin{array}{c} O \\ N \\ N \end{array} \begin{array}{c} O \\ CO_2H \end{array}$	619.2	7.84-7.77 (m, 3H), 7.66 (d, J= 0.6 Hz, 1H), 7.50-7.43 (m, 2H), 7.31-7.26 (m, 1H), 7.20-7.15 (m, 2H), 7.00 (t, J= 8.0 Hz, 1H), 6.85 (d, J= 8.0 Hz, 1H), 6.74 (d, J= 8.0 Hz, 1H), 5.43 (s, 2H), 4.12-4.08 (m, 2H), 3.93 (t, J= 5.8 Hz, 4H), 3.12 (t, J= 6.2 Hz, 2H), 2.69 (t, J= 7.1 Hz, 2H), 2.13-2.04 (m, 2H), 1.99 (s, 3H)	9.9 min, 97.7% 9.5 min, 97.7%

		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M+H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
567	2-(3-((4-(4-(2,3- Dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)acetic acid	N-N H CO ₂ H	599.2	7.84-7.78 (m, 2H), 7.75 (s, 1H), 7.64 (s, 1H), 7.50-7.42 (m, 2H), 7.30-7.26 (m, 1H), 7.20-7.14 (m, 2H), 6.65 (t, J = 8.6 Hz, 2H), 5.42 (s, 2H), 4.10 (s, 2H), 4.04-3.85 (m, 4H), 3.13 (t, J = 6.2 Hz, 2H), 2.68 (t, J = 7.1 Hz, 2H), 2.11 (s, 3H), 2.07 (quin, J = 6.5 Hz, 2H), 1.87 (s, 3H)	9.7 min, 95.9% 9.3 min, 95.9%
568	3-(3-((4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)propanoic acid	$N-N$ H CO_2H N CO_2H N	633.1	7.82-7.72 (m,3H), 7.66 (d, J = 0.8 Hz, 1H), 7.49-7.39 (m, 2H), 7.31-7.26 (m, 1H), 7.21-7.14 (m, 2H), 7.05-6.97 (m, 1H), 6.85 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.42 (s, 2H), 3.93 (t, J = 5.8 Hz, 4H), 3.64 (t, J = 6.8 Hz, 2H), 3.13 (t, J = 6.2 Hz, 2H), 2.63 (t, J = 6.9 Hz, 2H), 2.08 (quin, J = 6.4 Hz, 2H), 1.98 (s, 3H)	99%*
569	(3-((4-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,1-dioxido-3,4-dihydro-2H- benzo[b][1,4]thiazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)methanesulfonic acid	N-N SO ₃ H	667.2	8.46 (t, J = 6.1 Hz, 1H), 8.11 (s, 1H), 7.86-7.81 (m, 2H), 7.68 (s, 1H), 7.61-7.55 (m, 1H), 7.55-7.51 (m, 1H), 7.45-7.41 (m, 1H), 7.40-7.34 (m, 2H), 7.00 (t, J = 7.9 Hz, 1H), 6.76-6.70 (m, 2H), 5.45 (s, 2H), 4.28 (br. s., 2H), 4.11 (d, J = 6.4 Hz, 2H), 3.94 (t, J = 6.2 Hz, 2H), 3.73 (t, J = 6.1 Hz, 2H), 2.68 (t, J = 7.2 Hz, 2H), 2.17 (s, 3H), 2.07-1.99 (m, 2H), 1.97 (s, 3H)	10.1 min, 100% 7.6 min, 100%
570	2-(3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	N N N N N N N N N N	653.2	8.34 (br. s., 1H), 8.12 (s, 1H), 7.83 (d, J = 0.6 Hz, 1H), 7.68 (s, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.41-7.27 (m, 4H), 7.08-7.02 (m, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.85-6.76 (m, 2H), 5.32 (s, 2H), 4.27 (t, J = 4.7 Hz, 2H), 3.97-3.94 (m, 2H), 3.86-3.80 (m, 2H), 3.50-3.43 (m, 2H), 2.70 (t, J = 7.2 Hz, 2H), 2.59 (t, J = 6.9 Hz, 2H), 2.06 (s, 3H), 1.98 (quin, J = 6.7 Hz, 2H)	12.0 min, 99.7% 8.2 min, 98.9%

		11 11 12 20 COMMING			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
571	(3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido) methanesulfonic acid	N-N SO ₃ H	639.2	8.15-8.08 (m, 2H), 7.83 (s, 1H), 7.77 (s, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.41-7.28 (m, 4H), 7.08-7.02 (m, 1H), 6.88 (d, J = 7.5 Hz, 1H), 6.86-6.76 (m, 2H), 5.22 (s, 2H), 4.27 (t, J = 4.7 Hz, 2H), 4.03 (d, J = 6.4 Hz, 2H), 3.96 (t, J = 6.4 Hz, 2H), 3.85-3.81 (m, 2H), 2.70 (t, J = 7.2 Hz, 2H), 2.06 (s, 3H), 2.02-1.95 (m, 2H)	12.1 min, 99.7% 8.2 min, 100%
572	3-(3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)propanoic acid	N-N N N N N N N N N N	617.2	8.28 (br. s., 1H), 8.12 (s, 1H), 7.83 (s, 1H), 7.72-7.64 (m, 2H), 7.41-7.27 (m, 4H), 7.08-7.02 (m, 1H), 6.88 (d, J = 1.5 Hz, 1H), 6.85-6.76 (m, 2H), 5.32 (s, 2H), 4.26 (t, J = 4.9 Hz, 2H), 3.96 (t, J = 6.2 Hz, 2H), 3.85-3.81 (m, 2H), 3.65 (br. s., 2H), 3.41-3.36 (m, 2H), 2.71 (t, J = 7.1 Hz, 2H), 2.05 (s, 3H), 1.98 (quin, J = 6.7 Hz, 2H)	10.2 min, 98.7% 9.6 min, 98.7%
573	2-(3-Chloro-4-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O Cl O Cl O	705.2	8.53 (t, J = 4.0 Hz, 1H), 8.06 (s, 1H), 7.76 (s, 1H), 7.67 (s, 1H), 7.53 (dd, J = 10.0, 1.4 Hz, 1H), 7.35 (dr. s., 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.08-7.02 (m, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.78 (t, J = 8.0 Hz, 1H), 6.78 (t, J = 8.0 Hz, 1H), 3.96 (t, J = 4.9 Hz, 2H), 3.96 (t, J = 6.2 Hz, 2H), 3.83 (t, J = 4.9 Hz, 2H), 3.49-3.42 (m, 2H), 2.70 (t, J = 7.2 Hz, 2H), 2.60 (t, J = 6.9 Hz, 2H), 2.05 (s, 3H), 1.98 (quin, J = 6.8 Hz, 2H)	8.7 min, 99.7%
574	2-(3-Chloro-4-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O SO ₃ H	721.1	8.53 (t, J = 5.1 Hz, 1H), 7.91 (s, 1H), 7.68 (s, 1H), 7.59-7.52 (m, 2H), 7.20-7.12 (m, 2H), 7.10-6.98 (m, 2H), 6.87 (d, J = 7.8 Hz, 1H), 5.45 (s, 2H), 3.88 (t, J = 6.1 Hz, 2H), 3.78 (br. s., 2H), 3.49-3.41 (m, 2H), 3.05 (t, J = 6.1 Hz, 2H), 2.60 (t, J = 6.9 Hz, 2H), 1.96 (s, 3H), 1.91 (quin, J = 6.6 Hz, 2H)	15.1 min, 99.6% 8.6 min, 99.5%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
575	3-(3-Chloro-4-((4-(4-(2,3-dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) propanoic acid	N-N F O	665.3	7.78 (s, 1H), 7.75 (s, 1H), 7.62-7.57 (m, 2H), 7.25 (dd, J= 6.2, 2.6 Hz, 1H), 7.19-7.13 (m, 2H), 6.92 (t, J= 7.9 Hz, 1H), 6.64 (dd, J= 11.7, 7.8 Hz, 2H), 5.57 (d, J= 1.4 Hz, 2H), 4.06-3.86 (m, 4H), 3.63 (t, J= 6.8 Hz, 2H), 3.12 (t, J= 6.2 Hz, 2H), 2.73-2.60 (m, 4H), 2.12 (s, 3H), 2.06 (quin, J= 6.5 Hz, 2H), 1.87 (s, 3H)	94.1%
576	2-(3-Chloro-4-((4-(4-(2,3-dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) acetic acid	V V V V V V V V V V	651.2	7.83 (s, 1H), 7.75 (s, 1H), 7.65 (dd, J = 9.7, 1.7 Hz, 1H), 7.59 (d, J = 0.6 Hz, 1H), 7.28-7.23 (m, 1H), 7.19-7.14 (m, 2H), 6.92 (t, J = 7.8 Hz, 1H), 6.65 (dd, J = 12.2, 8.0 Hz, 2H), 5.58 (dd, J = 14. Hz, 2H), 4.13-4.08 (m, 2H), 4.02-3.86 (m, 4H), 3.12 (t, J = 6.2 Hz, 2H), 2.68 (t, J = 7.1 Hz, 2H), 2.12 (s, 3H), 2.06 (quin, J = 6.5 Hz 2H), 1.87 (s, 3H)	97.8% 9.9 min, 97.9%
577	3-(3-Chloro-4-((4-(4-(4-(3-chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	N-N F O CI N N F O O O O	685.2	7.77 (d, J = 6.7 Hz, 2H), 7.63-7.58 (m, 2H), 7.28-7.23 (m, 1H), 7.19-7.14 (m, 2H), 7.03-6.97 (m, 1H), 6.86 (d, J = 1.5 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 5.58 (d, J = 1.4 Hz, 2H), 3.93 (t, J = 5.8 Hz, 4H), 3.63 (t, J = 6.9 Hz, 2H), 3.12 (t, J = 6.2 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 2.66-2.61 (m, 2H), 2.08 (quin, J = 6.5 Hz, 2H), 1.98 (s, 3H)	
578	(3-Chloro-4-((4-(4-(2,3-dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) methanesulfonic acid	SO ₃ H	687.1	7.87 (s, 1H), 7.68 (dd, J = 9.4, 1.5 Hz, 1H), 7.63 (s, 1H), 7.59 (s, 1H), 7.21 (d, J = 7.4 Hz, 1H), 7.15-7.05 (m, 2H), 6.95 (t, J = 7.9 Hz, 1H), 6.61 (d, J = 7.4 Hz, 1H), 6.61 (d, J = 7.4 Hz, 1H), 5.54 (s, 2H), 4.50 (s, 2H), 4.28 (br. s., 2H), 3.87 (br s., 2H), 3.19-3.08 (m, 2H), 2.67 (t, J = 6.9 Hz, 2H), 2.16-2.04 (m, 5H), 1.85 (br. s., 3H)	÷

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
579	2-(3-Chloro-4-((4-(4-(4-(2,3-dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O SO ₃ H	701.3	8.53 (br. s., 1H), 7.92 (s, 1H), 7.68 (s, 1H), 7.59-7.52 (m, 2H), 7.19-7.13 (m, 2H), 7.09-7.03 (m, 1H), 6.88 (t, J = 7.8 Hz, 1H), 6.62 (d, J = 7.8 Hz, 2H), 5.45 (s, 2H), 3.82 (t, J = 6.1 Hz, 4H), 3.49-3.43 (m, 2H), 3.05 (t, J = 6.1 Hz, 2H), 2.50 (t, J = 7.1 Hz, 2H), 2.50 (t, J = 7.1 Hz, 2H), 2.06 (s, 3H), 1.89 (quin, J = 6.7 Hz, 2H), 1.84 (s, 3H)	12.4 in, 97.1% 8.4 min, 96.2%
580	2-(3-Chloro-4-((4-((1aR,7bS)- 3-(4-(2,3-dimethylphenoxy) butanoyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)-5- fluorobenzamido)-N,N,N- trimethylethanaminium, TFA salt	N-N HN N+-	672.3	7.80 (s, 2H), 7.63 (dd, J = 9.7, 1.7 Hz, 1H), 7.59 (s, 1H), 7.24 7.19 (m, 1H), 7.14 (t, J = 7.8 Hz, 1H), 6.94 (t, J = 7.8 Hz, 1H), 6.94 (t, J = 7.8 Hz, 1H), 6.66 (dd, J = 13.3, 7.8 Hz, 2H), 5.61 (d, J = 1.4 Hz, 2H), 4.72 (br. s., 1H), 3.99-3.92 (m, 1H), 3.92-3.79 (m, 4H), 3.58 (t, J = 6.8 Hz, 2H), 3.23 (s, 9H), 2.77-2.66 (m, 2H), 2.19-2.05 (m, 5H), 2.01 (br. s., 1H), 1.85 (br. s., 3H), 1.76-1.67 (m, 1H), 0.91-0.83 (m, 1H), 0.49 (br. s., 1H)	- 99.3% 9.4 min, 98.8%
581	2-(3-Chloro-4-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thaizin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)acetic acid	$N-N$ F CO_2H N S C C O	671.2	7.83 (s, 1H), 7.77 (s, 1H), 7.65 (dd, J = 9.8, 1.5 Hz, 1H), 7.61 (s, 1H), 7.28-7.23 (m, 1H), 7.19-7.15 (m, 2H), 7.01 (t, J = 8.0 Hz, 1H), 6.89-6.84 (m, 1H), 6.74 (d, J = 8.3 Hz, 1H), 5.59 (d, J = 1.4 Hz, 2H), 4.10 (s, 2H), 3.93 (t, J = 5.8 Hz, 4H), 3.12 (t, J = 6.2 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 2.13-2.04 (m, 2H), 1.98 (s, 3H)	97.8% 10.1 min, 97.6%
582	2-(3-Chloro-4-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)-N,N,N-trimethylethanaminium, TFA salt	N-N F CI	698.3	7.81 (s, 2H), 7.65-7.59 (m, 2H), 7.26 (dd, J = 6.0, 3.2 Hz, 1H), 7.26 (dd, J = 6.0, 3.2 Hz, 1H), 7.20-7.14 (m, 2H), 7.04-6.98 (m, 1H), 6.86 (d, J = 1.5 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.59 (d, J = 1.4 Hz, 2H), 3.93 (t, J = 5.8 Hz, 3H), 3.85 (t, J = 6.8 Hz, 2H), 3.23 (s, 9H), 3.12 (t, J = 6.2 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 2.12-2.04 (m, 2H), 1.97 (s, 3H)	9.4 min, 98.2%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
583	(S)-2-Amino-5-(3-chloro-4- ((4-(4-(4-(3-chloro-2- methylphenoxy)butanoyl)-3,4- dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) pentanoic acid	H_2N CO_2H $N-N$ F O	728.4	8.78 (br. s., 1H), 8.01 (s, 1H), 7.85 (s, 1H), 7.71 (dd, J = 10.0, 1.4 Hz, 1H), 7.65 (d, J = 0.8 Hz, 1H), 7.26-7.22 (m, 2H), 7.19-7.08 (m, 2H), 6.95 (d, J = 7.8 Hz, 1H), 5.54 (s, 2H), 3.97 (t, J = 6.2 Hz, 2H), 3.87 (br. s., 2H), 3.59 (br. s., 1H), 3.35-3.28 (m, 2H), 3.13-3.10 (m, 2H), 2.59 (t, J = 7.1 Hz, 2H), 2.04 (s, 3H), 1.99 (quin, J = 6.1 Hz, 2H), 1.87-1.59 (m, 4H)	99.9%
584	(3-Chloro-4-((4-(4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) methanesulfonic acid	N-N SO ₃ H SO ₃ H	707.3	7.87 (s, 1H), 7.71-7.65 (m, 2H), 7.60 (s, 1H), 7.22 (d, J = 7.4 Hz, 1H), 7.13 (t, J = 7.9 Hz, 1H), 7.10-7.04 (m, 1H), 7.02-6.95 (m, 1H), 6.86 (d, J = 7.9 Hz, 1H), 5.54 (s, 2H), 4.50 (s, 2H), 4.29 (s, 2H), 3.89 (br. s., 2H), 3.11 (br. s., 2H), 2.71-2.62 (m, 2H), 2.14-2.05 (m, 2H), 1.99-1.91 (m, 3H)	=
585	2-(4-((4-(4-(2,3- Dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-3,5- difluorobenzamido) ethanesulfonic acid	N-N F O HN SO ₃ H	685.3	8.62-8.55 (m, 1H), 8.00 (s, 1H), 7.65 (d, J = 0.8 Hz, 1H), 7.55-7.48 (m, 2H), 7.29-7.20 (m, 2H), 7.18-7.10 (m, 1H), 6.96 (t, J = 7.8 Hz, 1H), 6.70 (d, J = 7.8 Hz, 2H), 5.47 (s, 2H), 3.97-3.82 (m, 4H), 3.56 (br. s., 2H), 3.13 (t, J = 6.1 Hz, 2H), 2.68 (t, J = 7.1 Hz, 2H), 2.58 (t, J = 7.1 Hz, 2H), 2.14 (s, 3H), 2.03-1.95 (m, 2H), 1.92 (s, 3H)	11.9 min, 99.9% 8.3 min, 99.8%
586	2-(4-((4-(4-(2,3- Dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-3-fluorobenzamido) ethanesulfonic acid	N-N HN SO ₃ H	667.3	8.41 (br. s., 1H), 7.96 (s, 1H), 7.61 (s, 1H), 7.54-7.48 (m, 2H), 7.27-7.14 (m, 3H), 7.10-7.04 (m, 1H), 6.88 (t, J = 7.9 Hz, 1H), 6.62 (d, J = 8.0 Hz, 2H), 5.40 (s, 2H), 3.82 (t, J =	98.1%

Hz, 1H), 6.62 (d, J = 8.0 Hz, 2H), 5.40 (s, 2H), 3.82 (t, J = 6.2 Hz, 4H), 3.49-3.43 (m, 2H), 3.05 (t, J = 6.0 Hz, 2H), 2.59 (t, J = 6.9 Hz, 2H), 2.50 (t, J = 1.1 Hz, 2H), 2.07 (s, 3H), 1.89 (quin, J = 6.7 Hz, 2H), 1.84 (s, 3H)

		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
587	(S)-2-(3-((4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)succinic acid	N-N CO ₂ H S CI	677.4	7.79 (d, J = 7.5 Hz, 3H), 7.66 (s, 1H), 7.50-7.42 (m, 2H), 7.31-7.26 (m, 1H), 7.19-7.15 (m, 2H), 7.00 (t, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.43 (s, 2H), 4.97 (t, J = 6.1 Hz, 1H), 4.08-3.83 (m, 4H), 3.13 (t, J = 6.2 Hz, 2H), 3.03-2.89 (m, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.08 (quin, J = 6.5 Hz, 2H), 1.99 (s, 3H)	9.6 min, 96.6% 9.3 min, 97.1%
588	(S)-1-Carboxy-4-(3-chloro-4- ((4-(1-(4-(2,3- dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)methyl)-5- fluorobenzamido)-N,N,N- trimethylbutan-1-aminium, TFA salt	N-N F O	732.4	8.63 (t, J = 5.5 Hz, 1H), 7.94 (s, 1H), 7.84 (s, 1H), 7.71 (dd, J = 10.0, 1.4 Hz, 1H), 7.56 (d, J = 0.6 Hz, 1H), 7.28 (d, J = 6.9 Hz, 1H), 7.21-7.14 (m, 2H), 6.99 (t, J = 7.9 Hz, 1H), 6.75-6.70 (m, 2H), 5.55 (s, 2H), 4.12 (dd, J = 11.2, 3.5 Hz, 1H), 3.93 (t, J = 6.2 Hz, 2H), 3.69 (t, J = 6.5 Hz, 2H), 3.42-3.33 (m, 2H), 3.20 (s, 9H), 2.68 (t, J = 7.2 Hz, 2H), 2.65-2.59 (m, 2H), 2.19-2.07 (m, 4H), 2.02 (quin, J = 6.6 Hz, 2H), 1.96-1.86 (m, 4H), 1.81 (quin, J = 6.7 Hz, 2H), 1.67-1.58 (m, 2H)	8.0 min, 99.4% 8.8 min, 99.9%
589	(S)-2-(3-((4-(4-(4-(2,3- Dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido) pentanedioic acid	N-N CO ₂ H	671.4	7.85-7.77 (m, 2H), 7.76 (s, 1H), 7.64 (s, 1H), 7.52-7.41 (m, 2H), 7.32-7.25 (m, 1H), 7.19-7.13 (m, 2H), 6.92 (t, J = 7.9 Hz, 1H), 6.65 (t, J = 7.8 Hz, 2H), 5.42 (s, 2H), 4.66 (dd, J = 8.9, 5.3 Hz, 1H), 4.10-3.83 (m, 4H), 3.13 (t, J = 6.1 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 2.55-2.41 (m, 2H), 2.37-2.26 (m, 1H), 2.18-2.02 (m, 6H), 1.87 (s, 3H)	
590	2-(3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)-N,N,N-trimethylethanaminium,	N-N H	646.4	7.81 (s, 2H), 7.80-7.75 (m, 1H), 7.67 (s, 1H), 7.51-7.47 (m, 2H), 7.31-7.26 (m, 1H), 7.20-7.15 (m, 2H), 7.00 (t, J = 8.2 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 5.43 (s, 2H), 4.09-3.89 (m, 4H), 3.86 (t, J = 6.7 Hz, 2H), 3.23 (s, 9H), 3.13 (t, J = 6.2 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.08 (quin, J = 6.4 Hz, 2H), 1.98 (s, 3H)	7.4 min, 98.3% 8.8 min, 98.4%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	purity; HPLC-2: Rt min, purity
591	2-(3-((4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)-N,N,N-trimethylethanaminium,		630.4	8.07 (s, 1H), 7.91 (s, 1H), 7.80-7.74 (m, 2H), 7.51-7.46 (m, 2H), 7.40 (dd, J = 7.8, 1.4 Hz, 1H), 7.28 (br. s., 1H), 7.05-6.99 (m, 1H), 6.91 (t, J = 7.9 Hz, 1H), 6.78 (d, J = 7.8 Hz, 1H), 6.78 (d, J = 8.3 Hz, 1H), 5.43 (s, 2H), 4.31 (t, J = 5.0 Hz, 2H), 4.01 (t, J = 6.0 Hz, 2H), 3.98-3.92 (m, 2H), 3.85 (ddd, J = 6.5, 2, 1.4 Hz, 2H), 3.57 (t, J = 6.7 Hz, 2H), 3.25-3.20 (m, 9H), 2.89 (t, J = 7.1 Hz, 2H), 2.22-2.13 (m, 2H), 2.06 (s, 3H)	9.0 min, 100%
592	3-((4-(4-(4-(3-Chloro-2-methylphenoxy))utanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-N-(2-hydroxyethyl) benzamide	N-N CI NOH	605.4	7.81-7.76 (m, 3H), 7.66 (d, J = 0.6 Hz, 1H), 7.49-7.40 (m, 2H), 7.31-7.26 (m, 1H), 7.20-7.15 (m, 2H), 7.00 (t, J = 7.9 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.42 (s, 2H), 3.93 (t, J = 5.8 Hz, 4H), 3.71 (t, J = 5.7 Hz, 2H), 3.55-3.49 (m, 2H), 3.13 (t, J = 6.2 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.12-2.04 (m, 2H), 1.99 (s, 3H)	9.3 min, 99.5%
593	3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-N-(2-hydroxy-2-methylpropyl)benzamide	N-N OH N OH	633.5	7.82-7.76 (m, 3H), 7.66 (d, J= 0.8 Hz, 1H), 7.50-7.41 (m, 2H), 7.31-7.25 (m, 1H), 7.20-7.14 (m, 2H), 7.04-6.96 (m, 1H), 6.85 (d, J= 8.0 Hz, 1H), 6.75 (d, J= 8.0 Hz, 1H), 5.43 (s, 2H), 3.93 (t, J= 5.8 Hz, 4H), 3.41 (s, 2H), 3.12 (t, J= 6.2 Hz, 2H), 2.69 (t, J= 6.9 Hz, 2H), 2.08 (quin, J= 6.4 Hz, 2H), 1.98 (s, 3H), 1.24 (s, 6H)	9.7 min, 99.9%
594	(S)-5-(Carboxymethylamino)- 4-(3-((4-(4-(4-(2,3- dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)-5- oxopentanoic acid	$\begin{array}{c} CO_2H \\ \\ \\ N-N \\ \\ \\ \end{array}$	728.5	7.87-7.80 (m, 2H), 7.76 (s, 1H), 7.64 (s, 1H), 7.52-7.42 (m, 2H), 7.31-7.25 (m, 1H), 7.21-7.13 (m, 2H), 6.92 (t, J = 7.9 Hz, 1H), 6.65 (t, J = 8.3 Hz, 2H), 5.43 (s, 2H), 4.62 (dd, J = 9.0, 4.9 Hz, 1H), 4.06 3.83 (m, 6H), 3.13 (t, J = 6.1 Hz, 2H), 2.68 (t, J = 7.1 Hz, 2H), 2.51-2.40 (m, 2H), 2.38-2.27 (m, 1H), 2.22-2.02 (m, 6H), 1.87 (s, 3H)	-

		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
595	(S)-5-Carboxy-5-(3-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)-N,N,-trimethylpentan-1-aminium	N-N H S CI	732.5	8.64 (d, J = 7.9 Hz, 1H), 8.09 (s, 1H), 7.90-7.80 (m, 2H), 7.69 (s, 1H), 7.51-7.40 (m, 2H), 7.69 (s, 1H), 7.51-7.40 (m, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.19-7.08 (m, 2H), 6.94 (d, J = 7.9 Hz, 1H), 6.86 (d, J = 8.1 Hz, 1H), 5.43 (s, 2H), 4.46-4.39 (m, 1H), 3.93 (br. s., 4H) 3.26 (ddd, J = 10.1, 6.5, 3.4 Hz, 2H), 3.10 (br. s., 2H), 3.0 (s, 9H), 2.59 (br. s., 2H), 2.07 1.78 (m, 7H), 1.76-1.59 (m, 2H), 1.47-1.28 (m, 2H)	97.8% 8.6 min, 97.2%
596	(3-((4-(4-((2-(2,3- Dimethylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H- benzo[b][1,4]thiazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)methanesulfonic acid	N-N SO ₃ H	637.3	8.09 (br. s., 1H), 7.99 (s, 1H) 7.79 (s, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 0.6 Hz, 1H), 7.38-7.29 (m, 2H), 7.19 (dd, J = 8.0, 1.4 Hz, 1H), 7.04 (dd, J = 7.5, 1.4 Hz, 1H), 6.94 (q, J = 7.8 Hz, 2H), 6.70 (dd, J = 11.2, 7.9 Hz, 2H), 5.33 (s 2H), 4.37 (dd, J = 5.4, 3.7 Hz 2H), 4.14-4.07 (m, 2H), 4.03 (d, J = 6.1 Hz, 2H), 3.79-3.73 (m, 2H), 3.09-3.02 (m, 2H), 2.13 (s, 3H), 2.00 (s, 3H)	98.7% 8.4 min, 98.7%
597	2-(3-((4-(4-((2-(2,3- Dimethylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H- benzo[b][1,4]thiazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	N-N H SO ₃ H	651.4	8.41 (br. s., 1H), 8.07 (d, J = 0.6 Hz, 1H), 7.78 (s, 1H), 7.77 (66 (m, 2H), 7.48-7.37 (m, 2H), 7.27 (dd, J = 8.0, 1.4 Hz 1H), 7.13 (dd, J = 7.5, 1.4 Hz 1H), 7.07-6.96 (m, 2H), 6.78 (dd, J = 11.4, 7.8 Hz, 2H), 5.42 (s, 2H), 4.50-4.42 (m, 2H), 4.22-4.16 (m, 2H), 3.87-3.82 (m, 2H), 3.57-3.52 (m, 2H), 3.18-3.10 (m, 2H), 2.67 (t, J = 6.8 Hz, 2H), 2.21 (s, 3H), 2.08 (s, 3H)	- 96.6% 8.4 min, , 96.9%
598	2-(3-Chloro-4-((4-(4-((2-(2,3-dimethylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-	CI HN SO ₃ H	703.5	8.56-8.50 (m, 1H), 7.93 (s, 1H), 7.67 (s, 1H), 7.56-7.52 (m, 2H), 7.19 (dd, J = 8.0, 1.4 Hz, 1H), 7.06-7.00 (m, 1H),	13.5 min, 99.3% 4 8.8 min, 99.3%

98 2-(3-Chloro-4-((4-(4-((2-(2,3dimethylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2Hbenzo[b][1,4]thiazin-8-yl)-1Hpyrazol-1-yl)methyl)-5fluorobenzamido) ethanesulfonic acid

5 8.56-8.50 (m, 1H), 7.93 (s, 1H), 7.67 (s, 1H), 7.56-7.52 (m, 2H), 7.19 (dd, J = 8.0, 1.4 Hz, 1H), 7.06-7.00 (m, 1H), 6.98-6.88 (m, 2H), 6.73-6.67 (m, 2H), 5.45 (d, J = 1.1 Hz, 2H), 4.37 (dd, J = 5.5, 3.9 Hz, 2H), 4.14-4.08 (m, 2H), 3.78-3.73 (m, 2H), 3.48-3.44 (m, 2H), 3.08-3.01 (m, 2H), 2.60 (t, J = 7.1 Hz, 2H), 2.13 (s, 3H), 2.03-1.97 (m, 3H)

Ex- am- ple	Name	Fornula I	LCMS, [M + H] ⁺	^I H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
599	(3-Chloro-4-((4-(4-(2-(2,3-dimethylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) methanesulfonic acid	N-N F O	689.3	8.78 (t, J = 6.0 Hz, 1H), 8.02 (s, 1H), 7.90 (s, 1H), 7.76 (dd, J = 10.1, 1.5 Hz, 1H), 7.64 (d, J = 0.8 Hz, 1H), 7.28 (dd, J = 8.0, 1.4 Hz, 1H), 7.15-7.09 (m, 1H), 7.07-6.98 (m, 2H), 6.83-6.74 (m, 2H), 5.54 (s, 2H), 4.47 (dd, J = 5.3, 3.9 Hz, 2H), 4.24-4.17 (m, 2H), 4.12 (d, J = 6.1 Hz, 2H), 3.88-3.81 (m, 2H), 3.17-3.11 (m, 2H), 2.22 (s, 3H), 2.09 (s, 3H)	99.2%
600	3-((4-(4-(4-(2,3- Dimethylphenoxy)butanoyl)- 3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-N-(2-hydroxyethyl) benzamide	N-N H OH	585.3	7.82-7.76 (m, 2H), 7.68-7.59 (m, 2H), 7.49-7.42 (m, 1H), 7.41-7.35 (m, 1H), 7.26 (d, J = 6.4 Hz, 1H), 7.18-7.11 (m, 2H), 6.93 (t, J = 7.9 Hz, 1H), 6.63 (dd, J = 13.6, 7.7 Hz, 2H), 5.39 (s, 2H), 4.49 (br s., 2H), 3.86 (br s., 2H), 3.71 (t, J = 5.7 Hz, 2H), 3.50 (t, J = 5.9 Hz, 2H), 3.18-3.09 (m, 2H), 2.69 (t, J = 5.9 Hz, 2H), 2.08 (br s., 5H), 1.81 (br s., 3H)	
601	(S)-2-(3-((4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido) pentanedioic acid	CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H	691.4	7.84-7.77 (m, 3H), 7.66 (s, 1H), 7.52-7.41 (m, 2H), 7.30-7.25 (m, 1H), 7.20-7.14 (m, 2H), 7.05-6.97 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 5.43 (s, 2H), 4.66 (dd, J = 9.0, 5.1 Hz, 1H), 3.93 (t, J = 5.8 Hz, 4H), 3.13 (t, J = 6.2 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.48 (td, J = 7.4, 3.1 Hz, 2H), 2.31 (td, J = 13.5, 7.8 Hz, 1H), 2.19-2.03 (m, 3H), 1.99 (s, 3H)	
602	2-(3-((4-(4-((2-(3-Chloro-2-methylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	$N-N$ SO_3H SO_3H SO_3H	671.3	8.51 (t, J = 5.1 Hz, 1H), 8.13 (s, 1H), 7.78 (s, 1H), 7.71-7.67 (m, 2H), 7.48-7.35 (m, 2H), 7.25 (d, J = 7.0 Hz, 1H), 7.20-7.10 (m, 2H), 7.07-7.00 (m, 2H), 5.42 (s, 2H), 4.53-4.42 (m, 2H), 4.27-4.22 (m, 2H), 3.88-3.79 (m, 2H), 3.55-3.47 (m, 2H), 3.20-3.10 (m, 2H), 2.71-2.62 (m, 2H), 2.19 (s, 3H)	12.6 min, 98.5% 8.6 min, 98.3%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
603	(3-((4-(4-((2-(3-Chloro-2-methylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)methanesulfonic acid	N-N SO ₃ H	657.3	8.54 (t, J = 6.3 Hz, 1H), 8.13 (d, J = 0.7 Hz, 1H), 7.89 (s, 1H), 7.83 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 0.7 Hz, 1H), 7.46 (d, J = 0.7 Hz, 1H), 7.20 (dd, J = 8.0, 1.2 Hz, 1H), 7.20 -7.09 (m, 2H), 7.06 -6.99 (m, 2H), 6.97 (d, J = 8.1 Hz, 1H), 5.41 (s, 2H), 4.49 -4.45 (m, 2H), 4.25 (d, J = 4.6 Hz, 2H), 4.10 (s, 2H), 3.85 -3.79 (m, 2H), 3.16 -3.10 (m, 2H), 2.19 (s, 3H)	99.7% 8.6 min,
604	(S)-2-(3-((4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)ethyl 2-amino-3-methylbutanoate, HCl salt	N-N NH ₂ S CI	704.5	7.84-7.75 (m, 3H), 7.67 (s, 1H), 7.52-7.43 (m, 2H), 7.32-7.26 (m, 1H), 7.22-7.15 (m, 2H), 7.05-6.97 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 5.43 (s, 2H), 4.47-4.42 (m, 2H), 4.13-3.81 (m, 5H), 3.78 (dt, J = 14.6, 5.8 Hz, 1H), 3.72-3.64 (m, 1H), 3.13 (t, J = 6.1 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.28 (qd, J = 7.0, 2.1 Hz, 1H), 2.09 (quin, J = 6.4 Hz, 2H), 2.00-1.92 (m, 3H), 1.03 (dd, J = 7.1, 1.0 Hz, 6H)	8.8 min, 97.9%
605	1-(3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)-2-methylpropan-2-yl 2-aminoacetate, HCl salt	$\begin{array}{c} O \\ N-N \\ \end{array}$	690.5	7.85 (s, 1H), 7.83-7.77 (m, 2H), 7.70 (s, 1H), 7.52-7.45 (m, 2H), 7.29 (dd, J = 6.2, 2.9 Hz, 1H), 7.22-7.16 (m, 2H), 7.00 (t, J = 8.0 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 8.3 Hz, 1H), 5.45 (s, 2H), 4.12-3.87 (m, 4H), 3.77 (s, 2H), 3.73 (s, 2H), 3.13 (t, J = 6.2 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.09 (quin, J = 6.4 Hz, 2H), 1.97 (s, 3H), 1.58 (s, 6H)	7.5 min, 99.0% 8.8 min, 99.5%
606	2-(3-Chloro-2-methylphenoxy) ethyl 8-(1-(3-(2-hydroxy-2- methylpropylcarbamoyl) benzyl)-1H-pyrazol-4-yl)-2H- benzo[b][1,4]thiazine-4(3H)- carboxylate	N-N CI	635.3	7.98 (s, 1H), 7.82-7.77 (m, 2H), 7.71 (s, 1H), 7.51-7.40 (m, 2H), 7.29 (d, J = 7.9 Hz, 1H), 7.15-7.06 (m, 2H), 7.06-7.00 (m, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 5.45 (s, 2H), 4.57-4.52 (m, 2H), 4.28-4.22 (m, 2H), 3.93-3.87 (m, 2H), 3.40 (s, 2H), 3.16-3.12 (m, 2H), 2.23 (s, 3H), 1.24 (s, 6H)	11.0 min, 99.0% 10.3 min, 99.5%

Ex- am- ple	Name	Formula I	LCMS, [M+H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
607	3-Chloro-4-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl)-5-fluoro-N-(2-hydroxy-2-methylpropyl) benzamide	N-N F OH	685.4	8.53-8.47 (m, 1H), 7.85 (s, 1H), 7.77 (s, 1H), 7.68 (dd, J = 9.9, 1.5 Hz, 1H), 7.60 (s, 1H), 7.28 (d, J = 5.1 Hz, 1H), 7.22-7.16 (m, 2H), 7.07-6.99 (m, 1H), 6.86 (d, J = 7.9 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 5.59 (s, 2H), 3.92 (br. s., 2H), 3.40 (d, J = 6.2 Hz, 2H), 3.16-3.08 (m, 2H), 2.72 (t, J = 6.3 Hz, 2H), 2.13-2.06 (m, 2H), 1.93 (d, J = 12.1 Hz, 3H), 1.23 (s, 6H)	
608	3-(3-((4-(4-((2-(3-Chloro-2-methylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	$\begin{array}{c} O \\ N \\$	635.3	7.79 (s, 1H), 7.76-7.71 (m, 2H), 7.68 (s, 1H), 7.45-7.40 (m, 1H), 7.37-7.34 (m, 1H), 7.27 (d, J = 6.4 Hz, 1H), 7.10-6.98 (m, 3H), 6.95 (d, J = 7.4 Hz, 1H), 6.76 (d, J = 7.9 Hz, 1H), 5.38 (s, 2H), 4.54-4.50 (m, 2H), 4.23-4.17 (m, 2H), 3.92-3.88 (m, 2H), 3.62 (t, J = 6.7 Hz, 2H), 2.58 (t, J = 6.7 Hz, 2H), 2.23 (s, 3H)	100%*
609	2-(3-((4-(4-((2-(3-Chloro-2-methylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)acetic acid	N-N N N N N N N N N N	621.3	7.81-7.77 (m, 3H), 7.68 (s, 1H), 7.47-7.42 (m, 1H), 7.40-7.36 (m, 1H), 7.27 (d, J = 1.4 Hz, 1H), 7.10-6.98 (m, 3H), 6.95 (d, J = 7.9 Hz, 1H), 5.39 (s, 2H), 4.55-4.51 (m, 2H), 4.23-4.19 (m, 2H), 4.08 (s, 2H), 3.91-3.87 (m, 2H), 3.15-3.10 (m, 2H), 2.23 (s, 3H)	100%*
610	2-(3-Chloro-2-methylphenoxy) ethyl 8-(1-(2-chloro-6-fluoro- 4-(2-hydroxy-2- methylpropylcarbamoyl) benzyl)-1H-pyrazol-4-yl)-2H- benzo[b][1,4]thiazine-4(3H)- carboxylate	N-N F OH	687.3	8.48 (t, J = 5.5 Hz, 1H), 7.92 (s, 1H), 7.84 (s, 1H), 7.70-7.62 (m, 2H), 7.27 (d, J = 7.5 Hz, 1H), 7.13-7.06 (m, 2H), 7.06-6.94 (m, 2H), 6.86 (d, J = 8.4 Hz, 1H), 5.60 (d, J = 1.1 Hz, 2H), 4.57-4.52 (m, 2H), 4.29-4.22 (m, 2H), 3.93-3.85 (m, 2H), 3.44-3.38 (m, 2H), 3.16-3.09 (m, 2H), 2.21 (s, 3H), 1.23 (s, 6H)	94.5% 10.8 min, 93.9%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
611	(S)-4-(3-Chloro-4-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl)-5- fluorobenzamido)-5-methoxy- N,N,N-trimethyl-5-oxopentan- 1-aminium, TFA salt	$\begin{array}{c} CI \\ N-N \\ F \end{array}$ $\begin{array}{c} H \\ O \\ CO_2Me \end{array}$	786.5	7.98 (s, 1H), 7.89 (d, J = 1.3 Hz, 1H), 7.71 (dd, J = 9.8, 1.7 Hz, 1H), 7.67 (d, J = 0.7 Hz, 1H), 7.30 (d, J = 7.9 Hz, 1H), 7.15-7.09 (m, 2H), 7.08-7.02 (m, 1H), 6.99 (d, J = 7.5 Hz, 1H), 5.64 (d, J = 1.1 Hz, 2H), 4.79-4.71 (m, 1H), 4.57 (dd, J = 5.3, 3.7 Hz, 2H), 4.30-4.25 (m, 2H), 3.80 (s, 3H), 3.53-3.38 (m, 2H), 3.19-3.13 (m, 11H), 2.24 (s, 3H), 2.13-2.02 (m, 1H), 2.00-1.85 (m, 3H)	8.5 min, 98.8% 10.1 min, 99.3%
612	(S)-4-Carboxy-4-(3-chloro-4- ((4-(4-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H- benzo[b][1,4]thiazin-8-yl)-1H- pyrazol-1-yl)methyl)-5- fluorobenzamido)-N,N,N- trimethylbutan-1-aminium	$\begin{array}{c} CI \\ N-N \\ F \end{array} \qquad \begin{array}{c} H \\ CO_2H \end{array}$	772.5	7.95 (s, 1H), 7.86 (s, 1H), 7.69 (dd, J = 9.7, 1.5 Hz, 1H), 7.64 (s, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.13-7.06 (m, 2H), 7.05-6.94 (m, 2H), 6.86 (d, J = 8.1 Hz, 1H), 5.61 (s, 2H), 4.56-4.51 (m, 2H), 4.27-4.21 (m, 2H), 3.92-3.85 (m, 2H), 3.50-3.39 (m, 2H), 3.17-3.09 (m, 12H), 2.21 (s, 3H), 2.13-2.02 (m, 1H), 2.00-1.84 (m, 3H)	8.1 min, 99.7% 9.5 min, 99.8%
613	2-(3-Chloro-4-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl)-5- fluorobenzamido) ethanesulfonic acid	N-N F CI	723.3	7.77 (s, 2H), 7.63 (s, 1H), 7.59 (dd, J = 9.7, 1.2 Hz, 1H), 7.06 (dd, J = 6.9 Hz, 1H), 7.08-7.03 (m, 2H), 7.01-6.97 (m, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 5.54 (s, 2H), 4.55-4.50 (m, 2H), 4.23-4.19 (m, 2H), 3.91-3.87 (m, 2H), 3.79 (t, J = 6.2 Hz, 2H), 3.14-3.10 (m, 2H), 3.07 (t, J = 6.2 Hz, 2H), 2.22 (s, 3H)	100%*
614	(S)-4-Amino-2-(3-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)-4-oxobutanoic acid	N-N H NH2	676.5	7.83-7.76 (m, 3H), 7.66 (d, J= 0.6 Hz, 1H), 7.51-7.41 (m, 2H), 7.32-7.26 (m, 1H), 7.20-7.14 (m, 2H), 7.03-6.96 (m, 1H), 6.85 (d, J= 7.8 Hz, 1H), 6.75 (d, J= 8.0 Hz, 1H), 5.43 (s, 2H), 4.93 (t, J= 6.0 Hz, 1H), 3.13 (t, J= 6.2 Hz, 2H), 2.89 (dd, J= 6.0, 1.8 Hz, 2H), 2.69 (t, J= 7.1 Hz, 2H), 2.13-2.05 (m, 2H), 1.99 (s, 3H)	9.1 min, 99.7% 8.9 min, 99.1%

Ex- am- ple	Name	Formula I	LCMS, [M+H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
615	3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-N-(2-(dimethylamino) ethyl)benzamide, TFA salt	N-N N N N N N N N N N N N N N N N N N N	632.4	7.85 (s, 1H), 7.83-7.79 (m, 2H), 7.67 (d, J = 0.6 Hz, 1H), 7.51-7.47 (m, 2H), 7.31-7.26 (m, 1H), 7.21-7.16 (m, 2H), 7.03-6.98 (m, 1H), 6.86 (s, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.43 (s, 2H), 3.93 (t, J = 5.8 Hz, 2H), 3.76 (t, J = 5.8 Hz, 2H), 3.39 (t, J = 5.8 Hz, 2H), 3.13 (t, J = 6.2 Hz, 2H), 3.03-2.96 (m, 6H), 2.69 (t, J = 6.9 Hz, 2H), 2.13-2.04 (m, 2H), 1.98 (s, 3H)	7.4 min, 98.9% 8.7 min, 99.0%
616	N-(2-(3-((4-(4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzamido)ethyl)-N,N-dimethylbutan-1-aminium, TFA salt	N-N N N N N N N N N N N N N N N N N N N	688.4	7.84-7.75 (m, 3H), 7.67 (d, J = 0.6 Hz, 1H), 7.52-7.46 (m, 2H), 7.31-7.27 (m, 1H), 7.23-7.14 (m, 2H), 7.04-6.96 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 5.43 (s, 2H), 3.93 (t, J = 5.8 Hz, 4H), 3.83 (t, J = 6.8 Hz, 2H), 3.54 (t, J = 6.8 Hz, 2H), 3.43-3.37 (m, 2H), 3.17 (s, 6H), 3.13 (t, J = 6.2 Hz, 2H), 2.69 (t, J = 7.1 Hz, 2H), 2.08 (quin, J = 6.4 Hz, 2H), 1.98 (s, 3H), 1.85-1.74 (m, 2H), 1.41 (sxt, J = 7.4 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H)	99.1% 9.5 min, 98.4%
617	(S)-3-Carboxy-3-(3-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)-N,N,N-trimethylpropan-1-aminium, TFA salt	$\begin{array}{c} O & CO_2H \\ N-N & H \\ \end{array}$	704.4	7.87-7.80 (m, 3H), 7.67 (d, J = 0.6 Hz, 1H), 7.53-7.47 (m, 2H), 7.31-7.27 (m, 1H), 7.20-7.16 (m, 2H), 7.01 (t, J = 8.2 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 8.6 Hz, 1H), 5.44 (s,2H), 4.72 (dd, J = 8.3, 5.5 Hz, 1H), 3.93 (t, J = 12.4, 4.9 Hz, 1H), 3.50-3.42 (m, 1H), 3.18-3.15 (m, 9H), 3.13 (t, J = 6.1 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.60-2.49 (m, 1H), 2.38-2.27 (m, 1H), 2.09 (quin, J = 6.4 Hz, 2H), 1.97 (s, 3H)	8.6 min, 99.3%
618	3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-N-(2,3-dihydroxypropyl)benzamide	N-N H OH	635.2	7.84-7.75 (m, 3H), 7.64 (s, 1H), 7.52-7.40 (m, 2H), 7.34-7.27 (m, 1H), 7.22-7.16 (m, 2H), 7.07-6.98 (m, 1H), 6.84 (d, J = 1.9 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 5.43 (s, 2H), 3.91 (br. s., 2H), 3.86-3.76 (m, 2H), 3.59-3.53 (m, 3H), 3.46-3.35 (m, 2H), 3.13 (dd, J = 3.3, 1.5 Hz, 2H), 2.76-2.67 (m, 2H), 2.17-2.05 (m, 2H), 1.96-1.87 (m, 3H)	9.2 min, 99.3% 8.9 min, 98.3%

	59:	1		592	
		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M+H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
	3-(4-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	N—N CI	669.3	7.97 (s, 1H), 7.77-7.71 (m, 2H), 7.62 (d, J = 2.2 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.19 (d, J = 8.1 Hz, 1H), 7.17-7.00 (m, 3H), 6.97 (d, J = 7.7 Hz, 1H), 6.87 (d, J = 8.1 Hz, 1H), 5.55 (s, 2H), 4.57-4.52 (m, 2H), 3.93-3.88 (m, 2H), 3.93-3.88 (m, 2H), 3.93-3.81 (m, 2H), 3.93-3.17-3.11 (m, 2H), 2.62 (t, J = 6.9 Hz, 2H), 2.23 (s, 3H)	10.6 min, 96.5%
	(S)-2-(4-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzamido)succinic acid	N—N CO ₂ H	713.2	7.97 (s, 1H), 7.78 (dd, J = 8.3 2.1 Hz, 1H), 7.71 (s, 1H), 7.65 (d, J = 2.0 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.17-6.94 (m, 4H), 6.86 (d, J = 7.9 Hz, 1H), 5.55 (s, 2H), 4.92 (dd, J = 7.0, 5.3	99.4%

(s, 2H), 4.92 (dd, J = 7.0, 5.3 Hz, 1H), 4.58-4.51 (m, 2H), 4.29-4.21 (m, 2H), 3.94 3.86 (m, 2H), 3.17-3.10 (m, 3H), 3.02-2.83 (m, 2H), 2.22 (s, 3H)

621 3-(2-Chloro-3-((4-(4-(4-(2,3-Dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)propanoic acid

$$\begin{array}{c} CI \\ CO_2H \\ N-N \\ S \\ O \\ O \\ O \\ \end{array}$$

7.75 (s, 1H), 7.65 (d, J = 0.6 Hz, 1H), 7.42-7.38 (m, 1H), 7.37-7.32 (m, 1H), 7.29-7.25 (m, 1H), 7.21-7.12 (m, 3H), 6.93 (t, J = 7.8 Hz, 1H), 6.66 (dd, J = 13.5, 7.9 Hz, 2H), 5.52 (s, 2H), 4.05-3.85 (m, 4H), 3.63 (t, J = 6.8 Hz, 2H), 3.13 (t, J = 6.1 Hz, 2H), 2.72-2.62 (m, 4H), 2.13 (s, 3H), 2.10-2.04 (m, 2H), 1.87 (s, 3H)

647.3

9.9 min, 99.9% 9.5 min, 99.9%

		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M+H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
622	(S)-2-(2-Chloro-3-((4-(4-(4-(2,3-dimethylphenoxy) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)succinic acid	N-N S O HO2C NH CO2H NO O O O O	691.3	7.74 (s, 1H), 7.65 (d, J = 0.6 Hz, 1H), 7.47 (dd, J = 7.6, 1.5 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.28 (dd, J = 6.7, 2.5 Hz, 1H), 7.21-7.13 (m, 3H), 6.93 (t, J = 1.9 Hz, 1H), 6.66 (dd, J = 12.8, 7.8 Hz, 2H), 5.53 (s, 2H), 4.96 (dd, J = 6.9, 5.3 Hz, 1H), 4.08-3.80 (m, 4H), 3.14 (t, J = 6.1 Hz, 2H), 3.03-2.87 (m, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.13 (s, 3H), 2.07 (quin, J = 6.5 Hz, 2H), 1.87 (s, 3H)	9.1 min,
623	2-(2-Chloro-3-((4-(4-(2,3-dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	SO ₃ H	683.2	7.75 (s, 1H), 7.65 (d, J = 0.6 Hz, 1H), 7.48 (dd, J = 7.6, 1.5 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.31-7.25 (m, 1H), 7.21- 7.11 (m, 3H), 6.97-6.92 (m, 1H), 6.66 (dd, J = 13.3, 7.8 Hz, 2H), 5.53 (s,2H), 3.89 (t, J = 5.8 Hz, 4H), 3.81 (t, J = 6.9 Hz, 2H), 3.12 (dt, J = 20.0, 6.4 Hz, 4H), 2.69 (t, J = 6.9 Hz, 2H), 2.13 (s, 3H), 2.11-2.03 (m, 2H), 1.87 (s, 3H)	97.3% 8.0 min, 100%
624	(S)-2-(2-Chloro-3-((4-(4-(4-(2,3-dimethylphenoxy))butanoyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-yl)-1H-pyrazol-1-yl)methyl)benzamido)succinic acid	N-N N-N O N-N N-N O O	675.3	8.07 (s, 1H), 7.92 (s, 1H), 7.46 (dd, J=7.5, 1.7 Hz, 1H), 7.42-7.39 (m, 1H), 7.35 (t, J=7.8 Hz, 1H), 7.31-7.24 (m, 1H), 7.14 (d, J=7.5 Hz, 1H), 6.92 (dt, J=19.1, 7.9 Hz, 2H), 6.67 (d, J=7.8 Hz, 2H), 5.53 (s, 2H), 4.96 (dd, J=6.9, 5.5 Hz, 1H), 4.29 (t, J=4.9 Hz, 2H), 4.01-3.93 (m, 4H), 3.03-2.86 (m, 4H), 2.20-2.09 (m, 5H), 1.93 (d, J=2.5 Hz, 3H)	97.8% 9.3 min, 98.7%
625	2-(2-Chloro-3-((4-(4-(2,3-dimethylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido) ethanesulfonic acid	N-N SO ₃ H	667.3	7.99 (s, 1H), 7.91 (s, 1H), 7.45 (dd, J = 7.9, 1.5 Hz, 1H), 7.37 (d, J = 6.9 Hz, 1H), 7.27 (t, J = 7.7 Hz, 1H), 7.07-6.93 (m, 3H), 6.89 (t, J = 7.9 Hz, 1H), 6.69 (d, J = 7.4 Hz, 1H), 5.49 (s, 2H), 4.32 (br. s., 2H), 4.01-3.92 (m, 4H), 3.82 (t, J = 6.4 Hz, 2H), 3.09 (t, J = 6.4 Hz, 2H), 2.88 (br. s., 2H), 2.21-2.09 (m, 5H), 1.92 (br. s., 3H)	

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
626	2-(2-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)metehyl) benzamido)ethanesulfonic acid	SO_3H SO_3H SO_3H SO_3H SO_3H	705.2	7.99 (d, J = 0.4 Hz, 1H), 7.75 (d, J = 0.7 Hz, 1H), 7.51 (dd, J = 7.7, 1.5 Hz, 1H), 7.31 (d, J = 7.9 Hz, 1H), 7.31 (d, J = 7.9 Hz, 1H), 7.18-7.02 (m, 4H), 7.00 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 8.1 Hz, 1H), 5.59 (s, 2H), 4.61-4.54 (m, 2H), 4.32-4.25 (m, 2H), 3.97-3.90 (m, 2H), 3.82 (t, J = 6.9 Hz, 2H), 3.21-3.09 (m, 4H), 2.25 (s, 3H)	99.0% 8.7 min, 99.0%
627	(S)-2-(2-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzamido)succinic acid	N-N CO ₂ H N-N CO ₂ H N-N CO ₂ H	713.2	7.96 (d, J = 0.7 Hz, 1H), 7.72 (d, J = 0.7 Hz, 1H), 7.48-7.43 (m, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.17-6.99 (m, 4H), 6.97 (d, J = 7.5 Hz, 1H), 5.55 (s, 2H), 4.95 (dd, J = 7.3, 5.3 Hz, 1H), 4.57 (4.52 (m, 2H), 4.27-4.22 (m, 2H), 3.92-3.87 (m, 2H), 3.17-3.11 (m, 2H), 3.03-2.95 (m, 1H), 2.92-2.85 (m, 1H), 2.22 (s, 3H)	100% 9.8 min, 99.4%
628	3-(2-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	$N-N$ CI $N-N$ H CO_2H N	669.2	7.96 (s, 1H), 7.72 (s, 1H), 7.44-7.33 (m, 2H), 7.29 (d, J=7.9 Hz, 1H), 7.18-7.00 (m, 4H), 6.97 (d, J=7.7 Hz, 1H), 6.87 (d, J=8.1 Hz, 1H), 5.55 (s, 2H), 4.57-4.52 (m, 2H), 4.29-4.22 (m, 2H), 3.94-3.87 (m, 2H), 3.62 (t, J=6.8 Hz, 2H), 3.17-3.11 (m, 2H), 2.65 (t, J=6.8 Hz, 2H), 2.23 (s, 3H)	10.1 min, 98.0%
629	2-(3-Chloro-2-methylphenoxy) ethyl 8-(1-(2-chloro-3-(2- hydroxyethylcarbamoyl) benzyl)-1H-pyrazol-4-yl)-2H- benzo[b][1,4]thiazine-4(3H)- carboxylate	N-N CI NH H	641.2	7.96 (s, 1H), 7.72 (d, J = 0.7 Hz, 1H), 7.47-7.42 (m, 1H), 7.40-7.33 (m, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.16-7.00 (m, 4H), 6.97 (d, J = 7.5 Hz, 1H), 6.87 (d, J = 8.1 Hz, 1H), 5.56 (s, 2H), 4.57-4.51 (m, 2H), 4.27-4.22 (m, 2H), 3.93-3.87 (m, 2H), 3.71 (t, J = 5.8 Hz, 2H), 3.52-3.46 (m, 2H), 3.16-3.11 (m, 2H),2.22 (s, 3H)	100% = 10.0 min, 100%

Ex- am- ple	Name	Formula I	LCMS, [M+H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
630	2-(4-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	SO ₃ H N-N CI SO ₃ H	705.2	8.03 (s, 1H), 7.85-7.77 (m, 2H), 7.67 (d, J = 2.2 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.21-7.02 (m, 3H), 6.99 (d, J = 7.5 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 5.61 (s, 2H), 4.61-4.54 (m, 2H), 4.31-4.24 (m, 2H), 3.97-3.89 (m, 2H), 3.80 (t, J = 6.7 Hz, 2H), 3.22-3.14 (m, 2H), 3.09 (t, J = 6.7 Hz, 2H), 2.25 (s, 3H)	99%*
631	3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-N-((5-oxotetrahydrofuran-2-yl) methyl)benzamide	N-N H O	659.3	7.81-7.75 (m, 3H), 7.66 (s, 1H), 7.50-7.42 (m, 2H), 7.32-7.26 (m, 1H), 7.21-7.16 (m, 2H), 7.03-6.96 (m, 1H), 6.84 (d, J = 8.0 Hz, 1H), 5.43 (s, 2H), 4.76 (qd, J = 7.1, 4.3 Hz, 1H), 3.93 (t, J = 5.8 Hz, 4H), 3.73-3.66 (m, 1H), 3.63-3.57 (m, 1H), 3.13 (t, J = 6.2 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.62-2.49 (m, 2H), 2.36 (dddd, J = 12.9, 9.3, 7.2, 5.5 Hz, 1H), 2.13-2.01 (m, 3H), 1.97 (s, 3H)	10.6 min, 97.1% 10.0 min, 97.2%
632	5-(3-((4-(4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)-4-hydroxypentanoic acid, Na salt	$\begin{array}{c} O \\ N-N \\ \end{array}$	677.3	7.83-7.77 (m, 3H), 7.65 (d, J= 0.6 Hz, 1H), 7.48-7.39 (m, 2H), 7.30-7.26 (m, 1H), 7.17 (d, J= 4.7 Hz, 2H), 7.03-6.97 (m, 1H), 6.85 (d, J= 8.0 Hz, 1H), 6.75 (d, J= 8.3 Hz, 1H), 5.43 (s, 2H), 3.93 (t, J= 6.0 Hz, 4H), 3.85-3.75 (m, 1H), 3.52-3.46 (m, 1H), 3.13 (t, J= 6.2 Hz, 2H), 2.69 (t, J= 6.9 Hz, 2H), 2.69 (t, J= 6.9 Hz, 2H), 2.08 (quin, J= 6.4 Hz, 2H), 2.08 (quin, J= 6.4 Hz, 2H), 1.98 (s, 3H), 1.88-1.82 (m, 1H), 1.76 (dt, J= 14.8, 7.2 Hz, 1H)	9.1 min, 98.4%
633	(S)-Ethyl 2-amino-5-(3-chloro-	C_1 H_2N_2	756.3	7.80 (s, 2H), 7.65-7.58 (m, 2H), 7.30 7.22 (m, 1H), 7.31	8.2 min,

(8)-Ethyl 2-amino-5-(3-chloro-4-((4-(4-(4-(3-chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) pentanoate, TFA salt

$$H_2N$$
 CO_2Et
 $N-N$
 F
 CO_2Et

7.80 (s, 2H), 7.65-7.58 (m, 2H), 7.30-7.22 (m, 1H), 7.21-7.13 (m, 2H), 7.04-6.97 (m, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.59 (d, J = 1.1 Hz, 2H), 4.36-4.27 (m, 2H), 4.07 (t, J = 6.4 Hz, 1H), 4.04-3.76 (m, 4H), 3.50-3.41 (m, 2H), 3.12 (t, J = 6.2 Hz, 2H), 2.08 (quin, J = 6.5 Hz, 2H), 2.04-1.87 (m, 5H), 1.85-1.68 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H)

9.6 min, 96.4%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
634	(S)-2-Amino-5-(3-((4-(4-(4-(3-chloro-2-methylphenoxy) butanoyl)-3,4-dihydro-2H- benzo[b][1,4]thiazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)pentanoic acid, TFA salt	O N	676.4	7.82 (s, 2H), 7.78 (d, J = 7.2 Hz, 1H), 7.68 (s, 1H), 7.52- 7.44 (m, 2H), 7.34-7.27 (m, 1H), 7.22-7.18 (m, 2H), 7.05- 6.99 (m, 1H), 6.87 (d, J = 8.0 Hz, 1H), 5.44 (s, 2H), 4.03 (t, J = 6.4 Hz, 1H), 3.95 (t, J = 5.7 Hz, 4H), 3.55-3.41 (m, 2H), 3.14 (t, J = 6.2 Hz, 2H), 2.71 (t, J = 6.9 Hz, 2H), 2.14-2.02 (m, 3H), 2.01-1.93 (m, 4H), 1.90-1.75 (m, 2H)	7.4 min, 99.1% 8.4 min, 95.9%
635	(S)-Isopropyl 2-amino-5-(3- ((4-(4-(4-(3-chloro-2- methylphenoxy)butanoyl)-3,4- dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)pentanoate, TFA salt	N-N NH NH ₂	718.5	7.82-7.79 (m, 2H), 7.76 (d, J=7.2 Hz, 1H), 7.66 (s, 1H), 7.50-7.43 (m, 2H), 7.31-7.26 (m, 1H), 7.20-7.16 (m, 2H), 7.00 (t, J=8.0 Hz, 1H), 6.85 (d, J=8.0 Hz, 1H), 5.42 (s, 2H), 5.12 (quin, J=6.2 Hz, 1H), 4.03 (t, J=6.4 Hz, 1H), 3.99-3.79 (m, 4H), 3.51-3.39 (m, 2H), 2.69 (t, J=6.9 Hz, 2H), 2.09 (quin, J=6.3 Hz, 2H), 2.09 (quin, J=6.3 Hz, 2H), 2.04-1.88 (m,6H), 1.85-1.66 (m, 2H), 1.29 (t, J=6.2 Hz, 6H)	7.8 min, 98.2% 9.2 min, 97.8%
636	2-(3-Chloro-2-methylphenoxy) ethyl 8-(1-(5-((1H-tetrazol-5- yl)methylcarbamoyl)-2- chlorobenzyl)-1H-pyrazol-4- yl)-2H-benzo[b][1,4]thiazine- 4(3H)-carboxylate	N-N CI S CI N-N N-N	681.3	7.96 (d, J = 0.7 Hz, 1H), 7.85 (dd, J = 8.4, 2.0 Hz, 1H), 7.77 (d, J = 8.4, 2.0 Hz, 1H), 7.71 (d, J = 0.7 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.15-7.07 (m, 2H), 7.07-6.96 (m, 2H), 6.87 (d, J = 8.4 Hz, 1H), 5.55 (s, 2H), 4.82 (s, 2H), 4.55 (dd, J = 5.3, 3.7 Hz, 2H), 4.28-4.23 (m, 2H), 3.92-3.86 (m, 2H), 3.15-3.09 (m, 2H), 2.24 (s, 3H)	99.1% = 10.6 min, 98.8%
637	(S)-Isopropyl 2-amino-5-(3-chloro-4-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)pentanoate, TFA salt	$\begin{array}{c} C_1 \\ N-N \\ F \end{array} \begin{array}{c} H_2N \\ O \end{array} \begin{array}{c} O \\ O \end{array}$	732.6	7.80 (d, J = 1.4 Hz, 1H), 7.66-7.58 (m, 2H), 7.45 (s, 1H), 7.24-7.13 (m, 3H), 6.95 (t, J = 7.8 Hz, 1H), 6.66 (dd, J = 11.5, 7.9 Hz, 2H), 5.59 (d, J = 1.4 Hz, 2H), 5.13 (quin, J = 6.2 Hz, 1H), 4.03 (t, J = 6.4 Hz, 1H), 3.89 (t, J = 5.8 Hz, 2H), 3.74 (t, J = 6.9 Hz, 2H), 3.54-3.37 (m, 2H), 2.78 (t, J = 6.9 Hz, 2H), 2.15 (t, J = 6.7 Hz, 2H), 2.15-2.07 (m, 5H), 2.05-1.87 (m, 2H), 1.85-1.68 (m, 7H), 1.30 (dd, J = 6.1, 4.7 Hz, 6H)	99.1% 9.4 min, 99.7%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
638	2-(3-Chloro-2-methylphenoxy) ethyl 8-(1-(2-chloro-5-(3-(2- morpholinoethoxy)-3- oxopropylcarbamoyl)benzyl)- 1H-pyrazol-4-yl)-2H- benzo[b][1,4]thiazine-4(3H)- carboxylate	N-N CI N N N N N N N N N N N N N N N N N N	782.5	8.05 (d, J = 0.4 Hz, 1H), 7.80-7.74 (m, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 2.2 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.21-7.05 (m, 3H), 7.00 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 5.59 (s, 2H), 4.58 (dd, J = 5.3, 3.7 Hz, 2H), 4.49-4.43 (m, 2H), 4.31-4.26 (m, 2H), 4.01 (br. s., 2H), 3.95-3.89 (m, 2H), 3.79 (br. s., 2H), 3.72 (t, J = 6.4 Hz, 2H), 3.57 (br. s., 2H), 3.53-3.47 (m, 2H), 3.27-3.15 (m, 4H), 2.71 (t, J = 6.3 Hz, 2H), 2.25 (s, 3H)	
639	(S)-Isopropyl 2-amino-5-(3-chloro-4-((4-(4-(4-(3-chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) pentanoate, HCl salt	$\begin{array}{c} C_{l} \\ N-N \\ F \end{array}$	770.5	7.79 (s, 2H), 7.65-7.60 (m, 2H), 7.30-7.23 (m, 1H), 7.20-7.13 (m, 2H), 7.05-6.97 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.59 (d, J = 1.1 Hz, 2H), 5.12 (dt, J = 1.2 (e, 6.3 Hz, 1H), 4.02 (t, J = 6.4 Hz, 1H), 3.93 (t, J = 5.7 Hz, 3H), 3.50-3.36 (m, 3H) 3.12 (t, J = 6.1 Hz, 2H), 2.69 (t, J = 6.9 Hz, 2H), 2.08 (quin, J = 6.4 Hz, 2H), 2.03-1.87 (m, 5H), 1.84-1.67 (m, 2H), 1.29 (dd, J = 6.1, 5.0 Hz, 6H)	8.3 min, 99.4% 9.7 min, 100%
640	2-(3-Chloro-2-methylphenoxy) ethyl 8-(1-(2-chloro-5-(3-(2,3- dihydroxypropoxy)-3- oxopropylcarbamoyl)benzyl)- 1H-pyrazol-4-yl)-2H- benzo[b][1,4]thiazine-4(3H)- carboxylate	N-N CI S CI	743.4	8.00 (d, J = 0.7 Hz, 1H),7.82-7.73 (m, 2H), 7.65 (d, J = 2.0 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 7.7 Hz, 1H), 7.20-7.02 (m, 3H), 6.99 (d, J = 8.1 Hz, 1H), 5.58 (s, 2H), 4.61-4.55 (m, 3H), 4.31-4.25 (m, 2H), 4.25-4.18 (m, 1H), 4.14-4.08 (m, 1H), 3.97-3.90 (m, 2H), 3.85 (dd, J = 6.1, 4.1 Hz, 1H), 3.66 (t, J = 6.6 Hz, 2H), 3.56 (d, J = 5.5 Hz, 2H), 3.21-3.14 (m, 2H), 2.70 (t, J = 6.7 Hz, 2H), 2.25 (s, 3H)	97.7% 10.1 min, 97.4%
641	2-(4-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzamido)acetic acid	N-N CI CI CI CI CI CI CI CI	655.3	7.85-7.79 (m, 2H), 7.77 (d, J= 2.0 Hz, 1H), 7.70 (s, 1H), 7.52 (d, J= 8.4 Hz, 1H), 7.29 (d, J= 6.9 Hz, 1H), 7.14-7.00 (m, 3H), 6.97 (d, J= 7.9 Hz, 1H), 6.78 (d, J= 7.9 Hz, 1H), 5.51 (s, 2H), 4.57-4.52 (m, 2H), 4.25-4.20 (m, 2H), 4.02 (s, 2H), 3.94-3.89 (m, 2H), 3.18-3.11 (m, 2H), 2.25 (s, 3H)	99%*

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
642	(S)-2-Amino-5-(4-chloro-3- ((4-(4-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H- benzo[b][1,4]thiazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)pentanoic acid, TFA salt	N-N CI S CI NH2	712.3	8.00 (s, 1H), 7.79-7.75 (m, 1H), 7.73 (s, 1H), 7.67 (d, J = 2.0 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 7.19-7.02 (m, 3H), 6.97 (d, J = 7.7 Hz, 1H), 5.56 (s, 2H), 4.58-4.52 (m, 2H), 4.29-4.23 (m, 2H), 4.01 (t, J = 6.3 Hz, 1H), 3.95-3.87 (m, 2H), 3.47-3.41 (m, 2H), 3.17-3.12 (m, 3H), 2.22 (s, 3H), 2.11-1.89 (m, 2H), 1.87-1.64 (m, 2H)	9.4 min, 98.1%
643	(S)-4-(3-((4-(4-(3-Chloro-2-methylphenoxy)butanoyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl)methyl)benzamido)-5-ethoxy-N,N-trimethyl-5-oxopentan-1-aminium,	O CO_2Et N	746.4	7.88-7.79 (m, 3H), 7.67 (d, J = 0.6 Hz, 1H), 7.53-7.45 (m 2H), 7.33-7.25 (m, 1H), 7.21-7.13 (m, 2H), 7.04-6.97 (m, 1H), 6.84 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 8.3 Hz, 1H), 5.44 (s, 2H), 4.76-4.67 (m, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.93 (t, J = 5.8 Hz, 4H), 3.51-3.34 (m, 2H), 3.15-3.11 (m, 11H), 2.69 (t, J = 6.9 Hz, 2H), 2.16-2.03 (m, 3H), 2.00-1.84 (m, 6H), 1.28 (t, J = 7.1 Hz, 3H)	9.3 min, 98.0%
644	(S)-4-Carboxy-4-(4-chloro-3- ((4-(4-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-3,4-dihydro-2H- benzo[b][1,4]thiazin-8-yl)-1H- pyrazol-1-yl)methyl) benzamido)-N,N,N- trimethylbutan-1-aminium, TFA salt	N-N CI S CI N-N O	754.2	8.02 (s, 1H), 7.82 (dd, J = 8.4 2.2 Hz, 1H), 7.73 (s, 1H), 7.68 (d, J = 1.8 Hz, 1H), 7.60 (d, J - 8.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.18-7.01 (m, 3H), 6.97 (d, J = 7.9 Hz, 1H), 5.57 (s, 2H), 4.68 (d, J = 8.8 Hz, 1H), 4.58-4.52 (m, 2H), 4.29- 4.23 (m, 2H), 3.95-3.88 (m, 2H), 3.49-3.41 (m, 2H), 3.19- 3.12 (m, 2H), 3.10 (s, 9H), 2.23 (s, 3H), 2.07 (br. s., 1H), 1.98-1.81 (m, 3H)	3 99.7% = 9.6 min, 99.9%
645	3-(4-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy))ethoxy)carbonyl)-6-fluoro-3,4-dihydro-2H-benzo[b][1,4] oxazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)propanoic acid	CO_2H CI C	671.1	8.24 (s, 1H), 8.01 (s, 1H), 7.77 (dd, J = 8.4, 2.2 Hz, 1H), 7.70 7.52 (m, 3H), 7.21-7.09 (m, 2H), 7.00 (d, J = 7.5 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 5.56 (s, 2H), 4.67-4.61 (m, 2H), 4.38-4.31 (m, 4H), 4.00-3.92 (m, 2H), 3.66-3.59 (m, 2H), 2.63 (t, J = 6.8 Hz, 2H), 2.29 (s, 3H)	- 99.5% 10.7 min, 98.0%

		IABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
646	3-(3-((4-(4-(4-(3-Chloro-4-fluoro-2-methylphenoxy)) butanoyl)-3,4-dihydro-2H-benzo[b][1,4]thiazin-8-yl)-1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	N-N S CI F	651.2	7.80-7.74 (m, 2H), 7.72-7.67 (m, 2H), 7.47-7.43 (m, 1H), 7.41-7.36(m, 1H), 7.28 (d, J = 7.4 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.88 (t, J = 8.7 Hz, 1H), 6.66 (dd, J = 8.9, 4.0 Hz, 1H), 5.40 (s, 2H), 4.73 (br. s., 2H), 3.89 (br. s., 2H), 3.65 (t, J = 6.7 Hz, 2H), 3.14 (br. s., 2H), 2.74-2.60 (m, 4H), 2.15-2.07 (m, 2H), 2.01-1.95 (m, 3H)	
647	(S)-2-(3-Chloro-2- methylphenoxy)ethyl 8-(1-(2- chloro-5-(3-hydroxy-4- methoxy-4- oxobutylcarbamoyl)benzyl)- 1H-pyrazol-4-yl)-2H-benzo[b] [1,4]thiazine-4(3H)- carboxylate	N-N CI S CI	713.1	8.16 (s, 1H), 7.88 (dd, J = 8.3, 2.1 Hz, 1H), 7.73 (d, J = 0.7 Hz, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.65 (dd, J = 8.4 Hz, 1H), 7.26 (dd, J = 8.1, 1.3 Hz, 1H), 7.26 (t, J = 9.0 Hz, 1H), 7.15-7.11 (m, 1H), 7.08-6.97 (m, 2H), 5.55 (s, 2H), 4.50-4.43 (m, 2H), 4.27-4.21 (m, 2H), 3.87-3.81 (m, 2H), 3.16-3.11 (m, 2H), 2.21 (s, 3H)	99.7%
648	(S)-4-(4-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-2- hydroxybutanoic acid	N-N CI S CI O O O O O O O O O O O O O O O O O O	699.1	7.97 (d, J = 0.7 Hz, 1H), 7.75 (dd, J = 8.4, 2.2 Hz, 1H), 7.72 (d, J = 0.7 Hz, 1H), 7.62 (d, J = 2.0 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.17-7.00 (m, 3H), 6.96 (d, J = 7.5 Hz, 1H), 5.55 (s, 2H), 4.54 (dd, J = 5.4, 3.6 Hz, 2H), 4.29-4.18 (m, 3H), 3.93-3.87 (m, 2H), 3.57-3.48 (m, 2H), 3.17-3.11 (m, 2H), 2.22 (s, 3H), 2.16-2.05 (m, 1H), 1.97-1.87 (m, 1H)	98.4%
649	4-(4-Chloro-3-((4-(4-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-3- hydroxybutanoic acid	$\begin{array}{c} O \\ N \\ OH \end{array}$	699.2	8.00 (d, J = 0.7 Hz, 1H), 7.81 (dd, J = 8.4, 2.2 Hz, 1H), 7.75 (d, J = 0.7 Hz, 1H), 7.69 (d, J = 2.2 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.31 (d, J = 7.7 Hz, 1H), 7.19-7.03 (m, 3H), 7.00 (d, J = 7.5 Hz, 1H), 6.89 (d, J = 8.1 Hz, 1H), 5.58 (s, 2H), 4.60-4.54 (m, 2H), 4.31-4.21 (m, 3H), 3.95-3.90 (m, 2H), 3.54-3.41 (m, 2H), 3.20-3.14 (m, 2H), 2.61-2.54 (m, 1H), 2.49-2.40 (m, 1H), 2.25 (s, 3H)	98.9%

	60'	7		608	
		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
650	3-(4-Chloro-3-((4-(4-((2-(2-chloro-3-fluorophenoxy) ethoxy)carbonyl)-3,4-dihydro- 2H-benzo[b][1,4]thiazin-8-yl)- 1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	CO_2H N CI N CI N	673.0	7.86 (s, 1H), 7.75 (dd, J = 8.2, 2.2 Hz, 1H), 7.71 (s, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.20 (td, J = 8.4 Hz, 1H), 7.37 (d, J = 8.5, 6.2 Hz, 1H), 7.13-7.08 (m, 1H), 7.07-6.99 (m, 1H), 6.86-6.79 (m, 2H), 5.51 (s, 2H), 4.59-4.54 (m, 2H), 4.35-4.30 (m, 2H), 3.95-3.91 (m, 2H), 3.62 (t, J = 6.7 Hz, 2H), 3.19-3.15 (m, 2H), 2.61 (t, J = 6.7 Hz, 2H)	
651	3-(4-Chloro-3-((4-(4-((2-(3-chloro-2-(trifluoromethyl) phenoxy)ethoxy)carbonyl)-3,4-dihydro-2H-benzo[b][1,4] thiazin-8-yl)-1H-pyrazol-1-yl) methyl)benzamido)propanoic acid	$\begin{array}{c} O \\ CO_2H \\ N \\ N \\ CI \\ S \\ CI \\ O \\ $	723.1	7.84 (s, 1H), 7.74 (dd, J = 8.4, 2.0 Hz, 1H), 7.70 (s, 1H), 7.67 (d, J = 2.0 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.39 (t, J = 8.4 Hz, 1H), 7.32 (d, J = 5.9 Hz, 1H), 7.13-7.08 (m, 2H), 7.07-6.96 (m, 2H), 5.50 (s, 2H), 4.56-4.51 (m, 2H), 4.35-4.28 (m, 2H), 3.95-3.89 (m, 2H), 3.62 (t, J = 6.7 Hz, 2H), 3.18-3.13 (m, 2H), 2.61 (t, J = 6.7 Hz, 2H)	

652 2-(3-Chloro-2-methylphenoxy) ethyl 8-(1-(2-chloro-5-(methylsulfonylcarbamoyl) benzyl)-1H-pyrazol-4-yl)-2Hbenzo[b][1,4]thiazine-4(3H)carboxylate

	609)		610	
		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
653	3-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)-4- oxo-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) benzamido)propanoic acid	О СО ₂ Н	609.3	7.88 (s, 1H), 7.85-7.76 (m, 1H), 7.68 (s, 1H), 7.65-7.40 (m, 5H), 7.32 (d, J = 7.7 Hz, 1H), 6.97 (t, J = 7.8 Hz, 1H), 6.70 (dd, J = 7.7, 4.4 Hz, 2H), 5.46 (s, 2H), 4.23 (t, J = 6.2 Hz, 2H), 3.63 (t, J = 6.8 Hz, 2H), 2.89 (t, J = 7.0 Hz, 2H), 2.64 (t, J = 6.9 Hz, 2H), 2.24-2.08 (m, 5H), 1.95 (s, 3H)	
654	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)-4- oxo-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	SO ₃ H	645.3	8.00 (s, 1H), 7.89-7.71 (m, 3H), 7.64-7.44 (m, 4H), 7.34 (d, J = 7.7 Hz, 1H), 7.03-6.93 (m, 1H), 6.70 (d, J = 7.3 Hz, 2H), 5.51 (s, 2H), 4.24 (t, J = 6.2 Hz, 2H), 3.99 (t, J = 5.1 Hz, 2H), 3.83 (br. s., 2H), 3.13 (br. s., 2H), 2.90 (t, J = 7.0 Hz, 2H), 2.78 (t, J = 6.3 Hz, 2H), 2.92-2.10 (m, 5H), 2.02-1.90 (m, 3H)	

655 3-(3-((4-(1-(4-(2,3-Dimethylphenoxy)butanoyl)-4hydroxy-1,2,3,4tetrahydroquinoiin-5-yl)-1Hpyrazol-1-yl)methyl) benzamido)propanoic acid

8.02 (s, 1H), 7.87-7.70 (m, 3H), 7.59-7.43 (m, 2H), 7.42-7.23 (m, 3H), 6.98 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.9 Hz, 2H), 5.48 (s, 2H), 4.19-3.90 (m, 3H), 3.81 (d, J = 6.2 Hz, 1H), 3.65 (t, J = 6.8 Hz, 2H), 2.98-2.84 (m, 1H), 2.84-2.58 (m, 3H), 2.28-2.08 (m, 6H), 2.04-1.93 (m, 3H), 1.76 (dt, J = 7.0, 3.5 Hz, 1H)

593.3

7.9 min, 95.0% 7.7 min, 95.4%

		IABLE 20-continued			
Ex- am- ple	Name	Fornula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
656	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)-4- hydroxy-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	O N O H O H O N O N	629.2	8.13 (s, 1H), 7.92 (s, 1H), 7.88 7.77 (m, 2H), 7.60-7.45 (m, 2H), 7.45-7.27 (m, 3H), 6.99 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.3 Hz, 2H), 5.54 (s, 2H), 4.13-3.91 (m, 3H), 3.83 (t, J = 6.5 Hz, 3H), 3.11 (t, J = 6.5 Hz, 2H), 2.98-2.66 (m, 2H), 2.31-2.08 (m, 6H), 2.01 (s, 3H), 1.88-1.69 (m, 1H)	95.7% 6.7 min, 95.2%
657	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)-4- methyl-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	N-N SO ₃ H	645.3	7.90-7.72 (m, 3H), 7.58 (s, 1H), 7.54-7.41 (m, 2H), 7.35-7.11 (m, 3H), 6.97 (t, J = 7.8 Hz, 1H), 6.81-6.56 (m, 2H), 5.49 (s, 2H), 4.24 (br. s., 1H), 4.00 (d, J = 9.0 Hz, 1H), 3.83 (t, J = 6.6 Hz, 3H), 3.25-3.04 (m, 3H), 3.00-2.64 (m, 2H), 2.31-2.04 (m, 5H), 2.02-1.88 (m, 2H), 1.81 (br. s., 4H) 0.93 (br. s., 4H)	7.1 min, 99.1%
658	3-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)-4- methyl-1,2,3,4- tetrahydroquinolin-5-yl)-1H- pyrazol-1-yl)methyl) benzamido)propanoic acid	N-N CO ₂ H	609.3	7.89-7.70 (m, 3H), 7.59 (s, 1H), 7.55-7.41 (m, 2H), 7.26 (d, J = 4.2 Hz, 3H), 6.97 (t, J = 1.1 Hz, 1H), 6.80-6.55 (m, 2H), 5.48 (s, 2H), 4.24 (br. s., 1H), 3.99 (d, J = 4.6 Hz, 1H), 3.84 (br. s., 1H), 3.66 (t, J = 6.7 Hz, 2H), 3.17 (br. s., 1H), 2.99-2.71 (m, 2H), 2.67 (t, J = 6.9 Hz, 2H), 2.28-2.08 (m, 2H), 1.81 (br. s., 4H), 0.93 (br. s., 3H)	
659	4-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)methyl) benzamido)-N,N,N- trimethylbutan-1-aminium, TFA salt	N-N N-N N+	636.3	7.81 (br. s., 2H), 7.67 (br. s., 1H), 7.57-7.44 (m, 3H), 7.25 (br. s., 1H), 7.02-6.93 (m, 1H), 6.67 (d, J = 7.3 Hz, 2H), 5.45 (s, 2H), 3.89 (br. s., 2H), 3.80-3.69 (m, 2H), 3.48 (t, J = 6.9 Hz, 2H), 3.13 (s, 9H), 2.92-2.79 (m, 2H), 2.52 (br. s., 2H), 2.22-2.02 (m, 7H), 1.98-1.58 (m, 10H)	10.6 min, 100% 14.9 min, 100%

	613	i		614	
		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
660	2-(4-(3-((4-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5- yl)-1H-pyrazol-1-yl)methyl) benzoyl)piperazin-1-yl) ethanesulfonic acid	ONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	700.2	7.70 (s, 1H), 7.54-7.48 (m, 2H), 7.48-7.40 (m, 4H), 7.27-7.20 (m, 2H), 7.01-6.92 (m, 1H), 6.74-6.61 (m, 2H), 5.44 (s, 2H), 3.87 (br. s., 3H), 3.74 (t, J = 6.7 Hz, 3H), 3.24 (t, J = 6.8 Hz, 4H), 2.80 (t, J = 6.8 Hz, 3H), 2.51 (br. s., 2H), 2.17-2.03 (m, 5H), 1.81-1.77 (m, 5H), 1.37 (dd, J = 6.1, 3.4 Hz 2H)	9.8 min, 99.7%
661	(3-((5-(1-(4-(2,3- Dimethylphenoxy)butanoyl)- 1,2,3,4-tetrahydroquinolin-5- yl)-1,2,4-oxadiazol-3-yl) methyl)benzamido) methanesulfonic acid	N—N SO ₃ H	619.1	7.96 (s, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.64-7.52 (m, 2H), 7.52-7.45 (m, 1H), 6.90 (t, J = 7.8 Hz, 1H), 6.58 (d, J = 7.1 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 4.56 (br. s. 2H), 4.25 (s. 2H), 3.90 (hz)	96.6%

s., 2H), 4.25 (s, 2H), 3.90 (br. s., 2H), 3.79 (t, J = 6.4 Hz, s., 2H), 3.79 (l, J = 0.4 Hz, 2H), 2.95 (br. s., 2H), 2.81 (t, J = 67 Hz, 2H), 2.19-2.09 (m, 2H), 2.05 (br. s, 3H), 1.89-1.79 (m, 5H)

8.05 (s, 1H), 7.91-7.84 (m, 10.8 min, 2H), 7.78 (s, 1H), 7.60 (d, J = 95.0% $8.3 \text{ Hz}, 1\text{H}), 7.24 \text{ (d, J} = 7.3 11.0 min,}$ Hz, 1H), 7.18-7.13 (m, 1H), 92.1% 7.13-7.05 (m, 2H), 6.98 (d, J =7.8 Hz, 1H), 6.87 (d, J = 8.3)Hz, 1H), 5.65 (s, 2H), 4.61-4.44 (m, 5H), 4.25 (br. s., 2H), 3.05 (d, J = 12.9 Hz, 1H), 2.23 (s, 3H), 2.19-2.09 (m, 1H), (8, 5H), 2.19-2.09 (III, 1H), 1.85 (d, J = 5.6 Hz, 1H), 1.06 (td, J = 8.3, 5.2 Hz, 1H), 0.64 (d, J = 4.8 Hz, 1H)

685.2

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
663	(R)-Dimethyl 2-(4-chloro-3- ((4-((1aR,7bS)-3-((2-(3- chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido) pentanedioate	MeO ₂ C ONTERPORT CO ₂ Me	749.3	7.81-7.72 (m, 3H), 7.66 (s, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.28 (br. s., 1H), 7.11-6.94 (m, 4H), 6.71 (d, J = 8.1 Hz, 1H), 5.54 (s, 2H), 4.75 (dd, J = 7.6, 2.8 Hz, 1H), 4.68-4.58 (m, 1H), 4.58-4.40 (m, 2H), 4.25-4.13 (m, 2H), 3.07 (d, J = 12.6 Hz, 1H), 2.55-2.42 (m, 2H), 2.32-2.25 (m, 5H), 2.20-2.05 (m, 2H), 1.83-1.71 (m, 1H), 1.02 (td, J = 8.2, 5.1 Hz, 1H), 0.76 (q, J = 4.8 Hz, 1H)	13.4 min, 95.0% =
664	2,2'-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzoylazanediyl) diacetic acid	N-N CO ₂ H	707.2	7.78 (s, 1H), 7.74 (s, 1H), 7.45 7.40 (m, 1H), 7.40-7.32 (m, 2H), 7.08-7.01 (m, 3H), 7.00-6.95 (m, 1H), 6.70 (d, J = 1.1 Hz, 1H), 5.50 (br. s., 2H), 4.59 (d, J = 11.5 Hz, 1H), 4.46 (br. s., 2H), 4.25 (br. s., 2H), 4.18 (br. s., 2H), 4.07 (br. s., 2H), 3.05 (d, J = 12.1 Hz, 1H), 2.26 (s, 3H), 2.07-2.01 (m, 2H), 1.74 (d, J = 6.0 Hz, 1H), 1.08-0.95 (m, 1H), 0.74 (d, J = 4.4 Hz, 1H)	95.0% 12.8 min, 91.2%
665	(R)-2-(4-Chloro-3-((4 ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido) pentanedioic acid	HO ₂ C O NH CO ₂ H	721.2	7.92 (br. s., 1H), 7.80-7.70 (m, 4H), 7.38 (d, J = 8.2 Hz, 1H), 7.07-7.00 (m, 3H), 6.97 (d, J = 1.1 Hz, 1H), 6.70 (d, J = 1.7 Hz, 1H), 5.57-5.38 (m 2H), 4.70 (br. s., 1H), 4.58 (d, J = 12.6 Hz, 1H), 4.56-4.39 (m, 2H), 4.18 (m, 2H), 3.04 (d, J = 12.6 Hz, 1H), 2.48 (m, 2H), 2.25 (m, 4H), 2.09-2.00 (m, 1H), 1.72 (d, J = 5.5 Hz, 1H), 1.00 (d, J = 5.5 Hz, 1H), 0.74 (d, J = 4.9 Hz, 1H)	99.6% [*]

Ex- am- ple	Name	Formula I	LCMS, [M+H]*	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
666	(S)-2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido) succinic acid	CO ₂ H N-N CI H CI CI CI CI CI CI CI CI	707.2	7.92 (d, J = 7.1 Hz, 1H), 7.86 (br. s., 1H), 7.79-7.69 (m, 3H), 7.41 (s, 1H), 7.07-6.99 (m, 3H), 6.99-6.94 (m, 1H), 6.69 (d, J = 1.1 Hz, 1H), 5.50 (br. s., 2H), 5.02 (br. s., 1H), 4.65-4.54 (m, 1H), 4.52-4.36 (m, 2H), 4.18 (br. s., 2H), 3.14-2.86 (m, 3H), 2.25 (s, 3H), 2.05-1.93 (m, 1H), 1.72 (d, J = 6.0 Hz, 1H), 1.07-0.91 (m, 1H), 0.73 (d, J = 4.4 Hz, 1H)	98.4% 10.1 min, 99.1%
667	(R)-2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido) succinic acid	CO ₂ H O NH CO ₂ H CO ₂ H CO ₂ H CO ₂ H	707.2	7.92 (d, J = 7.1 Hz, 1H), 7.86 (br. s., 1H), 7.79-7.69 (m, 3H), 7.41 (s, 1H), 7.07-6.99 (m, 3H), 6.99-6.94 (m, 1H), 6.69 (d, J = 1.1 Hz, 1H), 5.50 (br. s., 2H), 5.02 (br. s., 1H), 4.65-4.54 (m, 1H), 4.52-4.36 (m, 2H), 4.18 (br. s., 2H), 3.14-2.86 (m, 3H), 2.25 (s, 3H), 2.05-1.93 (m, 1H), 1.72 (d, J = 6.0 Hz, 1H), 1.07-0.91 (m, 1H), 0.73 (d, J = 4.4 Hz, 1H)	98.5% 10.1 min, 98.7%
668	(S)-2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido) pentanedioic acid	HO ₂ C NH CO ₂ H	721.5	7.92 (br. s., 1H), 7.80-7.70 (m, 4H), 7.38 (d, J = 8.2 Hz, 1H), 7.07-7.00 (m, 3H), 6.97 (d, J = 1.1 Hz, 1H), 5.57-5.38 (m, 2H), 4.70 (br. s., 1H), 4.58 (d, J = 12.6 Hz, 1H), 4.56-4.39 (m, 2H), 4.18 (m, 2H), 3.04 (d J = 12.6 Hz, 1H), 2.48 (m, 2H), 2.25 (m, 4H), 2.09-2.00 (m, 1H), 1.72 (d, J = 5.5 Hz, 1H), 1.00 (d, J = 5.5 Hz, 1H), 0.74 (d, J = 4.9 Hz, 1H)	

HPLC-1: Rt min, purity; Ex-HPLC-2: LCMS, ¹H NMR am-Rt min, ple Name Formula I $[M + H]^+$ $(500 \text{ MHz}, \text{MeOD}) \delta$ purity 669 (R)-5-tert-Butyl 1-methyl 2-(4-735.3 7.82 (s, 2H), 7.68 (s, 1H), 7.53 12.8 min, chloro-3-((4-((1aR,7bS)-3-((2-(d, J = 8.1 Hz, 1H), 7.46 (d,J = 7.1 Hz, 1H), 7.13-7.06 (m, 14.7 min,(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-3H), 7.06-6.98 (m, 1H), 6.73 100% tetrahydro-1H-cyclopropa[c] (d, J = 8.1 Hz, 1H), 5.58 (s,quinolin-7-yl)-1H-pyrazol-1-2H), 4.73 (td, J = 7.6, 4.9 Hz, 1H), 4.63 (ddd, J = 11.9, 5.7, yl)methyl)benzamido) pentanedioate 3.7 Hz, 1H), 4.59-4.44 (m, 2H), 4.27-4.18 (m, 2H), 3.79 NH (s, 3H), 3.10 (d, J = 12.1 Hz,1H), 2.51-2.34 (m, 2H), 2.33-2.20 (m, 4H), 2.18-2.04 (m, 2H), 1.79 (d, J = 5.6 Hz, 1H), 1.44 (s, 9H), 1.11-0.98 (m,

1H), 0.83-0.73 (m, 1H)

2,2'-(3-Chloro-4-((4-((1aR,7bS)-3-((2-(3-chloro-2methylphenoxy)ethoxy) carbonyl)-1a,2,3,7btetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1yl)methyl)-5fluorobenzoylazanediyl) diacetic acid

7.77 (d, J = 3.5 Hz, 3H), 7.42(s, 1H), 7.24 (d, J = 8.6 Hz,1H), 7.12-7.02 (m, 4H), 7.02-6.96 (m, 1H), 6.73 (d, J = 8.1 Hz, 1H), 5.63 (br. s., 2H), 4.67-4.57 (m, 1H), 4.55-4.44 (m, 2H), 4.32 (br. s., 2H), 4.26-4.17 (m, 2H), 4.13 (br. s., 2H), 3.08 (d, J = 12.1 Hz, 1H), 2.28(s, 3H), 2.12-2.00 (m, 1H), 1.77 (d, J = 5.8 Hz, 1H), 1.03 (d, J = 5.1 Hz, 1H), 0.78 (d,J = 4.8 Hz, 1 H)

2,2'-(3-Chloro-4-((4-((1aR,7bS)-3-((2-(3-chloro-2methylphenoxy)ethoxy) carbonyl)-1a,2,3,7btetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1yl)methyl)benzoylazanediyl) diacetic acid

7.84 (br. s., 1H), 7.74 (br. s., 1H), 7.53 (br. s., 1H), 7.09 (br. s., 2H), 7.04 (d, J = 8.1 Hz, 1H), 7.01-6.95 (m, 1H), 6.72 (d, J = 8.1 Hz, 1H), 5.55 (br.s., 2H), 4.68-4.57 (m, 1H), 4.55-4.43 (m, 1H), 4.26 (br. s., 2H), 4.21 (br. s., 2H), 4.08 (br. s., 1H), 3.09 (d, J = 11.9 Hz, 1H), 2.28 (s, 3H), 2.14-2.05 (m, 1H), 1.82-1.74 (m, 1H), 1.13-0.97 (m, 1H), 0.78 (br. s., 1H)

9.8 min, 97.4% 9.7 min, 98.1%

Ex- am- ple	Name	Formula I	LCMS, [M+H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
672	(R)-4-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido)-5- methoxy-5-oxopentanoic acid	HO ₂ C O NH CO ₂ Me	735.3	7.87-7.81 (m, 1H), 7.79 (s, 1H), 7.75 (s, 1H), 7.52-7.47 (m, 1H), 7.35 (d, J = 7.1 Hz, 1H), 7.08-7.00 (m, 2H), 7.00-6.93 (m, 1H), 6.69 (d, J = 1.1 Hz, 1H), 5.65-5.50 (m, 2H), 4.72 (td, J = 8.2, 4.4 Hz, 1H), 4.64-4.56 (m, 1H), 4.56-4.38 (m, 2H), 3.76 (s, 3H), 3.05 (d, J = 13.2 Hz, 1H), 2.62-2.41 (m, 2H), 2.36-2.16 (m, 5H), 2.09-1.99 (m, 1H), 1.76 (d, J = 5.5 Hz, 1H), 1.01 (dd, J = 13.5, 8.0 Hz, 1H), 0.76 (d, J = 4.4 Hz, 1H)	N/A
673	(S)-2-(3-((4-((1aR,7bS)-3-((2-(3-Chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)-4- methoxybenzamido) pentanedioic acid	HO ₂ C NH CO ₂ H	717.4	7.93 (d, J = 8.1 Hz, 1H), 7.88 (br. s, 1H), 7.79 (s, 1H), 7.76-7.68 (m, 2H), 7.07 (t, J = 8.2 Hz, 3H), 7.02-6.98 (m, 1H), 6.95 (d, J = 8.3 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 5.45 (br. s., 2H), 4.82-4.72 (m, 1H), 4.67-4.58 (m, 1H), 4.58-4.41 (m, 2H), 3.91 (s, 3H), 3.08 (d, J = 12.6 Hz, 1H), 2.54 (d, J = 7.6 Hz, 2H), 2.33-2.23 (m, 4H), 2.12-2.03 (m, 1H), 1.76 (d, J = 5.3 Hz, 1H), 1.03 (d, J = 5.3 Hz, 1H), 0.79 (d, J = 4.0 Hz, 1H)	
674	(S)-4-(3-((4-((1aR,7bS)-3-((2-(3-Chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-4-methoxybenzamido)-5-methoxy-5-oxopentanoic acid	HO ₂ C O NH CO ₂ Me	731.4	7.97 (d, J = 8.3 Hz, 1H), 7.84 (br.s., 2H), 7.74 (br. s., 1H), 7.43 (d, J = 6.3 Hz, 1H), 7.15-7.05 (m, 3H), 7.05-6.95 (m, 2H), 6.74 (d, J = 7.8 Hz, 1H), 5.52 (br. s., 2H), 4.77 (br. s., 1H), 4.68-4.56 (m, 2H), 4.52 (d, J = 9.3 Hz, 2H), 3.95 (s, 3H), 3.80 (s, 3H), 3.09 (d, J = 12.6 Hz, 1H), 2.68-2.45 (m, 2H), 2.40-2.18 (m, 5H), 2.06 (br. s., 1H), 1.80 (br. s., 1H), 1.12-1.00 (m, 1H), 0.87-0.75 (m, 1H)	N/A

	023	TABLE 20-continued		024	
Ex- am- ple	Name	Formula I	LCMS, [M+H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
675	1-(4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoyl)-4-hydroxypiperidine-4-carboxylic acid	N-N CI	719.3	7.97 (s, 1H), 7.75 (s, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.42 (dd, J = 8.1, 1.8 Hz, 1H), 7.42 (dd, J = 8.1, 1.8 Hz, 1H), 7.16 (d, J = 7. Hz, 1H), 7.13 -7.04 (m, 2H), 7.03 -6.95 (m, 2H), 6.87 (d, J = 8.1 Hz, 1H), 5.60 (s, 2H), 4.63 -4.44 (m, 3H), 4.35 (br. s., 1H), 4.25 (br. s., 2H), 3.59 3.46 (m, 1H), 3.42 (br. s., 1H) 3.06 (d, J = 12.6 Hz, 1H), 2.28 2.11 (m, 4H), 2.01 (br. s., 1H), 1.96 (br. s., 1H), 1.90 -1.77 (m, 2H), 1.63 (br. s., 1H) 1.12 -0.98 (m, 1H), 0.63 (d, J = 4.8 Hz, 1H)	91.5% N/A 6
676	(1aR,7bS)-2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(2-chloro-5-(2-oxotetrahydrofuran-3-ylcarbamoyl)benzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa[c]quinoline-3(7bH)-carboxylate	N-N H CI H M CI CI CI	675.3	7.81-7.77 (m, 1H), 7.76-7.70 (m, 1H), 7.50 (d, J = 8.2 Hz, 1H), 7.13 (d, J = 6.6 Hz, 1H), 7.09-7.02 (m, 2H), 7.00-6.95 (m, 1H), 6.69 (d, J = 8.2 Hz, 1H), 5.52 (s, 2H), 4.74 (ddd, J = 11.5, 8.8, 6.6 Hz, 1H), 4.64-4.55 (m, 1H), 4.54-4.39 (m, 3H), 4.36-4.26 (m, 1H), 4.23-4.09 (m, 2H), 3.05 (d, J = 13.2 Hz, 1H), 2.34-2.22 (m, 4H), 2.05 (td, J = 8.5 4.9 Hz, 1H), 1.81-1.70 (m, 1H), 1.03 (td, J = 8.1, 5.2 Hz, 1H), 0.80-0.70 (m, 1H)	10.8 min, 96.2%

677 2-(4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)-4-hydroxybutanoic acid, Na salt

7.95-7.90 (m, 1H), 7.82 (dd, 10.9 min, J = 8.3, 1.8 Hz, 1H), 7.70 (s, 95.2% 2H), 7.56 (d, J = 8.3 Hz, 1H), 11.1 min, 7.22-7.11 (m, 2H), 7.10 - 96.7% 7.02 (m, 2H), 6.99-6.92 (m, 1H), 6.85 (d, J = 8.1 Hz, 1H), 5.57 (s, 2H), 4.58-4.44 (m, 4H), 4.23 (br. s., 2H), 3.66 (t, J = 6.6 Hz, 2H), 3.03 (d, J = 12.9 Hz, 1H), 2.25-2.11 (m, 5H), 1.98-1.75 (m, 2H), 1.07-0.96 (m, 1H), 0.61 (d, J = 4.5 Hz, 1H)

693.3

		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
678	(S)-2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido)-3- hydroxypropanoic acid	OH CO ₂ H NNN CI HI CI	679.2	8.11 (br. s., 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.82-7.73 (m, 2H), 7.69 (s, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.03 (t, J = 8.0 Hz, 2H), 6.98-6.90 (m, 1H), 6.69 (d, J = 7.7 Hz, 1H), 5.62-5.43 (m, 1H), 4.88 (d, J = 7.1 Hz, 1H), 4.63-4.54 (m, 1H), 4.54-4.36 (m, 2H), 4.16 (d, J = 9.9 Hz, 2H), 4.00 (d, J = 9. Hz, 1H), 3.03 (d, J = 12.6 Hz, 1H), 2.24 (s, 2H), 2.05-1.92 (m, 1H), 1.73 (d, J = 6.0 Hz, 1H), 1.07-0.94 (m, 1H), 0.74 (d, J = 4.9 Hz, 1H)	95.0% 11.2 min, 97.2%
679	2-(4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)acetic acid	N-N CO ₂ H	649.2	7.91-7.82 (m, 1H), 7.77 (s, 1H), 7.50 (d, J = 8.2 Hz, 1H), 7.45-7.40 (m, 1H), 7.07 (d, J = 3.3 Hz, 1H), 7.03 (d, J = 8.2 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 5.54 (s, 2H), 4.66-4.57 (m, 1H), 4.55-4.35 (m, 2H), 4.24-4.12 (m, 3H), 3.06 (d, J = 12 Hz, 2H), 2.26 (s, 3H), 2.09-1.95 (m, 1H), 1.76 (d, J = 5.5 Hz, 1H), 1.12-0.95 (m, 1H), 0.83-0.70 (m, 1H)	= 11.3 min, 100%
680	(R)-2-(3-((4-((1aR,7bS)-3-((2-(3-Chloro-2-methylphenoxy) ethoxy)carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)-3-hydroxypropanoic acid	N—N H H CO ₂ H	645.3	8.10 (br. s., 1H), 7.87 (d, J = 7.3 Hz, 1H), 7.81 (s, 1H), 7.78 7.69 (m, 2H), 7.46 (d, J = 8.3 Hz, 1H), 7.15 (d, J = 7.3 Hz, 2H), 7.10-7.03 (m, 3H), 6.92-6.85 (m, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.55 (br. s., 2H), 4.86 (br.s., 1H), 4.62 (d, J = 12.4 Hz, 1H), 4.59-4.34 (m, 2H), 4.30-4.15 (m, 3H), 4.09-3.98 (m, 1H), 3.07 (d, J = 12.4 Hz, 1H), 2.23 (s, 3H), 2.10-1.97 (m, 1H), 1.76 (d, J = 5.3 Hz, 1H), 1.12-0.96 (m, 1H), 0.80 (d, J = 4.8 Hz, 1H)	s-

Ex- am- ple	Name	Formula I	LCMS, [M + H]*	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
681	(1aR,7bS)-2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(2-chloro-5-(1-methoxy-4-(methylthio)-1-oxobutan-2-ylcarbamoyl)benzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa[c]quinoline-3(7bH)-carboxylate	SMe CO ₂ Me	723.1	7.85 (dd, J = 8.5, 1.9 Hz, 1H), 7.80-7.71 (m, 2H), 7.69- 7.61 (m, 1H), 7.49 (dd, J = 8.2, 5.5 Hz, 1H), 7.09-7.00 (m, 2H), 6.99-6.93 (m, 1H), 6.69 (d, J = 7.7 Hz, 1H), 5.65- 5.39 (m, 2H), 4.97-4.81 (m, 1H), 4.65-4.54 (m, 1H), 4.53- 4.37 (m, 2H), 4.18 (br. s., 2H), 3.04 (br. s., 1H), 2.63- 2.40 (m, 2H), 2.25 (s, 2H), 2.11-1.98 (m, 5H), 2.12- 1.91 (m, 2H), 1.82-1.65 (m, 1H), 1.13-0.92 (m, 1H), 0.82- 0.71 (m, 1H)	91.2% 11.5 min, 87.4%
682	(3R,5R)-7-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido)-3,5- dihydroxyheptanoic acid	N-N HO CO ₂ H	751.3	7.82 (s, 1H), 7.66 (dd, J = 8.8, 2.2 Hz, 1H), 7.61 (s, 1H), 7.52 (d, J = 1.6 Hz, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.08 (br. s., 1H), 7.06-7.00 (m, 1H), 6.97 (d, J = 8.2 Hz, 2H), 6.86 (d, J = 8.2 Hz, 1H), 6.75 (d, J = 1. Hz, 1H), 5.47 (s, 2H), 5.39 (s, 4H), 4.50-4.35 (m, 3H), 4.13 (br. s., 2H), 4.05-3.96 (m, 1H), 3.83-3.72 (m, 1H), 3.45-3.32 (m, 3H), 2.93 (d, J = 12.1 Hz, 1H), 2.33-2.15 (m, 2H), 2.12-2.01 (m, 4H), 1.77-1.64 (m, 2H), 1.63-1.47 (m, 3H), 1.19 (s, 1H), 0.92 (td, J = 8.2, 4.9 Hz, 1H), 0.51 (d, J = 4.9 Hz, 1H)	9 97.9% 11.2 min, 99.4%
683	2-(4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)-4-(methylsulfonyl)butanoic acid	N-N CO ₂ H	755.2	7.93 (s, 1H), 7.82 (dd, J = 8.2, 2.2 Hz, 1H), 7.71 (s, 1H), 7.65 (s, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.18 (br. s., 1H), 7.15-7.11 (m, 1H), 7.10-7.01 (m, 2H), 6.95 (d, J = 8.2 Hz, 1H), 5.84 (d, J = 8.2 Hz, 1H), 5.87 (s, 2H), 4.69 (dd, J = 8.8, 4.9 Hz, 1H), 4.60-4.41 (m, 2H), 4.22 (br. s., 2H), 3.27-3.14 (m, 1H), 3.02 (d, J = 12.6 Hz, 1H), 2.95 (s, 2H), 2.55-2.40 (m, 1H), 2.33-2.23 (m, 1H), 2.23-2.08 (m, 4H), 1.83-1.70 (m, 1H), 1.02 (td, J = 8.1, 5.2 Hz, 1H), 0.61 (d, J = 4.9 Hz, 1H)	97.5% 11.2 min, 98.8%

	TABLE 20-continued				
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
684	(1aR,7bS)-2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(2-chloro-5-(1-methoxy-3-(methylsulfonamido)-1-oxopropan-2-ylcarbamoyl) benzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa[c] quinoline-3(7bH)-carboxylate	MeO ₂ C H / / / / / / / / / / / / / / / / / /	770.3	7.83-7.77 (m, 3H), 7.70 (s, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.15-7.03 (m, 3H), 7.03-6.98 (m, 1H), 6.74 (d, J = 8.1 Hz, 1H), 5.55 (s, 2H), 5.17 (br. s., 1H), 4.97-4.79 (m, 1H), 4.69-4.38 (m, 3H), 4.21 (d, J = 3.8 Hz, 2H), 3.82 (s, 3H), 3.68 (br. s., 2H), 3.13-3.05 (m, 1H), 3.10 (d, J = 12.6 Hz, 1H), 2.96 (s, 3H), 2.29 (s, 3H), 2.22-2.05 (m, 1H), 1.79 (d, J = 5.6 Hz, 1H), 1.15-0.98 (m, 1H), 0.78 (d, J = 5.1 Hz, 1H)	95.0%
685	2-(4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)-3-(methylsulfonamido)propanoic acid	N-N CI HO2C H N S O CI CI CI	756.1	8.27 (s, 1H), 8.06 (d, J = 7.1 Hz, 1H), 7.87 (dd, J = 8.5, 1.9 Hz, 1H), 7.75 (d, J = 4.9 Hz, 2H), 7.46 (d, J = 8.8 Hz, 1H), 7.11-7.02 (m, 3H), 6.98 (s, 1H), 6.71 (d, J = 7.7 Hz, 1H), 6.32-6.15 (m, 1H), 5.75- 5.40 (m, 2H), 5.05 (d, J = 7.1 Hz, 1H), 4.65-4.59 (m, 1H), 4.55-4.37 (m, 2H), 4.20 (d,	97.9%

686 (1aR,7bS)-2-(3-Chloro-2methylphenoxy)ethyl 7-(1-(2chloro-5-((S)-2oxotetrahydrofuran-3ylcarbamoyl)benzyl)-1Hpyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa[c]quinoline-3(7bH)-carboxylate

Hz, 1H), 5.52 (s, 2H), 4.74 (ddd, J = 11.5, 8.8, 6.6 Hz, 1H), 4.64-4.55 (m, 1H), 4.54-4.39 (m, 3H), 4.36-4.26 (m, 1H), 4.23-4.09 (m, 2H), 3.05 (d, J = 13.2 Hz, 1H), 2.342.22 (m, 4H), 2.05 (td, J = 8.5, 4.9 Hz, 1H), 1.81-1.70 (m, 1H), 1.03 (td, J = 8.1, 5.2 Hz,

675.3

J = 5.5 Hz, 2H), 3.83 (dd, J = 13.7, 3.8 Hz, 1H), 3.67-3.57 (m, 1H), 3.10-3.04 (m, 2H), 2.90 (s, 3H), 2.27 (s, 3H), 2.15-2.07 (m, 1H), 1.75 (d, J = 6.0 Hz, 1H), 1.06-0.95 (m, 1H), 0.76-0.68 (m, 1H)

 $\begin{array}{lll} 7.81\text{--}7.77 \; (m, \, 1\text{H}), \, 7.76\text{-} & 11.9 \; \text{min}, \\ 7.70 \; (m, \, 1\text{H}), \, 7.50 \; (d, \, J=8.2 & 94.8\% \\ \text{Hz}, \, 1\text{H}), \, 7.13 \; (d, \, J=6.6 \; \text{Hz}, & 13.3 \; \text{min}, \end{array}$ 1H), 7.09-7.02 (m, 2H), 7.00-6.95 (m, 1H), 6.69 (d, J = 8.2 1H), 0.80-0.70 (m, 1H)

		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
687	2-(4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-N-(2-methoxy-2-oxoethyl)benzamido)acetic acid	N-N CO ₂ H	N/A	7.92 (s, 1H), 7.74 (s, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 7.3 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 5.59 (s, 2H), 4.62-4.46 (m, 3H), 4.25 (dd, J = 9.9, 6.1 Hz, 4H), 4.10 (d, J = 13.9 Hz, 2H), 3.72-3.60 (m, 1H), 3.65 (s, 1H), 3.75 (s, 2H), 3.05 (d, J = 12.9 Hz, 1H), 2.28-2.13 (m, 4H), 1.83 (br. s., 1H), 1.00 (d, J = 5.1 Hz, 1H), 0.64 (d, J = 4.3 Hz, 1H)	
688	(S)-2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H- cyclopropa[c]quinolin-7-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-4- hydroxybutanoic acid	N-N CO ₂ H	693.2	7.95-7.90 (m, 1H), 7.82 (dd, J = 8.3, 1.8 Hz, 1H), 7.70 (s, 2H), 7.56 (d, J = 8.3 Hz, 1H), 7.22-7.11 (m, 2H), 7.10-7.02 (m, 2H), 6.99-6.92 (m, 1H), 6.85 (d, J = 8.1 Hz, 1H), 5.57 (s, 2H), 4.58-4.44 (m, 4H), 4.23 (br. s., 2H), 3.03 (d, J = 12.9 Hz, 1H), 2.25-2.11 (m, 5H), 1.98-1.75 (m, 2H), 1.07-0.96 (m, 1H), 0.61 (d, J = 4.5 Hz, 1H)	
689	(S)-2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-G)-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido)-3- methoxypropanoic acid	N-N CO ₂ H	693.2	7.94 (d, J = 1.6 Hz, 1H), 7.84 (dd, J = 8.2, 2.2 Hz, 1H), 7.76 (d, J = 5.5 Hz, 2H), 7.57-7.43 (m, 2H), 7.12-7.02 (m, 3H), 7.00-6.94 (m, 1H), 6.72 (d, J = 8.2 Hz, 1H), 5.69-5.44 (m, 2H), 5.07-4.93 (m, 1H), 4.56-4.39 (m, 2H), 4.28-4.14 (m, 2H), 3.95 (dd, J = 9.6, 4.1 Hz, 1H), 3.76 (dd, J = 9.9, 3.8 Hz, 1H), 3.37 (s, 3H), 3.07 (d, J = 12.6 Hz, 1H), 2.28 (s, 3H), 2.11-2.04 (m, 1H), 1.77 (d, J = 5.5 Hz, 1H), 1.04 (td, J = 8.1, 5.2 Hz, 1H), 0.84-0.71 (m, 1H)	93.3% 11.1 min, 100%

		TABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
690	(S)-4-Carboxy-4-(4-chloro-3- ((4-((1aR,7bS)-3-((2-(3-chloro- 2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cycloproa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido)-N,N,N- trimethylbutan-1-aminium, TFA salt	N-N CI H CI H CO O O O O O O O O O O O O O O O O O	748.1	8.72 (d, J = 8.2 Hz, 1H), 7.97 (s, 1H), 7.83 (dd, J = 8.2, 2.2 Hz, 1H), 7.72 (s, 1H), 7.65 (d, J = 1.6 Hz, 1H), 7.58 (s, 1H), 7.21 (d, J = 7.1 Hz, 1H), 7.19-7.11 (m, 1H), 7.12-7.04 (m, 2H), 6.97 (d, J = 7.7 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 5.59 (s, 2H), 4.72-4.64 (m, 1H), 4.59-4.43 (m, 3H), 4.24 (br. s., 2H), 3.50-3.35 (m, 2H), 3.10 (s, 6H), 3.04 (d, J = 12.6 Hz, 1H), 2.24-2.13 (m, 4H), 2.11-2.01 (m, 1H), 1.99-1.74 (m, 4H), 1.03 (td, J = 8.2 4.9 Hz, 1H), 0.63 (d, J = 4.9 Hz, 1H)	97.2% 12.8 min, 99.1%
691	(S)-2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido)-3- (methylsulfonamido)propanoic acid	N-N CI H CI	756.2	8.21 (s, 1H), 8.10 (d, J = 7.3 Hz, 1H), 7.88 (dd, J = 8.3, 2.0 Hz, 1H), 7.77 (d, J = 7.1 Hz, 2H), 7.49 (d, J = 8.3 Hz, 1H), 7.16-6.96 (m, 4H), 6.73 (d, J = 8.1 Hz, 1H), 6.23 (br. s., 1H), 5.71-5.46 (m, 2H), 5.09-4.99 (m, 1H), 4.68-4.58 (m, 1H), 4.54-4.50 (m 3H), 4.28-4.15 (m, 2H), 3.82 (d, J = 13.4 Hz, 1H), 3.09 (d, J = 12.4 Hz, 1H), 3.09 (d, J = 12.4 Hz, 1H), 2.84 (s, 3H), 2.29 (s, 3H), 2.08 (td, J = 8.6, 4.8 Hz, 1H), 1.87-1.65 (m, 1H), 1.04 (td, J = 8.3, 5.2 Hz, 1H), 0.77 (q, J = 4.7 Hz, 1H)	97.2% 11.0 min, 98.8%
692	(S)-2-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido)-3- (cyclopropanesulfonamido) propanoic acid	$\begin{array}{c} O \\ O \\ O \\ O \\ O \end{array}$ $\begin{array}{c} O \\ H \\ O \\ O \\ O \end{array}$ $\begin{array}{c} O \\ H \\ O \\ O \\ O \end{array}$ $\begin{array}{c} O \\ H \\ O \\ O \\ O \end{array}$	782.2	8.25 (d, J = 8.2 Hz, 1H), 8.03 (d, J = 1.6 Hz, 1H), 7.85-7.73 (m, 6H), 7.69 (s, 1H), 7.46 (d, J = 8.2 Hz, 1H), 6.98 (s, 1H), 7.14-6.93 (m, 4H), 6.71 (d, J = 1.1 Hz, 1H), 6.23 (br. s., 1H), 5.73-5.38 (m, 2H), 5.04-4.93 (m, 1H), 4.67-4.58 (m, 1H), 4.53-4.39 (m, 2H), 4.28-4.03 (m, 2H), 3.80 (d, J = 13.7 Hz, 1H), 3.06 (d, J = 12.6 Hz, 1H), 2.27 (s, 4H), 2.09-2.02 (m, 1H), 1.84-1.65 (m, 1H), 1.15-1.00 (m, 1H), 0.99-0.89 (m, 1H), 0.84-0.70 (m, 4H)	91.3% 11.2 min, 95.2%
693	(2S,4S)-1-(4-Chloro-3-((4- ((1aR,7bS)-3-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cycloprog[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzoyl)-4- hydroxypyrrolidine-2- carboxylic acid	N N N OH	705.2	7.78 (s, 1H), 7.73 (s, 1H), 7.45 7.44 (m, 1H), 7.41 (s, 1H), 7.10-6.96 (m, 5H), 6.72 (d, J = 8.3 Hz, 1H), 5.54 (s, 2H), 4.76 (d, J = 7.8 Hz, 1H), 4.66- 4.58 (m, 1H), 4.55-4.32 (m, 4H), 4.26-4.15 (m, 2H), 3.72 (br. s., 1H), 3.62 (br. s., 1H), 3.08 (d, J = 12.4 Hz, 1H), 2.41 2.32 (m, 1H), 2.28 (s, 3H), 2.12-2.02 (m, 2H), 1.77 (d, J = 5.6 Hz, 1H), 1.09-0.97 (m, 1H), 0.77 (d, J = 4.8 Hz, 1H)	95.9% 10.9 min, 100%

		IABLE 20-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
694	(1aR,7bS)-2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(2-chloro-5-((2S,4S)-4-hydroxy-2-(methoxycarbonyl) pyrrolidine-1-carbonyl) benzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa[c] quinoline-3(7bH)-carboxylate	N-N OH OH	719.3	7.81 (s, 1H), 7.68 (s, 1H), 7.51 (s, 2H), 7.30 (br. s., 1H), 7.14-6.94 (m, 5H), 6.71 (d, J = 8.1 Hz, 1H), 5.55 (s, 2H), 4.69-4.56 (m, 2H), 4.54-4.43 (m, 2H), 4.38 (br. s., 1H), 4.25-4.13 (m, 3H), 3.83 (s, 4H), 3.64 (br. s., 3H), 3.08 (d, J = 12.6 Hz, 1H), 2.52-2.34 (m, 1H), 2.27 (s, 3H), 2.17-1.97 (m, 2H), 1.77 (d, J = 6.1 Hz, 1H), 1.12-0.97 (m, 1H), 0.76 (d, J = 4.8 Hz, 1H)	N/A
695	(1aR,7bS)-2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(5-(4-(aminomethyl)-4-hydroxypiperidine-1-carbonyl)-2-chlorobenzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa[c]quinoline-3(7bH)-carboxylate, TFA salt	N-N OH NH2	704.1	NMR bad, intermediate compound	5.3 min, 95.0% 8.8 min, 95.0%
696	(R)-2-Amino-3-(4-chloro-3- ((4-((1aR,7bS)-3-((2-(3-chloro- 2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido) propanoic acid, TFA salt	N-N CO ₂ H	678.1	8.49 (br. s., 4H), 7.87 (br. s., 1H), 7.71 (d, J = 12.9 Hz, 2H), 7.55 (br. s., 1H), 7.25-7.09 (m, 2H), 7.09-6.89 (m, 5H), 6.70 (d, J = 8.0 Hz, 1H), 5.35 (br. s., 1H), 4.56 (br. s., 1H), 4.45 (br. s., 3H), 4.03-3.78 (m, 2H), 3.03 (d, J = 11.8 Hz, 1H), 2.26 (s, 3H), 2.00 (d, J = 4.7 Hz, 1H), 1.69 (d, J = 5.5 Hz, 1H), 0.97 (br. s., 1H), 0.71 (br. s., 1H)	7.5 min, 99.3% 9.2 min, 98.3%
697	(1aR,7bS)-2-(3-Chloro-2-methylphenoxy)ethyl 7-(1-(2-chloro-5-(4-hydroxy-4-(methylsulfonamidomethyl) piperidine-1-carbonyl)benzyl)-1H-pyrazol-4-yl)-1a,2-dihydro-1H-cyclopropa[c] quinoline-3(7bH)-carboxylate	N-N OH NOH NOH NOH NOH NOH NOH NOH NOH NOH	782.1	7.61 (s, 1H), 7.51 (s, 1H), 7.29 (d, J = 8.3 Hz, 1H), 7.16 (dd, J = 8.2, 1.9 Hz, 1H), 6.94-6.77 (m, 5H), 6.53 (d, J = 7.8 Hz, 1H), 5.35 (s, 2H), 4.49 (br. s., 1H), 4.41 (d, J = 6.6 Hz, 1H), 4.38-4.24 (m, 3H), 4.07-3.92 (m, 3H), 3.24-3.01 (m, 2H), 2.91 (d, J = 15.2 Hz, 3H), 2.79 (s, 4H), 2.09 (s, 3H), 1.97 1.89 (m, 1H), 1.57 (d, J = 7.6 Hz, 5H), 0.94-0.77 (m, 1H), 0.59 (d, J = 3.8 Hz, 1H)	90.2% 9.8 min, 89.0%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (500 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
698	2-(3-(4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)oxetan-3-yl)acetic acid	N-N CI H M N-N CI	705.1	7.82-7.71 (m, 3H), 7.64 (d, J 8.3 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.26 (br. s., 1H), 7.1 7.05 (m, 3H), 7.00 (s, 1H), 6.74 (d, J = 7.7 Hz, 1H), 5.45 (s, 2H), 4.68-4.62 (m, 2H), 4.58-4.42 (m, 3H), 4.29- 4.16 (m, 2H), 3.99-3.88 (m, 2H), 3.18-3.04 (m, 2H), 2.77 (dd, J = 17.9, 1.9 Hz, 1H), 2.29 (s, 3H), 2.11 (td, J = 8.5 4.8 Hz, 1H), 1.86-1.72 (m, 1H), 1.05 (d, J = 5.8 Hz, 1H) 0.79 (d, J = 4.7 Hz, 1H)	97.8% 3- 12.9 min, 100%
699	1-((4-Chloro-3-((4-((1aR,7bS)-3-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)methyl) cyclopropanecarboxylic acid	N-N CI H M O O O O	688.9	7.80 (s, 1H), 7.77 (dd, J = 8.3 2.3 Hz, 1H), 7.72 (s, 1H), 7.6 (br. s., 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.14-7.04 (m, 3H), 7.02-6.98 (m, 1H), 6.74 (d, J 8.1 Hz, 1H), 5.55 (s, 2H), 4.67-4.58 (m, 1H), 4.53 (d, J = 14.4 Hz, 2H), 4.25-4.18 (m, 2H), 3.61 (d, J = 6.1 Hz, 2H), 2.29 (s, 3H), 2.14-2.08 (m, 1H), 1.78 (d, J = 5.6 Hz, 1H), 1.39 (d, J = 3.5 Hz, 2H) 1.15 (q, J = 3.5 Hz, 2H), 1.04 (td, J = 8.3, 4.9 Hz, 1H), 0.83 0.71 (m, 1H)	5 =

The compounds exemplified in Table 21 were prepared in a manner analogous to Example 139.

TABLE 21

		11 10 10 21		
Ex- am- ple	Name	Formula I	LCMS, [M + ¹ H NMR (400 MHz, H] ⁺ MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
700	3-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	N-N F O	683.2 7.99 (s, 1H), 7.84 (d Hz, 2H), 7.73-7.55 (i 7.27-7.06 (m, 2H), 7 6.92 (m, 1H), 6.83 (d Hz, 1H), 6.73 (d, J = 1H), 5.69-5.52 (m, 2 (d, J = 13.4 Hz, 1H), J = 11.9 Hz, 1H), 4.6 (m, 2H), 3.72-3.45 (i 2.94-2.77 (m, 1H), 2 6.9 Hz, 2H), 2.57-2. 3H), 2.05 (dq, J = 13 Hz, 2H), 1.92 (s, 3H J = 15.0 Hz, 1H)	m, 2H), 98.3% .04- 8.7 min, 1, J = 7.7 98.4% 8.4 Hz, H), 4.78 4.44 (d, 10-3.79 m, 3H), .66 (t, J = 18 (m, .0, 6.5

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
701	4-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)butanoic acid	CO_2H CO_2H O O O O O O O	697.3	8.00 (s, 1H), 7.85 (d, J = 10.8 Hz, 2H), 7.74-7.55 (m, 2H), 7.24-7.08 (m, 2H), 7.06-6.92 (m, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 5.61 (d, J = 3.1 Hz, 2H), 4.81 (d, J = 8.6 Hz, 1H), 4.44 (d, J = 12.1 Hz, 1H), 3.99-3.78 (m, 2H), 3.63-3.38 (m, 3H), 2.84 (t, J = 11.6 Hz, 1H), 2.59-2.17 (m, 5H), 2.14-1.72 (m, 8H)	9.4 min, 98.4% 8.8 min, 98.7%
702	(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) methanesulfonic acid	N-N HN SO ₃ H O Cl	705.2	8.00 (s, 1H), 7.93 (s, 1H), 7.89 (s, 1H), 7.75 (dd, J 9.9, 1.5 Hz, 1H), 7.63 (dd, J = 6.4, 3.1 Hz, 1H), 7.23- 7.09 (m, 2H), 7.04-6.95 (m, 1H), 6.84 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 5.62 (d, J = 2.4 Hz, 2H), 4.82- 4.73 (m, 1H), 4.53 (s, 2H), 4.44 (d, J = 11.9 Hz, 1H), 4.00-3.81 (m, 2H), 3.64- 3.48 (m, 1H), 2.92-2.77 (m, 1H), 2.58-2.17 (m, 3H), 2.15- 1.98 (m, 3H), 1.92 (s, 3H), 1.79 (d, J = 14.5 Hz, 1H)	N/A 7.4 min, 100%
703	2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O SO ₃ H	719.2	.99 (s, 1H), 7.88 (s, 1H), 7.84 (s, 1H), 7.72-7.59 (m, 2H), 7.17-7.12 (m, 2H), 7.04-6.95 (m, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 4.78 (d, J = 13.0 Hz, 1H), 4.44 (d, J = 11.9 Hz, 1H), 4.03-3.72 (m, 4H), 3.56 (t, J = 10.9 Hz, 1H), 3.11 (t, J = 6.7 Hz, 2H), 2.84 (t, J = 11.7 Hz, 1H), 2.58-2.17 (m, 3H), 2.15-1.97 (m, 2H), 1.92 (s, 3H), 1.79 (d, J = 15.0 Hz, 1H)	8.3 min, 100% 7.5 min, 98.2%
704	(3-Chloro-4-((4-(5-(4-(2,3-dimethylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) methanesulfonic acid	N-N HN SO ₃ H	685.2	$\begin{array}{l} 8.00 \ (s,1H), 7.93 \ (d,J=1.1 \\ Hz,1H), 7.89 \ (d,J=0.7 \ Hz,1H), 7.75 \ (dd,J=10.1,1.5 \\ Hz,1H), 7.63 \ (dd,J=5.9,3.7 \ Hz,1H), 7.19-7.09 \ (m,2H), 6.92 \ (t,J=7.9 \ Hz,1H), 6.64 \ (t,J=8.0 \ Hz,2H), 5.61 \ (dd,J=3.6,1.4 \ Hz,2H), 4.83-4.72 \ (m,1H), 4.53 \ (s,2H), 4.44 \ (d,J=12.1 \ Hz,1H), 3.97-3.76 \ (m,2H), 3.64-3.48 \ (m,1H), 2.93-2.73 \ (m,1H), 2.56-2.18 \ (m,3H), 2.15-1.96 \ (m,8H), 1.89-1.71 \ (m,4H) \end{array}$	10.9 min, 99.7% 7.3 min, 100%

		TABLE 21-continued		
Ex- am- ple	Name	Formula I	LCMS, [M + ¹ H NMR (400 MHz, H] ⁺ MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
705	2-(3-Chloro-4-((4-(5-(4-(2,3-dimethylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O SO ₃ H	699.2 7.98 (s, 1H), 7.88 (s, 1H), 7.84 (d, J = 1.3 Hz, 1H), 7.73-7.55 (m, 2H), 7.18-7.08 (m, 2H), 6.92 (t, J = 7.9 Hz, 1H), 6.64 (t, J = 7.6 Hz, 2H), 5.60 (dd, J = 4.0, 1.3 Hz, 2H), 4.82-4.72 (m, 1H), 4.44 (d, J = 11.9 Hz, 1H), 3.94-3.77 (m, 4H), 3.55 (td, J = 11.7, 1.8 Hz, 1H), 3.11 (t, J = 6.8 Hz, 2H), 2.92-2.77 (m, 1H), 2.56-2.17 (m, 3H), 2.15-1.94 (m, 6H), 1.86-1.72 (m, 4H)	10.8 min, 99.4% 7.7 min, 99.4%
706	3-(3-Chloro-4-((4-(5-(4-(2,3-dimethylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	N-N HN CO ₂ H	663.3 7.96 (s, 1H), 7.84 (s, 1H), 7.80 (s, 1H), 7.69-7.54 (m, 2H), 7.16-7.07 (m, 2H), 6.89 (t, J = 7.8 Hz, 1H), 6.61 (t, J = 7.4 Hz, 2H), 5.64-5.50 (m, 2H), 4.79-4.70 (m, 1H), 4.41 (d, J = 11.7 Hz, 1H), 3.92-3.74 (m, 2H), 3.68-3.58 (m, 2H), 3.58-3.46 (m, 1H), 2.92-2.75 (m, 1H), 2.63 (t, J = 6.9 Hz, 2H), 2.51-2.15 (m, 3H), 2.12-1.96 (m, 5H), 1.85-1.67 (m, 4H)	9.0 min, 99.6% 8.5 min, 99.5%
707	4-(3-Chloro-4-((4-(5-(4-(2,3-dimethylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)butanoic acid	V	677.3 7.96 (s, 1H), 7.84 (s, 1H), 7.81 (d, J = 1.3 Hz, 1H), 7.70- 7.54 (m, 2H), 7.17-7.05 (m, 2H), 6.89 (t, J = 7.8 Hz, 1H), 6.61 (t, J = 7.7 Hz, 2H), 5.61-5.52 (m, 2H), 4.75 (d, J = 13.2 Hz, 1H), 4.41 (d, J = 11.9 Hz, 1H), 3.91-3.74 (m, 2H), 3.59-3.46 (m, 1H), 3.42 (t, J = 6.9 Hz, 2H), 2.91- 2.73 (m, 1H), 2.52-2.15 (m, 4H), 2.12-1.97 (m, 4H), 1.96- 1.85 (m, 2H), 1.82-1.71 (m, 3H)	9.1 min, 99.0% 8.6 min, 99.1%
708	2-(3-Chloro-4-((4-(5-(4-(2,3-dimethylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)-N,N,N-trimethylethanaminium, TFA salt	N-N F O	676.3 8.01 (s, 1H), 7.91-7.81 (m, 2H), 7.74-7.56 (m, 2H), 7.21-7.07 (m, 2H), 6.69-6.56 (m, 2H), 5.67-5.55 (m, 2H), 4.82-4.72 (m, 1H), 4.44 (d, J = 12.1 Hz, 1H), 3.95-3.78 (m, 4H), 3.67-3.49 (m, 3H), 3.25 (s, 9H), 2.92-2.77 (m, 1H), 2.53-2.17 (m, 3H), 2.14-1.99 (m, 4H), 1.90-1.71 (m, 3H)	6.6 min, 99.9% 7.8 min, 100%

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M+ H] ⁺	^{1}H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
709	N-(2-Dimethylamino)ethyl)- 3-((4-(5-(4-(2,3- dimethylphenoxy)butanoyl)- 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)methyl) benzamide		610.4	8.04 (s, 1H), 7.93 (s, 1H), 7.82 (s, 2H), 7.65 (dd, J = 5.8, 3.6 Hz, 1H), 7.55-7.42 (m, 2H), 7.22-7.08 (m, 2H), 6.92 (t, J = 7.8 Hz, 1H), 6.70- 6.56 (m, 2H), 5.45 (s, 2H), 4.78 (d, J = 11.9 Hz, 1H), 4.47 (d, J = 11.9 Hz, 1H), 3.95-3.78 (m, 2H), 3.65- 3.47 (m, 3H), 2.85 (t, J = 11.6 Hz, 1H), 2.62 (t, J = 6.7 Hz, 2H), 2.53-2.18 (m, 9H), 2.14-1.96 (m, 5H), 1.89- 1.74 (m, 4H)	6.3 min, 99.6% 7.5 min, 99.4%
710	2-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-phenylamino)-N,N,N-trimethyl-2-oxoethanaminium, TFA salt	N-N O CI	630.5	8.01 (s, 1H), 7.90 (s, 1H), 7.62 (dd, J = 6.1, 3.4 Hz, 1H), 7.59-7.50 (m, 2H), 7.36 (t, J = 7.8 Hz, 1H), 7.19-7.06 (m, 3H), 7.00-6.90 (m, 1H), 6.80 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 5.38 (s, 2H), 4.80-4.71 (m, 1H), 4.46 (d, J = 12.1 Hz, 1H), 4.24 (s, 2H), 3.97-3.80 (m, 2H), 3.64-3.50 (m, 1H), 3.37 (s, 9H), 2.92-2.73 (m, 1H), 2.51-2.17 (m, 3H), 2.11-1.97 (m, 2H), 1.92 (s, 3H), 1.76 (d, J = 14.7 Hz, 1H)	6.8 min, 99.8% 8.1 min, 99.7%
711	4-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) phenylamino)-N,N,N-trimethyl-4-oxobutan-1-aminium, TFA salt	N-N O N+	658.5	7.99 (s, 1H), 7.90 (s, 1H), 7.62 (dd, J = 6.1, 3.4 Hz, 1H), 7.53 (dd, J = 3.5, 1.8 Hz, 2H), 7.37-7.26 (m, 1H), 7.19-7.08 (m, 2H), 7.04 (d, J = 7.7 Hz, 1H), 6.99-6.90 (m, 1H), 6.80 (d, J = 7.7 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 5.35 (d, J = 1.8 Hz, 2H), 4.79-4.70 (m, 1H), 4.45 (d, J = 12.3 Hz, 1H), 3.96-3.80 (m, 2H), 3.63-3.46 (m, 1H), 3.46-3.33 (m, 2H), 3.14 (s, 9H), 2.88-2.74 (m, 1H), 2.57-1.96 (m, 9H), 1.92 (s, 3H), 1.77 (d, J = 14.7 Hz, 1H)	6.7 min, 100% 7.9 min, 100%
712	2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)-N,N,N-trimethylethanaminium, TFA salt	N-N HN N ⁺	696.4	8.03 (s, 1H), 7.89-7.82 (m, 2H), 7.73-7.58 (m, 2H), 7.20-7.10 (m, 2H), 7.04-6.93 (m, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 5.62 (dd, J = 4.8, 1.3 Hz, 2H), 4.82-4.74 (m, 1H), 4.44 (br. s., 1H), 3.98-3.82 (m, 2H), 3.66-3.55 (m, 3H), 3.28-3.22 (m, 9H), 2.84 (s, 1H), 2.56-2.21 (m, 3H), 2.16-1.99 (m, 2H), 1.91 (s, 3H), 1.85-1.74 (m, 1H)	6.8 min, 99.9% 8.1 min, 100%

Ex- am- ple	Name	Formula I	LCMS, [M + H]*	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
713	N-(3-(Dimethylamino) propyl)-3-((4-(5-(4-(2,3- dimethylphenoxy)butanoyl)- 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) benzamide		624.5	8.02 (s, 1H), 7.91 (s, 1H), 7.81-7.71 (m, 2H), 7.62 (dd, J = 5.9, 3.5 Hz, 1H), 7.51- 7.40 (m, 2H), 7.18-7.07 (m, 2H), 6.89 (t, J = 7.8 Hz, 1H), 6.61 (dd, J = 7.7, 3.7 Hz, 2H), 5.42 (s, 2H), 4.75 (d, J = 11.7 Hz, 1H), 4.45 (d, J = 11.7 Hz, 1H), 3.92-3.74 (m, 2H), 3.56 (t, J = 10.9 Hz, 1H), 3.45-3.36 (m, 2H), 2.90- 2.75 (m, 1H), 2.48-2.35 (m, 4H), 2.30-2.18 (m, 7H), 2.12-1.95 (m, 5H), 1.87- 1.70 (m, 6H)	6.4 min, 99.9% 7.6 min, 100%
714	3-(3-((4-(5-(4-(2,3- Dimethylphenoxy)butanoyl)- 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) benzamido)-N,N,N- trimethylpropan-1-aminium		638.5	8.04 (s, 1H), 7.92 (s, 1H), 7.85-7.73 (m, 2H), 7.63 (dd, J = 5.2, 4.3 Hz, 1H), 7.48 (d, J = 5.1 Hz, 2H), 7.17-7.09 (m, 2H), 6.89 (t, J = 7.8 Hz, 1H), 6.61 (dd, J = 7.9, 4.2 Hz, 2H), 5.43 (d, J = 1.3 Hz, 2H), 4.76 (d, J = 13.9 Hz, 1H), 4.46 (d, J = 12.1 Hz, 1H), 3.92-3.75 (m, 2H), 3.62-3.36 (m, 7H), 3.12 (s, 9H), 2.83 (t, J = 11.7 Hz, 1H), 2.45-2.35 (m, 2H), 2.33-2.16 (m, 1H), 2.15-1.95 (m, 5H), 1.85-1.70 (m, 4H)	6.4 min, 99.9% 7.5 min, 100%
715	N-(2-tert-Butoxy-2-oxoethyl)-3-(3-((4-(5-(4-(2,3-dimethylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)-N,N-dimethylpropan-1-aminium, TFA salt		738.6	8.04-7.81 (m, 4H), 7.57-7.36 (m, 3H), 7.14-6.94 (m, 3H), 6.73 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 5.41 (s, 2H), 4.87 (d, J = 13.4 Hz, 1H), 4.48 (d, J = 11.7 Hz, 1H), 4.08 (s, 2H), 4.00-3.80 (m, 4H), 3.71-3.58 (m, 3H), 3.33 (s, 6H), 2.80 (t, J = 11.4 Hz, 1H), 2.58-2.01 (m, 10H), 1.96 (s, 3H), 1.79 (d, J = 14.7 Hz, 1H), 1.58-1.45 (m, 9H)	7.0 min, 98.1% 8.4 min, 98.5%
716	N-(Carboxymethyl)-3-(3-((4-(5-(4-(2,3-dimethylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido)-N,N-dimethylpropan-1-aminium, TFA salt	N-N O N N N O	682.6	8.04 (s, 1H), 7.92 (s, 1H), 7.83-7.73 (m, 2H), 7.67-7.59 (m, 1H), 7.48 (d, J = 5.1 Hz, 2H), 7.18-7.09 (m, 2H), 6.95-6.84 (m, 1H), 6.61 (dd, J = 7.8, 1.4 Hz, 2H), 5.43 (s, 2H), 4.76 (d, J = 13.6 Hz, 1H), 4.46 (d, J = 12.5 Hz, 1H), 4.46 (d, J = 12.5 Hz, 1H), 4.25 (s, 2H), 3.92-3.77 (m, 2H), 3.73-3.29 (m, 6H), 2.90-2.76 (m, 1H), 2.48-2.37 (m, 2H), 2.34-2.15 (m, 1H), 2.13-1.96 (m, 7H), 1.85-1.69 (m, 4H)	6.6 min, 98.3% 7.4 min, 98.7%

Ex- am- ple	Name	Formula I	LCMS, [M+ H] ⁺	$^{1}\text{H NMR (}400\text{ MHz,}$ MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
717	3-(3-((4-(5-(4-(2,3- Dimethylphenoxy)butanoyl)- 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H- pyrazol-1-yl)methyl) benzamido)-N-(2- hydroxyethyl)-N,N- dimethylpropan-1-aminium, TFA salt	N-N OH	668.5	8.06 (s, 1H), 7.94 (d, J = 0.7 Hz, 1H), 7.87-7.76 (m, 2H), 7.65 (dd, J = 5.3, 4.2 Hz, 1H), 7.50 (d, J = 5.1 Hz, 2H), 7.21-7.10 (m, 2H), 6.97-6.86 (m, 1H), 6.64 (dd, J = 7.8, 4.1 Hz, 2H), 5.45 (d, J = 1.3 Hz, 2H), 4.83-4.73 (m, 1H), 4.53-4.43 (m, 1H), 4.04-3.96 (m, 2H), 3.94-3.78 (m, 2H), 3.67-3.43 (m, 7H), 3.21-3.11 (m, 6H), 2.92-2.78 (m, 1H), 2.43 (td, J = 7.2, 3.5 Hz, 2H), 2.28 (dt, J = 7.5, 3.7 Hz, 1H), 2.18-1.99 (m, 7H), 1.88-1.73 (m, 4H)	6.3 min, 99.5% 7.3 min, 99.7%
718	2-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3-fluorobenzamido)-N,N,N-trimethylethanaminium, TFA salt	N-N HN N	662.4	8.04 (s, 1H), 7.90 (s, 1H), 7.70-7.59 (m, 3H), 7.31 (t, J = 7.8 Hz, 1H), 7.19-7.10 (m, 2H), 7.01-6.91 (m, 1H), 6.80 (d, J = 7.7 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 5.50 (s, 2H), 4.80-4.71 (m, 1H), 4.45 (d, J = 11.9 Hz, 1H), 3.96-3.79 (m, 4H), 3.62-3.51 (m, 3H), 3.23 (s, 9H), 2.92-2.74 (m, 1H), 2.54-2.17 (m, 3H), 2.11-1.97 (m, 2H), 1.90 (s, 3H), 1.77 (d, J = 14.5 Hz, 1H)	6.6 min, 100% 7.7 min, 100%
719	(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3-fluorobenzamido) methanesulfonic acid	N-N SO ₃ H O CI	671.3	8.09 (s, 1H), 7.97 (s, 1H), 7.78-7.70 (m, 2H), 7.66 (dd, J = 5.9, 3.7 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.21-7.13 (m, 2H), 7.05-6.97 (m, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 5.54 (s, 2H), 4.83-4.73 (m, 1H), 4.54 (s, 2H), 4.48 (d, J = 12.1 Hz, 1H), 4.00-3.84 (m, 2H), 3.67-3.50 (m, 1H), 2.85 (t, J = 11.4 Hz, 1H), 2.58-2.18 (m, 3H), 2.13-2.01 (m, 2H), 1.94 (s, 3H), 1.80 (d, J = 14.5 Hz, 1H)	10.6 min, 100% 7.2 min, 100%
720	2-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3-fluorobenzamido) ethanesulfonic acid	V V V V V V V V V V	685.3	8.07 (s, 1H), 7.96 (d, J = 0.4 Hz, 1H), 7.71-7.61 (m, 3H), 7.31 (t, J = 7.8 Hz, 1H), 7.21- 7.11 (m, 2H), 7.05-6.95 (m, 1H), 6.84 (d, J = 7.5 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 5.53 (s, 2H), 4.83-4.72 (m, 1H), 3.98-3.77 (m, 4H), 3.65- 3.49 (m, 1H), 3.10 (t, J = 6.7 Hz, 2H), 2.85 (t, J = 11.6 Hz, 1H), 2.57-2.20 (m, 3H), 2.13-2.00 (m, 2H), 1.94 (s, 3H), 1.80 (d, J = 15.4 Hz, 1H)	10.5 min, 99.2% 7.3 min, 98.8%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
721	3-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3-fluorobenzamido)propanoic acid	HN CO ₂ H	649.3	$8.04 (s, 1H), 7.92 (d, J = 0.7 \\ Hz, 1H), 7.70-7.56 (m, 3H), 7.29 (t, J = 7.7 Hz, 1H), 7.22-7.12 (m, 2H), 7.05-6.94 \\ (m, 1H), 6.84 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 8.6 Hz, 1H), 5.51 (s, 2H), 4.78 (d, J = 12.5 Hz, 1H), 4.47 (d, J = 12.3 Hz, 1H), 4.01-3.83 (m, 2H), 3.72-3.53 (m, 3H), 2.91-2.79 \\ (m, 1H), 2.65 (t, J = 6.9 Hz, 2H), 2.57-2.18 (m, 3H), 2.15-1.99 (m, 2H), 1.94 (s, 3H), 1.79 (d, J = 14.7 Hz, 1H)$	8.9 min, 99.6% 8.4 min, 99.5%
722	4-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3-fluorobenzamido)butanoic acid	N-N HN CO ₂ H	663.3	$8.02 (s, 1H), 7.90 (s, 1H), \\ 7.69-7.56 (m, 2H), 7.27 (t, J = 7.7 Hz, 1H), 7.19-7.10 (m, 2H), 7.01-6.92 (m, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 5.49 (s, 2H), \\ 4.80-4.70 (m, 114H), 4.45 (d, J = 11.4 Hz, 94H), 3.97-3.81 (m, 2H), 3.56 (t, J = 11.8 Hz, 1H), 3.42 (t, J = 6.9 Hz, 2H), 2.82 (t, J = 11.7 Hz, 1H), 2.55-2.17 (m, 5H), 2.10-1.97 (m, 2H), 1.96-1.85 (m, 5H), 1.77 (d, J = 15.0 Hz, 1H) \\ \end{cases}$	8.9 min, 99.5% 8.5 min, 99.3%
723	N-(Carboxymethyl)-2-(3-((4-(5-(4-(2,3-dimethylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido)-N,N-dimethylethanaminium, TFA salt	N-N N N N N N N N N N	668.5	8.04 (s, 1H), 7.92 (s, 1H), 7.84-7.74 (m, 2H), 7.67-7.60 (m, 1H), 7.49 (d, J = 5.1 Hz, 2H), 7.19-7.07 (m, 2H), 6.89 (t, J = 7.8 Hz, 1H), 6.62 (dd, J = 7.9, 3.5 Hz, 2H), 5.43 (s, 2H), 4.79-4.71 (m, 1H), 4.46 (d, J = 11.9 Hz, 1H), 4.32 (s, 2H), 3.93-3.76 (m, 6H), 3.63-3.52 (m, 1H), 3.36 (s, 6H), 2.83 (t, J = 11.6 Hz, 1H), 2.46-2.17 (m, 3H), 2.08 (s, 3H), 2.02 (quin, J = 6.5 Hz, 2H), 1.83-1.74 (m, 4H)	6.6 min, 98.2% 7.4 min, 97.8%
724	2-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3,5-difluorobenzamido)-N,N,N-trimethylethanaminium, TFA salt	N-N HN N	680.4	8.03 (s, 1H), 7.86 (d, J = 0.7 Hz, 1H), 7.67-7.51 (m, 3H), 7.20-7.10 (m, 2H), 7.03- 6.94 (m, 1H), 6.82 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 7.9 Hz, 1H), 5.53 (d, J = 2.9 Hz, 2H), 4.83-4.73 (m, 1H), 4.47 (d, J = 12.1 Hz, 1H), 3.98-3.82 (m, 4H), 3.59 (t, J = 6.8 Hz, 3H), 3.25 (s, 9H), 2.84 (t, J = 11.6 Hz, 1H), 2.55-2.20 (m, 3H), 2.14-2.00 (m, 2H), 1.92 (s, 3H), 1.80 (d, J = 14.7 Hz, 1H)	6.7 min, 99.9% 7.9 min, 99.9%

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	1 H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
725	4-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3,5-difluorobenzamido) methanesulfonic acid	F HN SO ₃ H	689.3	8.00 (s, 1H), 7.87 (s, 1H), 7.68-7.59 (m, 3H), 7.20-7.09 (m, 2H), 7.04-6.95 (m, 1H), 6.84 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 5.53 (d, J = 2.2 Hz, 2H), 4.78 (d, J = 12.1 Hz, 1H), 4.53 (s, 2H), 4.46 (d, J = 11.7 Hz, 1H), 3.99-3.82 (m, 2H), 3.62-3.52 (m, 1H), 2.84 (t, J = 11.4 Hz, 1H), 2.57-2.19 (m, 3H), 2.13-2.00 (m, 2H), 1.93 (s, 3H), 1.79 (d, J = 15.0 Hz, 1H)	11.3 min, 100% 7.3 min, 100%
726	2-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3,5-difluorobenzamido) ethanesulfonic acid	N-N F O O CI	703.3	7.97 (s, 1H), 7.84 (s, 1H), 7.60 (dd, J = 6.4, 1.3 Hz, 1H), 7.53 (d, J = 7.9 Hz, 2H), 7.18-7.08 (m, 2H), 7.02- 6.91 (m, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 5.50 (s, 2H), 4.80-4.70 (m, 1H), 4.43 (d, J = 12.3 Hz, 1H), 3.96-3.72 (m, 4H), 3.60- 3.50 (m, 1H), 3.08 (t, J = 6.7 Hz, 2H), 2.81 (t, J = 11.8 Hz, 1H), 2.54-2.16 (m, 3H), 2.13-1.98 (m, 2H), 1.90 (s, 3H), 1.77 (d, J = 15.0 Hz, 1H)	11.0 min, 98.6% 7.3 min, 97.8%
727	3-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3,5-difluorobenzamido)propanoic acid	V V V V V V V V V V	667.3	7.98 (s, 1H), 7.83 (s, 1H), 7.60 (dd, J = 6.4, 3.1 Hz, 1H), 7.55-7.47 (m, 2H), 7.17-7.08 (m, 2H), 7.01-6.91 (m, 1H), 6.80 (d, J = 7.7 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 5.49 (d, J = 2.2 Hz, 2H), 4.80-4.70 (m, 1H), 4.43 (d, J = 12.1 Hz, 1H), 3.96-3.80 (m, 2H), 3.68-3.50 (m, 3H), 2.81 (t, J = 11.7 Hz, 1H), 2.63 (t, J = 6.8 Hz, 2H), 2.54-2.17 (m, 3H), 2.03 (dd, J = 13.3, 6.3 Hz, 2H), 1.90 (s, 3H), 1.77 (d, J = 14.3 Hz, 1H)	9.0 min, 99.9% 8.5 min, 99.7%
728	4-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3,5-difluorobenzamido)butanoic acid	V V V V V V V V V V	681.3	7.98 (s, 1H), 7.83 (s, 1H), 7.60 (dd, J = 6.4, 3.1 Hz, 1H), 7.56-7.47 (m, 2H), 7.16- 7.09 (m, 2H), 7.01-6.91 (m, 1H), 6.80 (d, J = 7.7 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 5.50 (d, J = 2.6 Hz, 2H), 4.76 (d, J = 13.9 Hz, 1H), 4.44 (d, J = 11.9 Hz, 1H), 3.96-3.80 (m, 2H), 3.60-3.50 (m, 1H), 3.42 (t, J = 6.9 Hz, 2H), 2.82 (t, J = 11.6 Hz, 1H), 2.54- 2.17 (m, 5H), 2.03 (dd, J = 13.1, 6.5 Hz, 2H), 1.96-1.85 (m, 5H), 1.77 (d, J = 14.7 Hz, 1H)	9.1 min, 99.9% 8.6 min, 99.8%

	653			654	
		TABLE 21-continued			
Ex- am- ple		Formula I	LCMS, [M+ H]+	1 H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
729	4-(3-((4-(1-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydro-1H-benzo[b]azepin-6-yl)-1H-pyrazol-1-yl)methyl) benzamido)butanoic acid	N-N O O O CI	643.4	7.84-7.74 (m, 3H), 7.56 (d, J = 0.7 Hz, 1H), 7.53-7.43 (m, 2H), 7.38-7.32 (m, 1H), 7.27 (d, J = 7.7 Hz, 1H), 7.15 (dd, J = 7.7, 1.3 Hz, 1H), 7.10-7.01 (m, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 5.48 (s, 2H), 4.64 (d, J = 13.0 Hz, 1H), 4.05-3.87 (m, 2H), 3.45 (t, J = 7.0 Hz, 2H), 2.98-2.86 (m, 1H), 2.83-2.70 (m, 1H), 2.54-2.29 (m, 5H), 2.17-2.04 (m, 2H), 2.01-1.85 (m, 7H), 1.77 (d, J = 13.9 Hz, 1H), 1.50-1.31 (m, 1H)	9.1 min, 98.3% 8.6 min, 98.3%
730	3-(3-((4-(1-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydro-1H-benzo[b]azepin-6-yl)-1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	N-N CO ₂ H	629.4	7.82-7.68 (m, 3H), 7.53 (s, 1H), 7.51-7.39 (m, 2H), 7.36-7.30 (m, 1H), 7.24 (t, J = 7.7 Hz, 1H), 7.12 (dd, J = 7.7, 1.1 Hz, 1H), 7.07-7.00 (m, 1H), 6.86 (d, J = 7.9 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 5.45 (s, 2H), 4.62 (d, J = 13.4 Hz, 1H), 4.03-3.84 (m, 2H), 3.63 (t, J = 6.9 Hz, 2H), 2.96-	9.0 min, 98.5% 8.9 min, 98.5%

3.63 (t, J = 6.9 Hz, 2H), 2.96-2.85 (m, 1H), 2.81-2.69 (m, 1H), 2.64 (t, J = 6.9 Hz, 2H), 2.51-2.26 (m, 3H), 2.14-2.02 (m, 2H), 1.98-1.82 (m, 5H), 1.75 (d, J = 14.1 Hz, 1H), 1.50-1.29 (m, 1H)

731 2-(3-((4-(1-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydro-1H-benzo[b]azepin-6-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid

665.4 7.89-7.74 (m, 3H), 7.63 (s, 1H), 7.54-7.41 (m, 2H), 7.38-7.31 (m, 1H), 7.26 (t, J = 7.7 Hz, 1H), 7.14 (dd, J = 7.7, 1.1 Hz, 1H), 7.08-6.99 (m, 1H), 6.87 (d, J = 7.5 Hz, 1H), 6.77 (d, J = 8.1 Hz, 1H), 5.50 (s, 2H), 4.62 (d, J = 13.4 Hz, 1H), 4.03-3.86 (m, 2H), 3.81 (t, J = 6.7 Hz, 2H), 3.09 (t, J = 6.7 Hz, 2H), 2.94-2.83 (m, 1H), 2.74 (t, J = 11.4 Hz, 1H), 2.51-2.27 (m, 11.4 Hz, 1H), 2.51-2.27 (m, 3H), 2.14-2.03 (m, 2H), 1.98-1.84 (m, 5H), 1.75 (d, J = 13.9 Hz, 1H), 1.48-1.34 (m,

11.0 min, 99.7% 7.3 min, 99.3%

	655			656	
		TABLE 21-continued			
Ex- am- ple Name		Fornula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
methylpl 2,3,4,5-t benzo[b] pyrazol-	-(4-(3-Chloro-2-henoxy)butanoyl)-etrahydro-1H-lazepin-6-yl)-1H-l-yl)methyl) N-do)methanesulfonic	ON SO3H ON CI	651.4	7.97-7.82 (m, 3H), 7.63 (s, 1H), 7.56-7.44 (m, 2H), 7.39-7.33 (m, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.16 (dd, J = 7.7, 1.1 Hz, 1H), 7.11-7.03 (m, 1H), 6.90 (d, J = 7.7 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 5.52 (s, 1H), 4.64 (d, J = 13.4 Hz, 1H), 4.56 (s, 2H), 4.05-3.87 (m, 2H), 2.98-2.86 (m, 1H), 2.83-2.70 (m, 1H), 2.55-2.29 (m, 3H), 2.16-2.05 (m, 2H), 2.03-1.86 (m, 5H), 1.78 (d, J = 13.6 Hz, 1H), 1.50-1.36 (m, 1H)	11.3 min, 100% 7.3 min, 100%
methylpi 2,3,4,5-t benzo[b] pyrazol- benzami	(1-(4-(3-Chloro-2-henoxy)butanoyl)-etrahydro-1H- azepin-6-yl)-1H- 1-yl)methyl) do)-N,N,N- lethanaminium, TFA	O NH NT	642.5	7.91-7.76 (m, 3H), 7.60-7.37 (m, 3H), 7.38-7.32 (m, 1H), 7.31-7.23 (m, 1H), 7.16 (dd, J = 7.7, 1.3 Hz, 1H), 7.11-7.02 (m, 1H), 6.89 (d, J = 7.7 Hz, 1H), 6.80 (s, 1H), 5.49 (s, 2H), 4.70-4.59 (m, 1H), 4.05-3.83 (m, 4H), 3.64-3.56 (m, 2H), 3.26 (s, 9H), 2.97-2.88 (m, 1H), 2.82-2.71 (m, 1H), 2.53-2.29 (m, 3H), 2.15-2.05 (m, 2H), 2.00-1.86 (m, 5H), 1.78 (d, J = 13.6 Hz, 1H), 1.51-1.32 (m, 1H)	6.8 min, 99.8% 7.9 min, 100%

734 2-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3-methoxybenzamido)-N,N,N-trimethylethanaminium, TFA salt

 $\begin{array}{ll} 674.5 & 8.01 \ (d, J=0.4 \ Hz, 1H), 7.91 \\ (d, J=0.7 \ Hz, 1H), 7.64 \ (dd, \\ J=6.4, 3.1 \ Hz, 1H), 7.43 \ (dd, J=7.9, 1.5 \ Hz, 1H), 7.21-7.10 \\ (m, 3H), 7.02-6.93 \ (m, 1H), \\ 6.82 \ (d, J=7.7 \ Hz, 1H), 6.74 \\ (d, J=8.4 \ Hz, 1H), 5.44 \ (s, 2H), 4.83-4.74 \ (m, 1H), 4.46 \\ (d, J=12.1 \ Hz, 1H), 3.99 \ (s, 3H), 3.96-3.84 \ (m, 4H), 3.60 \\ (t, J=6.6 \ Hz, 3H), 3.26 \ (s, 9H), 2.90-2.79 \ (m, 1H), 2.54-2.18 \ (m, 3H), 2.15-1.98 \\ (m, 2H), 1.93 \ (s, 3H), 1.79 \ (d, J=14.7 \ Hz, 1H) \end{array}$

6.6 min, 99.0% 7.8 min, 98.6%

	037		0.50	
		TABLE 21-continued		
Ex- am- ple		Formula I	LCMS, [M + ¹ H NMR (400 MHz, H] ⁺ MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
735	2-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3-methoxybenzamido) ethanesulfonic acid	N-N HN SO ₃ H	697.3 8.06 (s, 1H), 7.99 (s, 1H), 7.70-7.60 (m, 1H), 7.52 (d, J = 1.3 Hz, 1H), 7.43 (dd, J = 7.7, 1.5 Hz, 1H), 7.22-7.11 (m, 3H), 7.03-6.95 (m, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 5.47 (s, 2H), 4.78 (d, J = 12.5 Hz, 1H), 3.98 (s, 3H), 3.96-3.78 (m, 4H), 3.65-3.54 (m, 1H), 3.11 (t, J = 6.5 Hz, 2H), 2.85 (t, J = 11.6 Hz, 1H), 2.56-2.20 (m, 3H), 2.15-2.00 (m, 2H), 1.92 (s, 3H), 1.80 (d, J = 15.0 Hz, 1H)	10.7 min, 99.9% 7.3 min, 99.9%
736	3-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3-methoxybenzamido) propanoic acid	N-N O	661.4 7.96 (s, 1H), 7.88 (s, 1H), 7.62 (dd, J = 6.7, 2.8 Hz, 1H), 7.47 (d, J = 1.5 Hz, 1H), 7.37 (dd, J = 7.8, 1.7 Hz, 1H), 7.18 - 7.04 (m, 3H), 7.01-6.91 (m, 1H), 6.81 (d, J = 7.7 Hz, 1H), 5.40 (s, 2H), 4.77 (d, J = 1.0 Hz, 1H), 4.43 (d, J = 11.9 Hz, 1H), 3.96 (s, 3H), 3.93-3.81 (m, 2H), 3.68-3.51 (m, 3H), 2.82 (t, J = 11.4 Hz, 1H), 2.64 (t, J = 6.9 Hz, 2H), 2.53-2.16 (m, 3H), 2.10-1.96 (m, 2H), 1.92 (s, 3H), 1.77 (d, J = 14.7 Hz, 1.92 (s, 3H), 1.77 (d, J = 14.7 Hz, 1.92 (s, 3H), 1.77 (d, J = 14.7 Hz, 1.92 (s, 1.94 (d, J = 14.7 Hz, 1.95 (d, J	8.9 min, 99.6% 8.5 min, 99.5%

737 3-((4-(5-(4-(2,3-Dimethylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1Hpyrazol-1-yl)methyl)-N-(2hydroxyethyl)benzamide

583.4 8.01 (s, 1H), 7.91 (s, 1H), 7.84-7.75 (m, 2H), 7.62 (dd, J = 5.9, 3.5 Hz, 1H), 7.50-7.39 (m, 2H), 7.16-7.07 (m, 2H), 6.93-6.85 (m, 1H), 6.66-6.57 (m, 2H), 5.42 (s, 2H), 4.75 (d, J = 13.2 Hz, 1H), 4.44 (d, J = 12.3 Hz, 1H), 3.92-3.76 (m, 2H), 3.74-3.66 (m, 2H), 3.61-3.46 (m, 3H), 2.82 (t, J = 11.4 Hz, 1H), 2.49-2.16 (m, 3H), 2.08 (s, 3H), 2.06-1.96 (m, 2H), 1.85-1.68 (m, 4H)

1H)

8.4 min, 97.1% 8.1 min, 96.9%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
738	3-((4-(5-(4-(2,3- Dimethylphenoxy)butanoyl)- 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H- pyrazol-1-yl)methyl)-N-(3- hydroxypropyl)benzamide	N-N H	597.5	8.01 (s, 1H), 7.91 (s, 1H), 7.82-7.72 (m, 2H), 7.62 (dd, J = 6.1, 3.4 Hz, 1H), 7.51- 7.39 (m, 2H), 7.17-7.07 (m, 2H), 6.89 (t, J = 7.9 Hz, 1H), 6.61 (dd, J = 7.8, 4.3 Hz, 2H), 5.42 (s, 2H), 4.75 (d, J = 13.2 Hz, 1H), 4.44 (d, J = 11.9 Hz, 1H), 3.91-3.75 (m, 2H), 3.64 (t, J = 6.3 Hz, 2H), 3.56 (t, J = 10.9 Hz, 1H), 3.46 (t, J = 6.9 Hz, 2H), 2.92- 2.73 (m, 1H), 2.50-2.15 (m, 3H), 2.11-1.95 (m, 5H), 1.91-1.70 (m, 6H)	8.2 min, 98.5% 7.9 min, 98.6%
739	3-Chloro-4-((4 (5-(4-(3-chloro-2-methylphenoxy)) butanoyl)-2,3,4,5-tetrahydrobenzio[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluoro-N-(3-hydroxypropyl)benzamide	N-N F O OH	669.4	8.00 (s, 1H), 7.91-7.79 (m, 2H), 7.70-7.56 (m, 2H), 7.20-7.11 (m, 2H), 7.02-6.94 (m, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 5.61 (d, J = 3.1 Hz, 2H), 4.78 (d, J = 13.2 Hz, 1H), 4.46 (d, J = 1.0 Hz, 1H), 4.00-3.82 (m, 2H), 3.67 (t, J = 6.3 Hz, 2H), 3.61-3.45 (m, 3H), 2.84 (t, J = 11.9 Hz, 1H), 2.56-2.20 (m, 3H), 2.14-2.00 (m, 2H), 1.96-1.72 (m, 6H)	9.3 min, 94.3% 8.7 min, 95.1%
740	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluoro-N-(2-hydroxyethyl)benzamide	N-N HN OH O CI O O CI O CI O CI O CI O CI O CI	655.4	8.00 (s, 1H), 7.86 (s, 2H), 7.69 (dd, J = 9.9, 1.5 Hz, 1H), 7.62 (dd, J = 6.5, 3.0 Hz, 1H), 7.62 (dd, J = 6.5, 3.0 Hz, 1H), 7.20-7.10 (m, 2H), 7.03-6.94 (m, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 5.61 (dd, J = 4.4, 1.3 Hz, 2H), 4.82-4.72 (m, 1H), 4.44 (d, J = 11.9 Hz, 1H), 3.99-3.83 (m, 2H), 3.73 (t, J = 5.7 Hz, 2H), 3.62-3.47 (m, 3H), 2.84 (t, J = 11.3 Hz, 1H), 2.57-2.20 (m, 3H), 2.14-1.99 (m, 2H), 1.92 (s, 3H), 1.79 (d, J = 14.7 Hz, 1H)	9.2 min, 96.9% 8.6 min, 97.0%
741	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluoro-N-(3-methylsulfonyl)propyl) benzamide	N-N F O O O O O O O O O O O O O O O O O O	733.4	$\begin{array}{l} 7.98 \ (s,1H), 7.85\text{-}7.81 \ (m,\\ 2H), 7.65 \ (dd,J=9.9,1.5\\ Hz, 1H), 7.60 \ (dd,J=6.4,\\ 3.1 \ Hz, 1H), 7.18\text{-}7.07 \ (m,\\ 2H), 7.00\text{-}6.91 \ (m,1H), 6.81 \ (d,J=7.7 \ Hz, 1H), 6.71 \ (d,J=8.1 \ Hz, 1H), 5.59 \ (d,J=13.6 \ Hz, 1H), 4.75 \ (d,J=13.6 \ Hz, 1H), 4.42 \ (d,J=11.7 \ Hz, 1H), 3.96\text{-}3.80 \ (m,2H), 3.60\text{-}3.45 \ (m,3H), 3.26\text{-}3.16 \ (m,2H), 2.98 \ (s,3H), 2.81 \ (t,J=11.6 \ Hz, 1H), 2.53\text{-}1.96 \ (m,7H), 1.89 \ (s,3H), 1.76 \ (d,J=14.7 \ Hz, 1H) \end{array}$	9.6 min, 95.8% 9.0 min, 96.4%

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
742	(S)-2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)succinic acid	$N-N$ F O CO_2H CO_2H O	727.3	7.97 (s, 1H), 7.84 (s, 2H), 7.66 (dd, J = 9.8, 1.4 Hz, 1H), 7.60 (dd, J = 6.5, 3.0 Hz, 1H), 7.60 (dd, J = 6.5, 3.0 Hz, 1H), 7.17-7.07 (m, 2H), 7.00-6.92 (m, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 5.58 (d, J = 2.9 Hz, 2H), 5.00-4.90 (m, 1H), 4.75 (d, J = 13.6 Hz, 1H), 4.41 (d, J = 12.1 Hz, 1H), 3.96-3.80 (m, 2H), 3.58-3.49 (m, 1H), 3.07-2.74 (m, 3H), 2.53-2.17 (m, 3H), 2.12-1.96 (m, 2H), 1.90 (s, 3H), 1.76 (d, J = 15.0 Hz, 1H)	8.8 min, 99.8% 8.4 min, 99.7%
743	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-N-(2,3-dihydroxypropyl)-5-fluorobenzamide	N-N HN OH N-N O CI N O CI N O CI N O CI	685.5	$8.00 (s, 1H), 7.86 (s, 2H), \\ 7.69 (dd, J = 9.9, 1.5 Hz, 1H), 7.62 (dd, J = 6.5, 3.0 Hz, 1H), 7.21-7.10 (m, 2H), \\ 7.03-6.94 (m, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 5.64-5.58 (m, 2H), 4.78 (d, J = 12.5 Hz, 1H), 4.45 (d, J = 11.4 Hz, 1H), 3.98-3.81 (m, 3H), 3.64-3.49 (m, 4H), 3.42 (dt, J = 13.6, 6.6 Hz, 1H), 2.89-2.79 (m, 1H), 2.55-2.20 (m, 3H), 2.06 (dd, J = 13.4, 6.6 Hz, 2H), 1.92 (s, 3H), 1.79 (d, J = 14.5 Hz, 1H)$	N/A
744	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluoro-N-(2-hydroxy-2-methylpropyl) benzamide	N-N HN OH	683.5	$\begin{array}{l} 8.00 \ (s,1H), 7.91\text{-}7.82 \ (m,\\ 2H), 7.70 \ (dd,J=9.9,1.5\\ Hz,1H), 7.62 \ (dd,J=6.4,\\ 3.1 \ Hz,1H), 7.21\text{-}7.09 \ (m,\\ 2H), 7.03\text{-}6.94 \ (m,1H), 6.83\\ (d,J=7.7 \ Hz,1H), 6.73 \ (d,J=8.1 \ Hz,1H), 5.61 \ (dd,J=8.1 \ Hz,1H), 5.61 \ (dd,J=8.1 \ Hz,1H), 4.45 \ (d,J=13.2 \ Hz,1H), 4.45 \ (d,J=13.2 \ Hz,1H), 3.98 \ (m,1H), 3.48 \ (d,J=6.2 \ Hz,2H), 2.88 \ 2.78 \ (m,1H), 2.56 \ -2.20 \ (m,3H), 2.13 \ -1.98 \ (m,2H), 1.79 \ (d,J=14.7 \ Hz,1H), 1.25 \ (s,6H) \end{array}$	9.8 min, 98.6% 9.0 min, 98.6%
745	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluoro-N-(2-methylsulfonyl)ethyl) benzamide	N-N HN S O	717.5	$\begin{array}{l} 7.97 \ (s, 1H), 7.87-7.77 \ (m, \\ 2H), 7.69-7.55 \ (m, 2H), 7.18-\\ 7.08 \ (m, 2H), 7.00-6.92 \ (m, 1H), 6.81 \ (d, J=7.9 \ Hz, 1H), \\ 5.58 \ (d, J=3.1 \ Hz, 2H), 4.75 \ (d, J=13.6 \ Hz, 1H), 4.42 \ (d, J=12.1 \ Hz, 1H), 3.96-3.79 \ (m, 4H), 3.53 \ (t, J=10.7 \ Hz, 1H), 3.43 \ (t, J=6.7 \ Hz, 2H), \\ 3.03 \ (s, 2H), 2.81 \ (t, J=11.6 \ Hz, 1H), 2.53-2.15 \ (m, 3H), \\ 2.11-1.96 \ (m, 2H), 1.90 \ (s, 3H), 1.76 \ (d, J=14.5 \ Hz, 1H) \end{array}$	9.6 min, 99.7% 9.0 min, 100%

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
746	(R)-2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)succinic acid	CI HN CO_2H O	727.5	7.97 (s, 1H), 7.84 (s, 2H), 7.66 (dd, J = 9.9, 1.5 Hz, 1H), 7.60 (dd, J = 6.5, 3.0 Hz, 1H), 7.60 (dd, J = 6.5, 3.0 Hz, 1H), 7.18-7.08 (m, 2H), 7.01-6.92 (m, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 5.59 (d, J = 2.9 Hz, 2H), 4.99-4.91 (m, 1H), 4.75 (d, J = 12.5 Hz, 1H), 4.41 (d, J = 11.2 Hz, 1H), 3.97-3.79 (m, 2H), 3.53 (t, J = 10.9 Hz, 1H), 3.07-3.72 (m, 3H), 2.54-2.16 (m, 3H), 2.12-1.96 (m, 2H), 1.90 (s, 3H), 1.76 (d, J = 14.5 Hz, 1H)	8.8 min, 100% 8.4 min, 99.8%
747	(S)-6-Amino-2-(4-((4-(5-(4-(2,3-dimethylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido) hexanoic acid, TFA salt	N-N HN CO ₂ H NH ₂	668.6	8.05 (s, 1H), 7.95 (s, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.66 (dd, J = 5.5, 4.2 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.20- 7.10 (m, 2H), 6.92 (t, J = 7.9 Hz, 1H), 6.64 (t, J = 7.2 Hz, 2H), 5.47 (d, J = 1.5 Hz, 2H), 4.78 (d, J = 13.4 Hz, 1H), 4.70-4.62 (m, 1H), 4.48 (d, J = 11.7 Hz, 1H), 3.95- 3.78 (m, 2H), 3.67-3.54 (m, 1H), 3.03-2.78 (m, 3H), 2.51- 2.18 (m, 3H), 2.15-1.98 (m, 6H), 1.97-1.68 (m, 7H), 1.63-1.49 (m, 2H)	6.2 min, 99.6% 7.2 min, 99.5%
748	2-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]thiazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	N-N SO ₃ H	683.4	8.03 (s, 1H), 7.88-7.73 (m, 3H), 7.54 (dd, J = 7.8, 1.4 Hz, 1H), 7.51-7.43 (m, 2H), 7.38 (t, J = 7.8 Hz, 1H), 7.25 (dd, J = 7.8, 1.4 Hz, 1H), 6.99 (m, 1H), 6.88 (d, J = 7.9 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 5.49 (s, 2H), 4.66 (d, J = 12.8 Hz, 1H), 4.01-3.88 (m, 2H), 3.86-3.73 (m, 2H), 3.09 (t, J = 6.6 Hz, 2H), 2.95-2.74 (m, 2H), 2.71-2.57 (m, 1H), 2.34-2.18 (m, 3H), 2.17-1.90 (m, 6H)	10.1 min, 97.6% 7.1 min, 97.0%
749	3-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]thiazepin-9-yl)-1H-pyrazol-1-yl)methyl)-N-(2-hydroxyethyl)benazamide	N-N H	619.0	7.85-7.69 (m, 3H), 7.59 (s, 1H), 7.50-7.42 (m, 2H), 7.43-7.38 (m, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.16 (dd, J = 7.9, 1.5 Hz, 1H), 7.06-6.97 (m, 1H), 6.88 (d, J = 7.4 Hz, 1H), 6.70 (d, J = 7.9 Hz, 1H), 5.40 (s, 2H), 4.33-4.27 (m, 1H), 3.97-3.89 (m, 2H), 3.78-3.70 (m, 2H), 2.88-2.72 (m, 2H), 2.62 (td, J = 13.4, 2.5 Hz, 1H), 2.35-2.02 (m, 5H), 2.02-1.93 (m, 4H)	100%*

665 666 TABLE 21-continued HPLC-1: Rt min, purity; Ex-LCMS, HPLC-2: [M + ¹H NMR (400 MHz, Rt min, am-Formula I MeOD) δ ple Name H]+ purity 647.3 7.85-7.75 (m, 3H), 7.72 (s, 1H), 7.51-7.38 (m, 3H), 7.33 750 3-((4-(5-(4-(3-Chloro-2-100%* methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] (t, J = 7.7 Hz, 1H), 7.17 (dd,[1,4]thiazepan-9-yl)-1H-J = 7.4, 1.5 Hz, 1H), 7.06pyrazol-1-yl)methyl)-N-(2-hydroxy-2-methylpropyl) 6.98 (m, 1H), 6.88 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 8.4 Hz, benzamide 1H), 5.41 (s, 2H), 4.33 (br. s., 1H), 3.98-3.87 (m, 2H), 3.42 (s, 2H), 2.87-2.72 (m, 2H), (s, 211), 2.87-2.72 (lll, 211), 2.68-2.57 (m, 1H), 2.37-2.02 (m, 5H), 2.02-1.93 (m, 4H), 1.25 (s, 6H) 649.3 7.86-7.69 (m, 4H), 7.50-100%* ΟН 7.39 (m, 3H), 7.33 (t, J = 7.9 methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] Hz, 1H), 7.16 (dd, J = 7.9,'nН [1,4]thiazepan-9-yl)-1H-1.5 Hz, 1H), 7.06-6.98 (m,

751 3-((4-(5-(4-(3-Chloro-2pyrazol-1-yl)methyl)-N-(2,3dihydroxypropyl)benzamide

1H), 6.88 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 7.9 Hz, 1H), 5.41 (s, 2H), 4.33 (br. s., 1H), 3.98-3.90 (m, 2H), 3.84 (dd, J = 6.2, 5.2 Hz, 1H), 3.62-3.54 (m, 3H), 3.50-3.41 (m, 1H), 2.88-2.72 (m, 2H), 2.67-2.58 (m, 1H), 2.35-1.94 (m,

752 3-((4-(5-(4-(3-Chloro-2methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]thiazepan-9-yl)-1Hpyrazol-1-yl)methyl)-N-(2-(methylsulfonyl)ethyl) benzamide

681.3 7.83-7.70 (m, 4H), 7.50-7.39 (m, 3H), 7.33 (t, J = 7.7 Hz, 1H), 7.17 (dd, J = 7.7,1.2 Hz, 1H), 7.06-6.98 (m, 1H), 6.88 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 5.41(s, 2H), 4.33 (s, 1H), 3.98-3.90 (m, 2H), 3.86 (t, J = 6.7 Hz, 2H), 3.42 (t, J = 6.4 Hz,2H), 3.02 (s, 3H), 2.88-2.72 (m, 2H), 2.68-2.57 (m, 1H), 2.35-1.93 (m, 9H)

100%*

	00 /			008	
		TABLE 21-continued			
Ex- am- ple	Name	Fornula I	LCMS, [M + H]*	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
753	3-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tertahydrobenzo[b] [1,4]thiazepan-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	N-N CO ₂ H	647.3	7.80-7.68 (m, 4H), 7.49-7.37 (m, 3H), 7.33 (t, J = 7.9 Hz, 1H), 7.16 (dd, J = 7.7, 1.2 Hz, 1H), 7.07-6.98 (m, 1H), 6.88 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 7.9 Hz, 1H), 5.40 (s, 2H), 3.97-3.88 (m, 2H), 3.65 (t, J = 6.7 Hz, 2H), 2.88-2.71 (m, 2H), 2.69-2.58 (m, 3H), 2.35-1.92 (m, 10H)	98%*
754	(S)-2-(3-((4-(5-(4-(3-Chloro-	,CO₂H	691.3	7.89-7.68 (m, 4H), 7.50-	100%*

754 (S)-2-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]thiazepan-9-yl)-1Hpyrazol-1-yl)methyl) benzamido)succinic acid

$$CO_2H$$
 CO_2H
 CO_2

691.3 7.89-7.68 (m, 4H), 7.50-7.38 (m, 3H), 7.33 (t, J = 7.7 Hz, 1H), 7.15 (dd, J = 7.9, 1.5 Hz, 1H), 7.06-6.98 (m, 1H), 6.88 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 5.41 (s, 2H), 4.84 (s, 1H), 3.93 (t, J = 5.7 Hz, 2H), 2.95 (t, J = 5.2 Hz, 2H), 2.88-2.71 (m, 2H), 2.67-2.58 (m, 1H), 2.35-1.91 (m, 10H)

755 (S)-2-Amino-6-(4-((4-(5-(4-(2,3-dimethylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepan-9-yl)-1H-pyrazol-1-yl)methyl)benzamido) hexanoic acid, TFA salt

668.5 8.02 (s, 1H), 7.92 (s, 1H), 7.81 (d, J = 8.1 Hz, 2H), 7.63 (dd, J = 5.6, 3.9 Hz, 1H), 7.35 (d, J = 8.1 Hz, 2H), 7.19-7.08 (m, 2H), 6.90 (t, J = 7.9 Hz, 1H), 6.62 (t, J = 6.9 Hz, 2H), 5.43 (s, 2H), 4.76 (d, J = 13.6 Hz, 1H), 4.45 (d, J = 11.7 Hz, 1H), 3.96 (t, J = 6.3 Hz, 1H), 3.91-3.77 (m, 2H), 3.56 (t, J = 10.8 Hz, 1H), 3.40 (t, J = 6.6 Hz, 2H), 2.83 (t, J = 11.4 Hz, 1H), 2.49-2.35 (m, 2H), 2.33-2.18 (m, 1H), 2.13-1.86 (m, 7H), 1.84-

1.43 (m, 8H)

6.4 min, 99.7% 7.3 min, 98.8%

TABLE 21-continued HPLC-1: Rt min, purity; Ex-LCMS, HPLC-2: [M + ¹H NMR (400 MHz, am-Rt min, ple Name Formula I H]+ MeOD) δ purity 756 2-(3,5-Dichloro-4-((4-(5-(4-7.95 (s, 2H), 7.92 (s, 1H), N/A(3-chloro-2-methylphenoxy) 7.85 (s, 1H), 7.59 (dd, J = 7.6 min, butanoyl)-2,3,4,5-6.7, 3.0 Hz, 1H), 7.18-7.08 99.7% tetrahydrobenzo[b][1,4] (m, 2H), 7.00-6.91 (m, 1H), oxazepan-9-yl)-1H-pyrazol-1-6.81 (d, J = 7.7 Hz, 1H), 6.71 yl)methyl)benzamido) (d, J = 8.4 Hz, 1H), 5.71 (d, J =ethanesulfonic acid 3.7 Hz, 2H), 4.75 (d, J =13.0 Hz, 1H), 4.40 (d, J = 11.4 Hz, 1H), 3.96-3.75 (m, 4H), 3.59-3.49 (m, 1H), 3.09 (t, J = 6.7 Hz, 1H), 2.862.75 (m, 1H), 2.53-2.17 (m, 3H), 2.09-1.98 (m, 2H), 1.90 (s, 3H), 1.76 (d, J = 15.0 Hz,9.6 min, 757 3-(3,5-Dichloro-4-((4-(5-(4-699.4 7.95 (s, 3H), 7.87 (s, 1H), (3-chloro-2-methylphenoxy) 7.62 (dd, J = 6.6, 3.1 Hz,95.0% butanoyl)-2,3,4,5-1H), 7.18-7.11 (m, 2H), 7.01-9.0 min, CO₂H tetrahydrobenzo[b][1,4] 6.93 (m, 1H), 6.83 (d, J = 99.5% oxazepan-9-yl)-1H-pyrazol-1-yl)methyl)benzamido) 7.5 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 5.73 (d, J = 4.0 Hz, 2H), 4.81-4.73 (m, 1H), 4.43 (d, J = 11.9 Hz, 1H), 3.98propanoic acid 3.82 (m, 2H), 3.71-3.62 (m, 2H), 3.60-3.52 (m, 1H), 2.90-2.78 (m, 1H), 2.71-2.62 (m, 2H), 2.55-2.19 (m, 3H), 2.13-1.98 (m, 2H), 1.92 (s, 3H), 1.78 (d, J = 14.7 Hz, 1H)

758 2-(3-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]thiazepan-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)-N,N,N-trimethylethanaminium

60.4 7.85 (s, 1H), 7.82-7.78 (m, 2H), 7.73 (s, 1H), 7.53-7.41 (m, 3H), 7.34 (t, J = 7.7 Hz, 1H), 7.18 (dd, J = 7.7, 1.2 Hz, 1H), 7.06-6.99 (m, 1H), 6.87 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 5.42 (s, 2H), 4.71-4.64 (m, 1H), 3.99-3.89 (m, 2H), 3.85 (t, J = 6.4 Hz, 2H), 3.58 (t, J = 6.4 Hz, 2H), 3.23 (s, 9H), 2.90-2.72 (m, 2H), 2.68-2.58 (m, 1H), 2.36-1.90 (m, 9H)

100%*

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR }(400\ \text{MHz},$ MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
759	(S)-2-(3,5-Dichloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepan-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)succinic acid	CI CO_2H CO_2H CO_2H CO_2H CO_2H	743.4	7.99 (s, 2H), 7.95 (s, 1H), 7.87 (s, 1H), 7.62 (dd, J = 6.6, 3.1 Hz, 1H), 7.20, 7.10 (m, 2H), 7.03-6.94 (m, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 5.74 (d, J = 3.7 Hz, 2H), 4.77 (d, J = 13.2 Hz, 1H), 4.42 (d, J = 11.9 Hz, 1H), 3.99-3.83 (m, 2H), 3.61-3.51 (m, 1H), 3.08- 2.99 (m, 1H), 2.97-2.77 (m, 2H), 2.56-2.18 (m, 3H), 2.05 (dq, J = 12.2, 6.2 Hz, 2H), 1.93 (s, 3H), 1.78 (d, J = 15.0 Hz, 1H)	9.1 min, 100% 8.6 min, 100%
760	3,5-Dichloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-N-(2-hydroxyethyl)benzamide	N-N CI H NOH	673.4	7.96 (s, 2H), 7.95-7.92 (m, 1H), 7.84 (s, 1H), 7.59 (dd, J = 6.5, 3.0 Hz, 1H), 7.17-7.08 (m, 2H), 7.00-6.90 (m, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 5.71 (d, J = 4.2 Hz, 2H), 4.75 (d, J = 13.0 Hz, 1H), 4.40 (d, J = 12.3 Hz, 1H), 3.95-3.82 (m, 2H), 3.71 (t, J = 5.6 Hz, 2H), 3.59-3.44 (m, 3H), 2.81 (t, J = 11.6 Hz, 1H), 2.52-2.18 (m, 3H), 2.09-1.96 (m, 2H), 1.90 (s, 3H), 1.76 (d, J = 15.2 Hz, 1H)	9.5 min, 97.8% 8.8 min, 97.6%
761	3,5-Dichloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-N-(2-hydroxy-2-methylpropyl)benzamide	N-N CI OH	701.4	$\begin{array}{l} 7.98 \ (s, 2H), 7.94 \ (s, 1H), \\ 7.85 \ (s, 1H), 7.59 \ (dd, J = \\ 6.6, 3.1 \ Hz, 1H), 7.17-7.07 \\ (m, 2H), 7.00-6.90 \ (m, 1H), \\ 6.81 \ (d, J = 7.9 \ Hz, 1H), 6.70 \\ (d, J = 8.1 \ Hz, 1H), 5.71 \ (d, J = \\ 4.2 \ Hz, 2H), 4.75 \ (d, J = \\ 14.1 \ Hz, 1H), 4.41 \ (d, J = \\ 11.9 \ Hz, 1H), 3.97-3.79 \ (m, 2H), 3.60-3.49 \ (m, 1H), 3.40 \\ (d, J = 6.2 \ Hz, 2H), 2.81 \ (t, J = \\ 11.4 \ Hz, 1H), 2.53-2.17 \\ (m, 3H), 2.10-1.96 \ (m, 2H), \\ 1.90 \ (s, 3H), 1.76 \ (d, J = 14.7 \ Hz, 1H), 1.23 \ (s, 6H) \end{array}$	10.2 min, 99.3% 9.2 min, 98.6%
762	3,5-Dichloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-N-(2,3-dihydroxypropyl)benzamide	N-N CI HO OH	703.4	7.99 (s, 2H), 7.96 (s, 2H), 7.87 (s, 1H), 7.62 (dd, J = 6.4, 3.1 Hz, 1H), 7.19-7.10 (m, 2H), 7.02-6.93 (m, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 5.74 (d, J = 4.4 Hz, 2H), 4.81-4.72 (m, 1H), 4.43 (d, J = 11.7 Hz, 1H), 4.00-3.81 (m, 3H), 3.64- 3.50 (m, 4H), 3.48-3.38 (m, 1H), 2.83 (t, J = 11.8 Hz, 1H), 2.56-2.16 (m, 3H), 2.12- 1.98 (m, 2H), 1.93 (s, 3H), 1.78 (d, J = 15.0 Hz, 1H)	8.9 min, 100% 8.4 min, 100%

Ex- am- ple	Name	Formula I	LCMS, [M + ¹ H NMR (400) H]* MeOD) δ	MHz,	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
763	3,5-Dichloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-N-(2-(methylsulfonyl)ethyl) benzamide	N-N CI NO CI CI	735.4 8.00-7.92 (m, 3 1H), 7.67-7.59 7.10 (m, 2H), 7 (m, 1H), 6.84 (c) 1H), 6.73 (d, J) 5.74 (d, J = 4.2 (d, J = 10.3 Hz, J = 11.7 Hz, 1F (m, 3H), 3.51 (c) Hz, 1H), 3.46 (c) 1H), 2.83 (t, J = 1H), 2.69 (s, 31 (m, 4H), 2.05 (c) 3H), 1.92 (s, 31 15.4 Hz, 1H)	(m, 1H), 7.20- .02-6.93 d, J = 7.5 Hz, = 8.8 Hz, 1H), Hz, 2H), 4.78 , 1H), 4.43 (d, H), 3.98-3.82 dt, J = 3.2, 1.7 t, J = 6.8 Hz, = 11.4 Hz, H), 2.55-2.18 d, J = 6.8 Hz,	9.9 min, 99.8% 9.3 min, 99.4%
764	2-(3,5-Dichloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido)-N,N,N-trimethylethanaminium, TFA salt	N-N CI O CI	714.4 8.03-7.92 (m, 3 J = 5.9, 3.5 Hz, 7.07 (m, 2H), 7 1H), 6.81 (d, J 6.71 (d, J = 8.4 (d, J = 5.3 Hz, 12.5 Hz, 1H), 4 12.3 Hz, 1H), 3 4H), 3.64-3.47 (s, 9H), 2.81 (t, 1H), 2.52-2.17 1.98 (m, 2H), 1 1.76 (d, J = 14.	1H), 7.17- .00-6.91 (m, = 7.9 Hz, 1H), Hz, 1H), 5.72 2H), 4.75 (d, J = 1.41 (d, J = 1.96-3.81 (m, (m, 3H), 3.23 J = 11.7 Hz, (m, 3H), 2.09- .90 (s, 3H),	6.9 min, 99.8% 8.2 min, 99.8%
765	2-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-3-methylbenzamido) ethanesulfonic acid	N-N HN SO ₃ H	681.3 7.98 (d, J = 3.3 (s, 1H), 7.68-7. 7.18-7.12 (m, 2 7.9 Hz, 1H), 7.1 HJ, 6.83 (d, J 6.72 (d, J = 8.4 (s, 2H), 4.75 (d 1H), 4.40 (d, J 1H), 3.96-3.75 3.51 (m, 1H), 3 6.6 Hz, 2H), 2.12-1.98 (m, 2 3H), 1.77 (d, J 1H)	60 (m, 2H), H), 7.07 (d, J = 02-6.94 (m, 2H), 7.07 (d, J = 02-6.94 (m, Hz, 1H), 5.49 (m, 4H), 3.61 (m, 6H), 9.61	9.5 min, 99.8% 7.2 min, 99.0%
766	2-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	N-N HN SO ₃ H	8.1 Hz, 2H), 7. 4.4 Hz, 2H), 7. 1H), 6.81 (d, J 6.72 (d, J = 8.4 (s, 2H), 4.76 (d 1H), 4.46 (d, J 1H), 3.96-3.76	Hz, 2H), 7.65 H), 7.37 (d, J = 16 (d, J = 01-6.94 (m, = 7.9 Hz, 1H), 5.50 I, J = 13.0 Hz, = 11.9 Hz, (m, 4H), 3.57 1H), 3.08 (t, J = 83 (t, J = 2.55-2.18 (m, (m, 2H), 1.90	9.3 min, 100% 7.1 min, 100%

		TABLE 21-continued		
Ex- am- ple	Name	Formula I	LCMS, [M + ¹ H NMR (400 MHz, H] ⁺ MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
767	(S)-2-(4-((4-(5-(4-(3-Chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)succinic acid	N-N O	675.3 8.02 (s, 1H), 7.91 (s, 1H), 7.84 (d, J = 8.4 Hz, 2H), 7.63 (dd, J = 6.5, 3.0 Hz, 1H), 7.36 (d, J = 8.1 Hz, 2H), 7.20- 7.07 (m, 2H), 7.02-6.92 (m, 1H), 6.82 (d, J = 8.1 Hz, 1H), 5.45 (s, 2H), 4.95 (dd, J = 7.0, 5.5 Hz, 1H), 4.75 (d, J = 11.9 Hz, 1H), 3.96-3.81 (m, 2H), 3.56 (t, J = 10.9 Hz, 1H), 3.05-2.85 (m, 2H), 2.53- 2.17 (m, 4H), 2.11-1.97 (m, 2H), 1.93 (s, 3H), 1.77 (d, J = 15.0 Hz, 1H)	8.2 min, 99.6% 7.9 min, 99.3%
768	2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido) ethanesulfonic acid	N-N HN SO ₃ H	701.2 8.04 (s, 1H), 7.98-7.91 (m, 2H), 7.73 (dd, J = 8.0, 1.7 Hz, 1H), 7.64 (dd, J = 6.3, 3.2 Hz, 1H), 7.18-7.08 (m, 3H), 7.03-6.95 (m, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 5.56 (s, 2H), 4.76 (d, J = 13.6 Hz, 1H), 4.44 (d, J = 11.9 Hz, 1H), 3.95-3.75 (m, 4H), 3.96 (t, J = 10.9 Hz, 1H), 3.08 (t, J = 6.7 Hz, 2H), 2.83 (t, J = 11.7 Hz, 1H), 2.54-2.18 (m, 3H), 2.12-1.99 (m, 2H), 1.92 (s, 3H), 1.77 (d, J = 14.1 Hz, 1H)	11.0 min, 99.2% 7.4 min, 98.7%
769	3-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido) propanoic acid	CI HN CO_2H O	665.3 8.03 (s, 1H), 7.95-7.89 (m, 2H), 7.72 (dd, J = 8.0, 1.7 Hz, 1H), 7.64 (dd, J = 6.4, 3.1 Hz, 1H), 7.19-7.08 (m, 3H), 7.03-6.94 (m, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 5.55 (s, 2H), 4.76 (d, J = 13.0 Hz, 1H), 4.44 (d, J = 12.1 Hz, 1H), 3.97-3.80 (m, 2H), 3.66-3.51 (m, 3H), 2.82 (t, J = 11.6 Hz, 1H), 2.63 (t, J = 6.8 Hz, 2H), 2.54-2.17 (m, 3H), 2.03 (dq, J = 13.1, 6.4 Hz, 2H), 1.92 (s, 3H), 1.77 (d, J = 15.0 Hz, 1H)	9.2 min, 99.3% 8.6 min, 99.2%
770	(S)-2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido) succinic acid	CI HN CO_2H CO_2H CO_2H CO_2H	709.3 8.06 (s, 1H), 7.97 (dd, J = 5.3, 1.1 Hz, 2H), 7.78 (dd, J = 7.9, 1.8 Hz, 1H), 7.67 (dd, J = 6.4, 3.3 Hz, 1H), 7.23-7.09 (m, 3H), 7.05-6.97 (m, 1H), 6.86 (d, J = 7.7 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 5.58 (s, 2H), 4.97 (dd, J = 7.7, 5.3 Hz, 1H), 4.46 (d, J = 11.7 Hz, 1H), 4.00-3.83 (m, 2H), 3.65-3.54 (m, 1H), 2.96-2.79 (m, 2H), 2.58-2.20 (m, 3H), 2.15-2.00 (m, 2H), 1.94 (s, 3H), 1.79 (d, J = 14.5 Hz, 1H)	8.7 min, 99.2% 8.3 min, 99.0%

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
771	2-(2-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-H-pyrazol-1-yl)methyl)benzamido) ethanesulfonic acid	N-N O	701.3	8.03 (s, 1H), 7.89 (s, 1H), 7.62 (dd, J = 6.6, 2.9 Hz, 1H), 7.51-7.40 (m, 2H), 7.32 (dd, J = 8.3, 2.1 Hz, 1H), 7.16-7.08 (m, 2H), 7.03-6.94 (m, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 5.38 (s, 2H), 4.75 (d, J = 13.2 Hz, 1H), 4.47 (d, J = 13.2 Hz, 1H), 3.96-3.73 (m, 4H), 3.62-3.51 (m, 1H), 3.08 (t, J = 7.0 Hz, 2H), 2.87-2.77 (m, 1H), 2.53-2.17 (m, 3H), 2.10-1.97 (m, 2H), 1.93 (s, 3H), 1.78 (d, J = 14.5 Hz, 1H)	10.2 min, 96.3% 7.2 min, 96.7%
772	3-(2-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-IH-pyrazol-1-yl)methyl)benzamido) propanoic acid	N-N O	665.2	$8.05 (s, 1H), 7.92 (d, J = 0.4 \\ Hz, 1H), 7.70-7.59 (m, 1H), \\ 7.47 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 2.0 Hz, 1H), 7.39- \\ 7.30 (m, 1H), 7.19-7.12 (m, 2H), 7.04-6.97 (m, 1H), 6.86 (d, J = 7.5 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 5.41 (s, 2H), \\ 4.82-4.74 (m, 1H), 4.49 (d, J = 11.9 Hz, 1H), 3.99-3.82 (m, 2H), 3.67-3.54 (m, 3H), \\ 2.89-2.79 (m, 1H), 2.65 (t, J = 6.7 Hz, 2H), 2.55-2.20 (m, 3H), 2.14-1.99 (m, 2H), 1.95 (s, 3H), 1.80 (d, J = 14.7 Hz, 1H) \\ \end{cases}$	8.8 min, 99.1% 8.5 min, 99.2%
773	(S)-2-(2-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido) succinic acid	$N-N$ CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H	709.3	8.04 (s, 1H), 7.92 (s, 1H), 7.64 (dd, J = 6.3, 3.2 Hz, 1H), 7.54-7.45 (m, 2H), 7.36 (dd, J = 8.3, 2.1 Hz, 1H), 7.20-7.11 (m, 2H), 7.06-6.96 (m, 1H), 6.86 (d, J = 7.9 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 5.41 (s, 2H), 4.96 (dd, J = 6.8, 5.5 Hz, 1H), 4.78 (d, J = 13.6 Hz, 1H), 3.98-3.84 (m, 2H), 3.58 (t, J = 11.2 Hz, 1H), 3.06-2.78 (m, 3H), 2.56-2.20 (m, 3H), 2.13-1.99 (m, 2H), 1.95 (s, 3H), 1.79 (d, J = 14.7 Hz, 1H)	8.5 min, 98.8% 8.2 min, 99.2%
774	3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-N-(2,3-dihydroxypropyl)benzamide	N-N HO OH	667.3	8.03 (s, 1H), 7.98-7.91 (m, 2H), 7.75 (dd, J = 8.1, 1.8 Hz, 1H), 7.64 (dd, J = 6.4, 3.1 Hz, 1H), 7.20-7.07 (m, 3H), 7.03-6.93 (m, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 5.55 (s, 2H), 4.76 (d, J = 13.4 Hz, 1H), 4.44 (d, J = 11.9 Hz, 1H), 3.97-3.77 (m, 3H), 3.61-3.49 (m, 4H), 3.45-3.35 (m, 1H), 2.90-2.76 (m, 1H), 2.52-2.16 (m, 3H), 2.13-1.97 (m, 2H), 1.92 (s, 3H), 1.77 (d, J = 14.7 Hz, 1H)	8.4 min, 100% 8.1 min, 100%

		IABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	1 H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
775	2-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-N-(2,3-dihydroxypropyl)benzamide	N-N HN OH	667.3	8.05 (s, 1H), 7.92 (d, J = 0.4 Hz, 1H), 7.64 (dd, J = 6.2, 3.3 Hz, 1H), 7.52-7.44 (m, 2H), 7.36 (dd, J = 8.4, 2.2 Hz, 1H), 7.19-7.13 (m, 2H), 7.05-6.97 (m, 1H), 6.86 (d, J = 7.5, Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 5.41 (s, 2H), 4.81-4.73 (m, 1H), 4.54- 4.45 (m, 1H), 4.00-3.78 (m, 3H), 3.68-3.49 (m, 4H), 3.46- 3.38 (m, 1H), 2.90-2.78 (m, 1H), 2.54-2.19 (m, 3H), 2.13-1.99 (m, 2H), 1.95 (s, 3H), 1.80 (d, J = 14.7 Hz, 1H)	8.3 min, 98.1% N/A
776	(R)-Diethyl-2-(3-chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)succinate	N-N F CO ₂ Et CO ₂ Et CO ₂ Et	783.3	7.97 (s, 1H), 7.87-7.79 (m, 2H), 7.70-7.56 (m, 2H), 7.16-7.09 (m, 2H), 7.00-6.92 (m, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 5.59 (d, J = 2.9 Hz, 2H), 5.00-4.91 (m, 1H), 4.78-4.70 (m, 1H), 4.42 (d, J = 12.5 Hz, 1H), 4.27-4.11 (m, 4H), 3.96-3.80 (m, 2H), 3.58-3.50 (m, 1H), 3.07-2.74 (m, 3H), 2.53-2.17 (m, 3H), 2.10-1.96 (m, 2H), 1.89 (s, 3H), 1.77 (d, J = 15.2 Hz, 1H), 1.25 (q, J = 7.0 Hz, 6H)	11.2 min, 94.9% 10.2 min, 98.3%
777	(R)-Diethyl-2-(4-((4-(5-(4-(2,3-dimethylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido) succinate	N-N O	711.5	$\begin{array}{l} 7.87 \ (\mathrm{d}, \mathrm{J} = 9.4 \ \mathrm{Hz}, \ 2\mathrm{H}), \ 7.79 \\ (\mathrm{d}, \mathrm{J} = 8.4 \ \mathrm{Hz}, \ 2\mathrm{H}), \ 7.54 \\ 7.50 \ (\mathrm{m}, \ 1\mathrm{H}), \ 7.30 \ (\mathrm{d}, \ \mathrm{J} = 8.4 \\ \mathrm{Hz}, \ 2\mathrm{H}), \ 7.14 - 7.01 \ (\mathrm{m}, \ 2\mathrm{H}), \\ 6.91 \ (\mathrm{t}, \ \mathrm{J} = 7.9 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 6.58 \ (\mathrm{d}, \ \mathrm{J} = \\ 7.9 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 6.58 \ (\mathrm{d}, \ \mathrm{J} = \\ 7.9 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 5.39 \ (\mathrm{d}, \ \mathrm{J} = \\ 2.5 \ \mathrm{Hz}, \ 2\mathrm{H}), \ 4.96 \ (\mathrm{t}, \ \mathrm{J} = 5.7 \\ \mathrm{Hz}, \ 1\mathrm{H}), \ 4.79 - 4.71 \ (\mathrm{m}, \ 1\mathrm{H}), \\ 4.48 - 4.39 \ (\mathrm{m}, \ 1\mathrm{H}), \ 4.27 - \\ 4.08 \ (\mathrm{m}, \ 4\mathrm{H}), \ 3.90 - 3.75 \ (\mathrm{m}, \ 2\mathrm{H}), \ 3.62 - 3.53 \ (\mathrm{m}, \ 1\mathrm{H}), \ 2.96 \\ (\mathrm{d}, \ \mathrm{J} = 5.9 \ \mathrm{Hz}, \ 2\mathrm{H}), \ 2.84 - \\ 2.75 \ (\mathrm{m}, \ 1\mathrm{H}), \ 2.47 - 2.22 \ (\mathrm{m}, \ 3\mathrm{H}), \ 2.11 \ (\mathrm{s}, \ 3\mathrm{H}), \ 2.07 - 1.95 \\ (\mathrm{m}, \ 2\mathrm{H}), \ 1.84 \ (\mathrm{s}, \ 3\mathrm{H}), \ 1.76 \ (\mathrm{d}, \ \mathrm{J} = 14.9 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 1.30 - 1.17 \\ (\mathrm{m}, \ 6\mathrm{H}) \end{array}$	100%*
778	(S)-2-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)succinic acid	N-N F CO ₂ H CO ₂ H	729.2	8.07-7.94 (m, 2H), 7.83-7.65 (m, 2H), 7.52 (d, J = 8.8 Hz, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.20-6.85 (m, 3H), 6.64 (d, J = 7.7 Hz, 1H), 5.61 (br. s., 2H), 5.02 (br. s., 1H), 4.59 (br. s., 1H), 4.46 (br. s., 2H), 4.27 (br. s., 1H), 4.09 (br. s., 3H), 3.75 (br. s., 1H), 3.21-2.91 (m, 2H), 2.33 (br. s., 1H), 2.24-2.00 (m, 4H)	9.2 min, 98.8% 8.8 min, 98.9%

681 682 TABLE 21-continued HPLC-1: Rt min. purity; LCMS, Ex-HPLC-2: am-¹H NMR (400 MHz, Rt min, Formula I H]* $\text{MeOD})\,\delta$ ple Name purity (S)-2-(4-Chloro-3-((4-(5-((2-CO₂H 711.2 8.24 (br. s., 3H), 7.92-7.73 9.2 min, (3-chloro-2-methylphenoxy) (m, 2H), 7.58-7.47 (m, 1H), 99.4% ethoxy)carbonyl)-2,3,4,5-7.45-7.22 (m, 1H), 7.20-8.8 min, CO₂H tetrahydrobenzo[b][1,4] 6.92 (m, 3H), 6.85-6.58 (m, 99.1% oxazepin-9-yl)-1H-pyrazol-1-1H), 5.61 (br. s., 2H), 5.04 yl)methyl)benzamido) (br. s., 1H), 4.68-4.43 (m, 2H), 4.35-3.99 (m, 4H), 3.81 succinic acid (d, J = 9.5 Hz, 1H), 3.192.87 (m, 2H), 2.34 (br. s., 1H), 2.23-2.05 (m, 4H) 100%* 780 3-(3-Chloro-4-((4-(5-(4-(3-709.2 7.85 (s, 1H), 7.82-7.75 (m, 2H), 7.61 (d, J = 1.5 Hz, 1H), 7.54 (dd, J = 7.9, 1.5 Hz, chloro-2-methylphenoxy) butanoyl)-4,5-dihydro-2H-CO₂H spiro[benzo[b][1,4] 1H), 7.15-7.08 (m, 2H), 7.03 (dd, J = 7.9, 1.5 Hz, 1H),oxazepine-3,1'cyclopropane]-9-yl)-1H-7.00-6.93 (m, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.67 (d, J = pyrazol-1-yl)methyl)-5fluorobenzamido)propanoic 8.4 Hz, 1H), 5.60-5.45 (m, 2H), 4.36 (br. s., 1H), 3.97-3.84 (m, 2H), 3.67 (br. s., 2H), 3.62 (t, J = 6.7 Hz, 2H), 3.07-2.97 (m, 1H), 2.59 (t, J = 6.4 Hz, 2H), 2.51-2.35 (m, 2H), 2.13-2.02 (m, 2H), 1.95 (s, 3H), 0.98 (d, J = 4.5 Hz,1H), 0.72-0.62 (m, 1H), 0.54-0.44 (m, 1H), 0.40-0.32 (m, 1H) 781 (S)-2-(3-Chloro-4-((4-(5-(4-753.3 7.85 (s, 1H), 7.83-7.78 (m, 100%* (3-chloro-2-methylphenoxy) 2H), 7.63 (dd, J = 9.7, 1.2 butanoyl)-4,5-dihydro-2H-Hz, 1H), 7.54 (dd, J = 7.9, CO₂H spiro[benzo[b][1,4] 1.5 Hz, 1H), 7.15-7.08 (m, oxazepine-3,1 1H), 7.02 (dd, J = 7.9, 1.5 CO2H cyclopropane]-9-yl)-1H-Hz, 1H), 7.00-6.94 (m, 1H),

pyrazol-1-yl)methyl)-5fluorobenzamido)succinic acid

6.85 (d, J = 7.9 Hz, 1H), 6.67(d, J = 8.4 Hz, 1H), 5.625.47 (m, 2H), 4.91 (t, J = 5.7 Hz, 1H), 4.35 (d, J = 13.4 Hz, 1H), 3.97-3.85 (m, 2H), 3.74-3.64 (m, 2H), 3.01 (d, J = 13.9 Hz, 1H), 2.97 (d, J = 5.9 Hz, 2H), 2.51-2.34 (m, 2H), 2.12-2.00 (m, 2H), 1.95 (s, 3H), 0.98 (d, J = 4.5 Hz, 1H), 0.71-0.61 (m, 1H), 0.53-0.44 (m, 1H), 0.41-0.32 (m,

1H)

683 684 TABLE 21-continued HPLC-1: Rt min, purity; Ex-LCMS, HPLC-2: [M + ¹H NMR (400 MHz, am-Rt min, ple Name Formula I H]+ MeOD) δ purity 7.83 (s, 1H), 7.81-7.76 (m, 2H), 7.65-7.59 (m, 1H), 7.53 (dd, J = 7.7, 1.2 Hz, 1H), 100%* 782 2-(3-Chloro-4-((4-(5-(4-(3-745.2 chloro-2-methylphenoxy) butanoyl)-4,5-dihydro-2H-SO₃H 7.11 (t, J = 7.9 Hz, 1H), 7.02 (dd, J = 7.7, 1.2 Hz, 1H), spiro[benzo[b][1,4] oxazepine-3,1'cyclopropane]-9-yl)-1H-7.00-6.94 (m, 1H), 6.84 (d, J = pyrazol-1-yl)methyl)-5-7.9 Hz, 1H), 6.67 (d, J =fluorobenzamido) 8.4 Hz, 1H), 5.60-5.47 (m, ethanesulfonic acid 2H), 4.39-4.31 (m, 1H), 3.96-3.85 (m, 2H), 3.81 (s, 2H), 3.77-3.65 (m, 2H), 3.08 (t, J =6.2 Hz, 2H), 3.04-2.98 (m, 1H), 2.51-2.34 (m, 2H), 2.11-2.02 (m, 2H), 1.95 (s, 3H), 0.98 (d, J = 4.0 Hz, 1H), 0.720.62 (m, 1H), 0.53-0.44 (m, 1H), 0.42-0.32 (m, 1H) 783 2-(3-Chloro-4-((4-(5-(4-(3-722.3 7.89 (s, 1H), 7.86-7.78 (m, N/A2H), 7.60 (dd, J = 9.7, 1.2 Hz, 1H), 7.54 (dd, J = 7.9, chloro-2-methylphenoxy) butanoyl)-4,5-dihydro-2Hspiro[benzo[b][1,4] 1.5 Hz, 1H), 7.12 (t, J = 7.7)oxazepine-3,1'-Hz, 1H), 7.03 (dd, J = 7.9, cyclopropane]-9-yl)-1H-1.5 Hz, 1H), 7.00-6.93 (m, pyrazol-1-yl)methyl)-5-1H), 6.83 (d, J = 7.9 Hz, 1H), fluorobenzamido)-N,N,N-6.68 (d, J = 8.4 Hz, 1H), 5.62trimethylethanaminium 5.49 (m, 2H), 4.35 (d, J = 13.4 Hz, 1H), 3.96-3.86 (m, 2H), 3.83 (t, J = 6.4 Hz, 2H), 3.77-3.66 (m, 2H), 3.57 (t, J = 6.4 Hz, 2H), 3.21 (s, 9H), 3.05-2.98 (m, 1H), 2.51-2.36 (m, 2H), 2.07 (t, J = 6.4 Hz, 2H), 1.93 (s, 3H), 0.99 (br. s., 1H), 0.70-0.62 (m, 1H), 0.54-0.46 (m, 1H), 0.40-0.32 (m, 1H)

784 3-(3-Chloro-4-((4-(10-(4-(3-chloro-2-methylphenoxy))
butanoyl)-10,11dihydrodibenzo[b,f][1,4]
oxazepine-6-yl)-1H-pyrazol-1yl)methyl)-5fluorobenzamido)propanoic
acid

731.9 7.97 (s, 1H), 7.82 (s, 1H), 7.73 (s, 1H), 7.58-7.48 (m, 2H), 7.27-7.10 (m, 3H), 7.09-6.97 (m, 3H), 6.92 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 8.1 Hz, 1H), 5.84-5.65 (m, 3H), 4.26 (d, J = 16.9 Hz, 1H), 3.95-3.72 (m, 4H), 2.77 (t, J = 5.7 Hz, 2H), 2.59 (d, J = 8.1 Hz, 2H), 2.11 (quin, J = 6.3 Hz, 2H), 1.96 (s, 3H)

10.2 min, 100% 9.4 min, 100%

TABLE 21-continued HPLC-1: Rt min, purity; Ex-LCMS, HPLC-2: [M + ¹H NMR (400 MHz, am-Rt min, ple Name Formula I H]+ MeOD) δ purity 785 2-(3-Chloro-4-((4-(5-(4-(3-735.2 8.00 (s, 1H), 7.90-7.82 (m, 8.5 min, OH, chloro-2-methylphenoxy) 2H), 7.70 (dd, J = 9.9, 1.5 99.8% 2H), 7.70 (dd, J = 9.9, 1.5 Hz, 1H), 7.62 (dd, J = 6.6, 3.1 Hz, 1H), 7.20-7.09 (m, 2H), 7.02-6.96 (m, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 5.08-5.54 (m, butanoyl)-2,3,4,5-tetrahydrobenzo[b] 7.8 min, ОH 99.6% [1,4]oxazepin-9-yl)-1Hpyrazol-1-yl)methyl)-5fluorobenzamido)ethyl 2H), 4.78 (d, J = 11.0 Hz, 1H), 4.44 (d, J = 11.7 Hz, dihydrogen phosphate 1H), 4.19-4.09 (m, 2H), 3.98-3.83 (m, 2H), 3.66 (t, J = 5.3 Hz, 2H), 3.61-3.52 (m, 1H), 2.84 (t, J = 11.8 Hz, 1H), 2.57-2.21 (m, 3H), 2.13-2.00 (m, 2H), 1.93 (s, 3H), 1.79 (d, J = 14.3 Hz, 1H)786 2-(3-Chloro-4-((4-(5-(4-(3-669.2 7.92 (s, 1H), 7.89-7.80 (m, 9.3 min, 2H), 7.68 (dd, J = 9.8, 1.7 Hz, 1H), 7.56 (dd, J = 7.6, chloro-2-methylphenoxy) 99.6% CO₂H butanoyl)-2,3,4,5-8.7 min, 1.9 Hz, 1H), 7.17-7.05 (m, tetrahydrobenzo[b][1,4] 99.6%2H), 7.00-6.92 (m, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.68 (d, J = oxazepin-9-yl)-1H-pyrazol-1yl)methyl)-5-8.1 Hz, 1H), 5.58 (dd, J = fluorobenzamido)acetic acid 5.1, 1.3 Hz, 2H), 4.79 (br. s., 1H), 4.43 (d, J = 11.9 Hz, 1H), 4.15-4.08 (m, 2H), 3.98-3.81 (m, 2H), 3.64-3.53

787 3-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)) butanoyl)-4,5-dihydro-2H-spiro[benzo[b][1,4] oxazepine-3,1'-cyclobutane]-9-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) propanoic acid

723.2 7.90 (s, 1H), 7.84-7.78 (m, 2H), 7.62 (d, J = 1.5 Hz, 1H), 7.50 (dd, J = 7.9, 1.5 Hz, 1H), 7.11-7.05 (m, 1H), 7.03-6.93 (m, 2H), 6.83 (d, J = 7.4 Hz, 1H), 6.65 (d, J = 7.9 Hz, 1H), 5.65-5.50 (m, 2H), 5.08 (d, J = 13.4 Hz, 1H), 4.29 (d, J = 11.4 Hz, 1H), 3.95-3.79 (m, 2H), 3.63 (t, J = 6.7 Hz, 2H), 3.40-3.35 (m, 1H), 2.69-2.56 (m, 3H), 2.55-2.46 (m, 1H), 2.44-2.35 (m, 1H), 2.30 (d, J = 6.4 Hz, 1H), 2.13-1.95 (m, 5H), 1.91 (s, 3H), 1.81-1.67 (m, 1H), 1.63-1.51 (m, 1H)

(m, 1H), 2.88-2.75 (m, 1H), 2.50-2.23 (m, 3H), 2.13-2.00 (m, 2H), 1.79 (d, J = 14.7 Hz, 1H)

91%*

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	$^{1}\text{H NMR (400 MHz,}$ MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
788	(S)-2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy) butanoyl)-4,5-dihydro-2H-spiro[benzo[b][1,4] oxazepine-3,1'-cyclobutane]-9-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) succinic acid	V V V V V V V V V V	767.1	7.90 (s, 1H), 7.86-7.79 (m, 2H), 7.66 (dd, J = 9.4, 1.5 Hz, 1H), 7.50 (dd, J = 7.9, 1.5 Hz, 1H), 7.12-7.05 (m, 1H), 7.03-6.94 (m, 2H), 6.83 (d, J = 7.9 Hz, 1H), 6.65 (d, J = 7.9 Hz, 1H), 5.64-5.51 (m, 2H), 5.08 (d, J = 13.4 Hz, 1H), 4.91 (t, J = 5.7 Hz, 1H), 4.30 (d, J = 10.9 Hz, 1H), 3.96-3.80 (m, 2H), 3.37 (d, J = 4.0 Hz, 1H), 2.99-2.94 (m, 2H), 2.63 (d, J = 13.4 Hz, 1H), 2.56-2.46 (m, 1H), 2.44-2.35 (m, 1H), 2.30 (d, J = 6.9 Hz, 1H), 2.14-1.94 (m, 5H), 1.91 (s, 3H), 1.75 (d, J = 4.5 Hz, 1H), 1.58 (dd, J = 8.7, 2.3 Hz, 1H)	91%*
789	2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy))))-4,5-dihydro-2H-spiro[benzo[b][1,4] oxazepine-3,1'-cyclobutane]-9-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O	759.1	7.88 (s, 2H), 7.84-7.78 (m, 2H), 7.64 (d, J = 1.5 Hz, 1H), 7.50 (dd, J = 7.9, 1.5 Hz, 1H), 7.11-7.05 (m, 1H), 7.02-6.93 (m, 2H), 6.83 (d, J = 7.9 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 5.65-5.50 (m, 2H), 5.08 (d, J = 13.4 Hz, 1H), 4.33-4.25 (m, 1H), 3.95-3.77 (m, 4H), 3.37 (d, J = 5.4 Hz, 1H), 3.09 (t, J = 6.4 Hz, 2H), 2.68-2.59 (m, 1H), 2.56-2.46 (m, 1H), 2.29 (d, J = 6.9 Hz, 1H), 2.13-1.94 (m, 5H), 1.91 (s, 3H), 1.81-1.70 (m, 1H), 1.58 (dd, J = 8.7, 3.2 Hz, 1H)	91%*
790	2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-methylphenoxy)) butanoyl)-4,5-dihydro-2H-spiro[benzo[b][1,4] oxazepine-3,1'-cyclobutane]-9-yl)-1H-pyrazol-1-yl) methyl)-5-fluorobenzamido)-N,N,N,-trimethylethanaminium	N-N F O CI	736.2	7.94 (s, 1H), 7.89-7.79 (m, 2H), 7.68 (dd, J = 9.9, 1.5 Hz, 1H), 7.51 (dd, J = 7.7, 1.7 Hz, 1H), 7.09 (t, J = 7.9 Hz, 1H), 7.09 (t, J = 7.9 Hz, 1H), 7.04-6.93 (m, 2H), 6.82 (d, J = 7.9 Hz, 1H), 5.64-51 (m, 2H), 5.09 (d, J = 13.4 Hz, 1H), 4.31 (d, J = 10.9 Hz, 1H), 3.94-3.79 (m, 4H), 3.63-3.52 (m, 2H), 3.42-3.35 (m, 1H), 3.26-3.17 (m, 9H), 2.63 (d, J = 13.4 Hz, 1H), 2.56-2.46 (m, 1H), 2.43-2.35 (m, 1H), 2.33-2.25 (m, 1H), 2.12-1.95 (m, 5H), 1.90 (s, 3H), 1.83-1.71 (m, 1H), 1.64-1.53 (m, 1H)	91%*

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M+ H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
791	(S)-6-Amino-2-(3-chloro-4- ((4-(5-(4-(3-chloro-2- methylphenoxy)butanoyl)- 4,5-dihydro-2H-spiro [benzo[b][1,4]oxazepine-3,1'- cyclobutane]-9-yl)-1H- pyrazol-1-yl)methyl)-5- fluorobenzamido)hexanoic acid	N-N F O NH ₂	780.2	7.91 (s, 1H), 7.88-7.79 (m, 2H), 7.68 (dd, J = 9.9, 1.5 Hz, 1H), 7.50 (dd, J = 7.9, 1.5 Hz, 1H), 7.12-7.04 (m, 1H), 7.03-6.92 (m, 2H), 6.83 (d, J = 7.9 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 5.63-5.51 (m, 2H), 5.08 (d, J = 13.4 Hz, 1H), 4.45 (t, J = 5.9 Hz, 1H), 4.30 (d, J = 11.4 Hz, 1H), 3.95-3.78 (m, 2H), 3.40-3.35 (m, 1H), 2.95-2.84 (m, 3H), 2.63 (d, J = 12.9 Hz, 1H), 2.55-2.45 (m, 1H), 2.42-2.34 (m, 1H), 2.13-1.93 (m, 8H), 1.91 (s, 3H), 1.89-1.80 (m, 1H), 1.79-1.63 (m, 3H), 1.58 (dd, J = 8.7, 3.2 Hz, 1H), 1.54-1.39 (m, 2H)	91%*
792	(S)-6-Amino-2-(3-chloro-4- ((4-(5-(4-(3-chloro-2- methylphenoxy)butanoyl)- 2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H- pyrazol-1-yl)methyl)-5- fluorobenzamido)hexanoic acid	N-N F O NH2	740.2	7.89 (s, 1H), 7.86-7.79 (m, 2H), 7.67 (dd, J = 9.9, 1.5 Hz, 1H), 7.53 (dd, J = 7.7, 1.7 Hz, 1H), 7.14-7.03 (m, 2H), 6.99-6.92 (m, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 5.63-5.49 (m, 2H), 4.51-4.34 (m, 3H), 3.95-3.80 (m, 2H), 3.56 (t, J = 11.6 Hz, 1H), 2.96-2.74 (m, 3H), 2.45-2.35 (m, 2H), 2.29 (dd, J = 10.9, 4.0 Hz, 1H), 2.05 (quin, J = 6.4 Hz, 2H), 1.99-1.89 (m, 4H), 1.89-1.61 (m, 4H), 1.54-1.36 (m, 2H)	91%*
793	3-(4-Chloro-3-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)benzamido) propanoic acid	N-N CI	667.2	8.08-7.97 (m, 1H), 7.90 (s, 1H), 7.74 (dd, J = 8.4, 2.0 Hz, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.54-7.41 (m, 2H), 7.22-6.80 (m, 4H), 6.68 (d, J = 8.4 Hz, 1H), 5.50 (s, 2H), 4.56 (br. s., 1H), 4.42 (br. s., 2H), 4.28 (br. s., 1H), 4.15-4.02 (m, 3H), 3.75 (s, 1H), 3.61 (t, J = 6.7 Hz, 2H), 2.59 (t, J = 6.7 Hz, 2H), 2.31 (s, 1H), 2.20-1.98 (m, 4H)	95%*

	071			092	
		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
794	3-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	N-N F O CO ₂ H	685.2	8.03-7.95 (m, 1H), 7.84 (s, 1H), 7.78 (s, 1H), 7.59 (d, J = 1.0 Hz, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.23-6.79 (m, 4H), 6.67 (d, J = 7.9 Hz, 1H), 5.56 (s, 2H), 4.56 (br. s., 1H), 4.42 (br. s., 2H), 4.28 (br. s., 1H), 4.09 (br. s., 3H), 3.75 (s, 1H), 3.63 (t, J = 6.7 Hz, 2H), 2.31 (br. s., 1H), 2.17-1.99 (m, 4H)	95%*
795	2-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-	N-N F O	671.1	8.04-7.94 (m, 1H), 7.88- 7.81 (m, 2H), 7.66 (dd, J = 9.4, 1.5 Hz, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.21-6.79 (m, 4H), 6.67 (d, J = 7.9 Hz, 1H), 5.56 (s, 2H), 4.56 (br. s., 1H),	96%*

yl)methyl)-5-fluorobenzamido)acetic acid

5.56 (s, 2H), 4.56 (br. s., 1H), 4.42 (br. s., 2H), 4.28 (br. s., 1H), 4.14-3.99 (m, 5H), 3.75 (s, 1H), 2.31 (s, 1H), 2.18-1.96 (m, 4H)

796 (S)-3-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)-4-ethoxy-4-oxobutanoic acid

757.4 8.13 (br. s., 1H), 7.94-7.80 (m, 2H), 7.67 (dd, J = 9.7, 1.5 Hz, 1H), 7.50 (d, J = 7.0 Hz, 1H), 7.21-6.89 (m, 4H), 6.77 (d, J = 7.0 Hz, 1H), 5.63 (d, J = 1.1 Hz, 2H), 5.00-4.91 (m, 1H), 4.59 (br. s., 1H), 4.43 (br. s., 2H), 4.34 (br. s., 1H), 4.29-4.19 (m, 2H), 4.16-4.00 (m, 4H), 3.07-2.85 (m, 2H), 2.34 (br. s., 1H), 2.17-1.98 (m, 4H), 1.29 (t, J = 7.0 Hz, 3H)

10.2 min, 99.8% 9.6 min, 99.8%

HPLC-1: Rt min, purity; Ex-LCMS, HPLC-2: [M + ¹H NMR (400 MHz, Rt min, am-Formula I MeOD) δ ple Name H]+ purity (S)-Bis(2-morpholinoethyl)2-955.5 7.96 (s, 1H), 7.88 (s, 1H), 6.2 min, (3-chloro-4-((4-(5-((2-(3-7.72 (s, 1H), 7.61-7.51 (m, 98.9% chloro-2-methylphenoxy) 1H), 7.44-7.33 (m, 2H), 7.16-7.7 min, ethoxy)carbonyl)-2,3,4,5-6.93 (m, 3H), 6.87-6.62 99.0% tetrahydrobenzo[b][1,4] (m, 1H), 5.57 (s, 2H), 5.11oxazepin-9-yl)-1H-pyrazol-1-5.01 (m, 1H), 4.65-4.19 (m, yl)methyl)-5-7H), 4.11 (br. s., 2H), 3.82fluorobenzamido)succinate 3.59 (m, 8H), 3.17 (dd, J = 17.3, 4.3 Hz, 1H), 3.07-2.95 (m, 1H), 2.73-2.58 (m, 4H), 2.56-2.43 (m, 7H), 2.36 (br. s., 1H), 2.28-2.02 (m, 4H), 1.74 (br. s., 4H)

798 2-(3-Chloro-2methylphenoxy)ethyl 9-(1-(2chloro-6-fluoro-4-(methylsulfonylcarbamoyl) benzyl)-1H-pyrazol-4-yl)-3,4dihydrobenzo[b][1,4] oxazepine-5(2H)-carboxylate

693.3 8.16 (br. s., 1H), 7.96-7.85 (m, 2H), 7.74 (dd, J = 9.7,1.8 Hz, 1H), 7.50 (d, J = 7.0 Hz, 1H), 7.22-6.90 (m, 4H), 6.77 (d, J = 7.9 Hz, 1H), 5.64 (d, J = 1.3 Hz, 2H), 4.59 (br.s., 1H), 4.43 (br. s., 2H), 4.34 (br. s., 1H), 4.18-3.99 (m, 4H), 3.39 (s, 3H), 2.34 (br. s., 1H), 2.17-1.99 (m, 4H)

10.4 min, 98.4% 9.9 min, 99.9%

799 2-(3-Chloro-2methylphenoxy)ethyl 9-(1-(2chloro-6-fluoro-4-(methylsulfonamido)-2oxoethylcarbamoyl)benzyl)-1H-pyrazol-4-yl)-3,4dihydrobenzo[b][1,4] oxazepine-5(2H)-carboxylate

748.3 8.14 (br. s., 1H), 7.94-7.85 (m, 2H), 7.70 (dd, J = 9.8,1.7 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.21-6.91 (m, 4H), 6.77 (d, J = 7.3 Hz, 1H), 5.63(d, J = 1.1 Hz, 2H), 4.59 (br.s., 1H), 4.43 (br. s., 2H), 4.34 (br. s., 1H), 4.19-4.00 (m, 5H), 3.75 (br. s., 1H), 3.29 (s, 3H), 2.34 (br. s., 1H), 2.17-1.99 (m, 4H)

9.7 min, 98.2% 9.3 min, 98.5%

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
800	(2S)-Bis(2,3-dihydroxypropyl)2-(3-chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy)ethoxy) carbonyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)succinate	CI OO OOH OOH OOH OOH OOH OOH OOH OOH	877.4	8.13 (br. s., 1H), 7.88 (d, J = 12.8 Hz, 2H), 7.69 (d, J = 9.5 Hz, 1H), 7.50 (d, J = 6.6 Hz, 1H), 7.22-6.89 (m, 4H), 6.77 (d, J = 7.9 Hz, 1H), 5.63 (s, 2H), 5.06 (ddd, J = 7.7, 5.3, 2.6 Hz, 1H), 4.59 (br. s., 1H), 4.43 (br. s., 2H), 4.39-3.99 (m, 6H), 3.92-3.80 (m, 2H), 3.78-3.66 (m, 1H), 3.58 (dd, J = 5.5, 2.4 Hz, 4H), 3.19-2.95 (m, 4H), 2.34 (br. s., 1H), 2.19-1.98 (m, 4H)	8.2 min, 90.7% 8.1 min, 91.7%
801	2-(3-Chloro-2-methylphenoxy)ethyl 9-(1-(4-((2H-tetrazol-5-yl) methylcarbamoyl)-2-chloro-6-fluorobenzyl)-1H-pyrazol-4-yl)-3,4-dihydrobenzo[b] [1,4]oxazepine-5(2H)-carboxylate	N-N F O CI	695.2	8.05-7.98 (m, 1H), 7.85 (d, J = 10.9 Hz, 2H), 7.67 (dd, J = 9.4, 1.5 Hz, 1H), 7.46-7.37 (m, 1H), 7.21-6.78 (m, 4H), 6.67 (d, J = 7.9 Hz, 1H), 5.56 (s, 2H), 4.84 (s, 2H), 4.56 (br. s., 1H), 4.42 (br. s., 2H), 4.28 (br. s., 1H), 4.14-3.98 (m, 3H), 3.79-3.67 (m, 1H), 2.31 (s, 1H), 2.19-1.99 (m, 4H)	99%*
802	3-(4-Chloro-3-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-7-fluoro-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	V V V V V V V V V V	685.2	8.04-7.87 (m, 2H), 7.79 (d, J = 8.8 Hz, 1H), 7.57-7.43 (m, 2H), 7.18-6.57 (m, 5H), 5.50 (br. s., 2H), 4.62-4.41 (m, 2H), 4.31-4.02 (m, 4H), 3.87-3.52 (m, 4H), 2.75-2.43 (m, 2H), 2.40-2.03 (m, 3H)	9.8 min, 97.9% 9.2 min, 98.0%
803	3-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3-hydroxy-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	V V V V V V V V V V	703.2	8.15 (s, 1H), 7.90 (s, 1H), 7.82 (t, J = 1.2 Hz, 1H), 7.65 (dd, J = 9.9, 1.8 Hz, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.25-6.89 (m, 4H), 6.79 (br. s., 1H), 5.62 (d, J = 1.3 Hz, 2H), 4.69-4.02 (m, 8H), 3.87-3.73 (m, 1H), 3.72-3.57 (m, 2H), 2.66 (t, J = 6.8 Hz, 2H), 2.42-2.04 (m, 3H)	8.6 min, 99.7% 8.3 min, 99.6%

	TABLE 21-continued				
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
804	3-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy) ethoxy)carbonyl)-3,3-difluoro-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	CI HN CO_2H O F F O	721.1	8.02 (s, 1H), 7.84 (s, 1H), 7.80 (s, 1H), 7.60 (d, J = 1.5 Hz, 1H), 7.48 (d, J = 7.4 Hz, 2H), 7.26-6.82 (m, 4H), 6.70 (br. s., 1H), 5.58 (s, 2H), 4.65- 4.21 (m, 4H), 4.12 (br. s., 4H), 3.63 (t, J = 6.7 Hz, 2H), 2.59 (t, J = 6.7 Hz, 2H), 2.40- 2.08 (m, 3H)	100%*
805	3-(3-Chloro-4-((4-(5-(4-(3-chloro-2-fluorophenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	N-N F O O O F O O O F O	687.1	7.94 (s, 1H), 7.88-7.74 (m, 2H), 7.62 (d, J = 1.5 Hz, 1H), 7.52 (dd, J = 7.7, 1.7 Hz, 1H), 7.18-7.05 (m, 2H), 6.92-6.76 (m, 3H), 5.61-5.50 (m, 3H), 4.81-4.74 (m, 1H), 4.45 (d, J = 11.9 Hz, 1H), 4.03-3.87 (m, 2H), 3.67-3.53 (m, 3H), 2.85-2.75 (m, 1H), 2.61 (t, J = 6.7 Hz, 2H), 2.48-2.38 (m, 1H), 2.36-2.24 (m, 2H), 2.10-1.97 (m, 2H), 1.78 (d, J = 14.4 Hz, 1H)	100%*
806	2-(3-Chloro-4-((4-(5-(4-(3-chloro-2-fluorophenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O F Cl	723.0	7.92 (s, 2H), 7.87-7.76 (m, 3H), 7.63 (d, J = 1.5 Hz, 1H), 7.52 (dd, J = 7.7, 1.7 Hz, 1H), 7.18-7.04 (m, 4H), 6.92-6.75 (m, 6H), 5.62-5.48 (m, 2H), 4.82-4.73 (m, 1H), 4.44 (d, J = 11.9 Hz, 2H), 4.04-3.88 (m, 4H), 3.81 (t, J = 6.4 Hz, 4H), 3.64-3.52 (m, 2H), 3.08 (t, J = 6.2 Hz, 4H), 2.85-2.76 (m, 2H), 2.49-2.39 (m, 2H), 2.37-2.24 (m, 4H), 2.09-1.98 (m, 4H), 1.78 (d, J = 14.9 Hz, 2H)	100%*
807	2-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy)-2-methylpropoxy)carbonyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O O O O	749.2	8.03-7.95 (m, 2H), 7.89-7.84 (m, 1H), 7.79 (s, 1H), 7.64-7.60 (m, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.19-6.94 (m, 2H), 6.88 (t, J = 8.2 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 5.56 (s, 2H), 4.15 (s, 3H), 3.81 (t, J = 6.2 Hz, 2H), 3.08 (t, J = 6.2 Hz, 2H), 3.04-2.86 (m, 2H), 1.97 (s, 6H), 1.49-1.11 (m, 6H)	100%*

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
808	3-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy)-2-methylphenoxy))-2-methylpropoxy)carbonyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	CI HN CO_2H O	715.2	8.04-7.95 (m, 1H), 7.90-7.83 (m, 1H), 7.79 (s, 1H), 7.61 (s, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.22-6.94 (m, 3H), 6.87 (s, 1H), 6.72 (d, J = 8.4 Hz, 1H), 5.56 (s, 2H), 4.35-3.98 (m, 4H), 3.80-3.56 (m, 4H), 2.59 (t, J = 6.4 Hz, 2H), 2.39-1.95 (m, 5H), 1.51-1.10 (m, 6H)	100%*
809	3-(3-Chloro-4-((4-(5-(4-(3-chloro-2,6-diffuorophenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	$N-N$ F O O F CO_2H O F CI F CI	705.0	8.02 (s, 1H), 7.87 (s, 1H), 7.79 (s, 1H), 7.63 (dd, J = 7.4, 2.0 Hz, 1H), 7.18-7.09 (m, 2H), 7.01 (ddd, J = 9.2, 7.7, 5.4 Hz, 1H), 6.86-6.77 (m, 1H), 5.57 (s, 1H), 4.81-4.74 (m, 1H), 4.47 (d, J = 12.4 Hz, 2H), 4.18-4.01 (m, 2H), 3.68-3.59 (m, 2H), 2.85-2.77 (m, 1H), 2.62 (t, J = 6.7 Hz, 2H), 2.56-2.45 (m, 1H), 2.40-2.11 (m, 2H), 2.09-1.88 (m, 2H), 1.79 (d, J = 14.4 Hz, 1H)	100%
810	3-(3-Chloro-4-((4-(5-(4-(2-chloro-6-fluoro-3-methylphenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b] [1,4]oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	V V V V V V V V V V	701.1	8.04 (s, 1H), 7.88 (s, 1H), 7.79 (s, 1H), 7.61 (dd, J = 9.4, 1.5 Hz, 1H), 7.59-7.49 (m, 1H), 7.18-7.11 (m, 2H), 6.91-6.83 (m, 2H), 5.57 (s, 2H), 4.52-4.27 (m, 2H), 4.09-3.93 (m, 2H), 3.63 (t, J = 6.7 Hz, 2H), 2.86-2.78 (m, 1H), 2.65-2.52 (m, 3H), 2.40-2.21 (m, 5H), 2.12-1.91 (m, 2H), 1.79 (d, J = 14.9 Hz, 1H)	99%*
811	2-(3-Chloro-4-((4-(5-(4-(2-chloro-3-(trifluoromethyl) phenoxy)butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O CI F E	773.0	7.90 (s, 1H), 7.85-7.75 (m, 2H), 7.66-7.60 (m, 1H), 7.50 (dd, J = 7.4, 2.0 Hz, 1H), 7.25-7.01 (m, 5H), 5.54 (s, 2H), 4.77 (d, J = 12.9 Hz, 1H), 4.45 (d, J = 11.9 Hz, 1H), 4.08-3.92 (m, 2H), 3.63-3.52 (m, 1H), 3.08 (t, J = 6.2 Hz, 2H), 2.86-2.75 (m, 1H), 2.55-2.23 (m, 3H), 2.18-2.01 (m, 2H), 1.79 (d, J = 14.9 Hz, 1H)	100%*

		TABLE 21-continued			
Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
812	3-(3-Chloro-4-((4-(5-(4-(2-chloro-3-(trifluoromethyl))))))))))))))))))))))))))))))))))))	CI HN CO_2H O O CI F F F	737.0	7.92 (s, 1H), 7.83-7.75 (m, 2H), 7.62 (d, J = 1.5 Hz, 1H), 7.50 (dd, J = 7.4, 2.0 Hz, 1H), 7.26-7.02 (m, 5H), 5.63-5.43 (m, 2H), 4.80-4.74 (m, 1H), 4.45 (d, J = 11.9 Hz, 1H), 4.07-3.92 (m, 2H), 3.68-3.53 (m, 3H), 2.85-2.76 (m, 1H), 2.62 (t, J = 6.4 Hz, 2H), 2.55-2.23 (m, 3H), 2.18-2.03 (m, 2H), 1.78 (d, J = 14.9 Hz, 1H)	100%*
813	2-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy)-1,1,2,2-tetradeuteroethoxy) carbonyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	CI HN SO_3H O D	777.2	8.02-7.92 (m, 1H), 7.87-7.75 (m, 2H), 7.61 (d, J = 2.0 Hz, 1H), 7.47-7.34 (m, 1H), 7.21-6.88 (m, 4H), 6.68 (s, 1H), 5.55 (s, 2H), 4.71 (br. s., 1H), 4.40-3.55 (m, 5H), 3.08 (t, J = 6.4 Hz, 2H), 2.40-1.98 (m, 5H)	100%*
814	2-(3-Chloro-4-((4-(1-(4-(3-chloro-2-methylphenoxy) butanoyl)-1,2,3,5-tetrahydrobenzo[e][1,4] oxazepin-6-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N HN SO ₃ H	719.0	7.80 (s, 1H), 7.66-7.60 (m, 2H), 7.52 (s, 1H), 7.36-7.26 (m, 2H), 7.18 (dd, J = 7.4, 1.5 Hz, 1H), 7.07-6.98 (m, 1H), 6.88 (d, J = 7.9 Hz, 1H), 6.69 (d, J = 7.9 Hz, 1H), 5.57 (s, 2H), 4.81-4.70 (m, 2H), 4.16 (d, J = 13.9 Hz, 1H), 4.04-3.87 (m, 3H), 3.85-3.78 (m, 3H), 3.08 (t, J = 6.2 Hz, 2H), 3.01-2.95 (m, 1H), 2.64-2.53 (m, 1H), 2.46 (dt, J = 15.6, 7.6 Hz, 1H), 2.18-2.06 (m, 2H), 1.96 (s, 3H)	100%*
815	3-(3-Chloro-4-((4-(5-(3-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	$N-N$ F O CO_2H O	717.1	8.03-7.93 (m, 1H), 7.91-7.79 (m, 2H), 7.64 (dd, J = 9.9, 1.5 Hz, 1H), 7.39 (dd, J = 7.7, 1.2 Hz, 1H), 7.39 (dd, J = 7.7, 1.2 Hz, 1H), 6.94-6.76 (m, 4H), 6.54 (dd, J = 7.7, 1.2 Hz, 1H), 6.48-6.38 (m, 2H), 5.61 (s, 2H), 4.96 (d, J = 11.9 Hz, 1H), 4.51 (d, J = 9.4 Hz, 1H), 3.71-3.59 (m, 3H), 2.99-2.90 (m, 1H), 2.63 (t, J = 6.7 Hz, 2H), 2.31 (d, J = 9.9 Hz, 1H), 2.02 (s, 3H), 1.91 (d, J = 13.9 Hz, 1H)	98%*

Ex- am- ple	Name	Formula I	LCMS, [M + H] ⁺	¹ H NMR (400 MHz, MeOD) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
816	2-(3-Chloro-4-((4-(5-(3-(3-chloro-2-methylphenoxy) butanoyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido) ethanesulfonic acid	N-N F O SO ₃ H	753.1	7.97 (s, 1H), 7.89-7.81 (m, 2H), 7.65 (dd, J = 9.7, 1.2 Hz, 1H), 7.39 (dd, J = 7.9, 1.0 Hz, 1H), 7.28-7.19 (m, 1H), 7.10 (d, J = 7.4 Hz, 1H), 6.93-6.77 (m, 4H), 6.54 (dd, J = 7.7, 1.2 Hz, 1H), 6.50-6.40 (m, 2H), 5.60 (s, 2H), 4.96 (d, J = 12.4 Hz, 1H), 4.51 (d, J = 8.9 Hz, 1H), 3.83 (t, J = 6.4 Hz, 2H), 3.65 (t, J = 10.2 Hz, 1H), 3.09 (t, J = 6.2 Hz, 2H), 2.94 (t, J = 11.9 Hz, 1H), 2.31 (d, J = 8.4 Hz, 1H), 2.03 (s, 3H), 1.92 (d, J = 12.9 Hz, 1H)	100%*
817	3-(3-Chloro-4-((4-(1-(4-(3-chloro-2-methylphenoxy) butanoyl)-1,2,3,5-tetrahydrobenzo[e][1,4] oxazepin-6-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	N-N F O	683.0	7.79 (s, 1H), 7.60 (d, J = 1.5 Hz, 2H), 7.53 (s, 1H), 7.38-7.27 (m, 2H), 7.19 (dd, J = 7.7, 1.2 Hz, 1H), 7.06-6.98 (m, 1H), 6.88 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 5.58 (s, 1H), 4.79-4.72 (m, 2H), 4.15 (d, J = 13.4 Hz, 1H), 4.02-3.87 (m, 3H), 3.85-3.76 (m, 1H), 3.63 (t, J = 6.7 Hz, 2H), 3.00-2.94 (m, 1H), 2.65-2.54 (m, 3H), 2.47 (dt, J = 15.6, 7.6 Hz, 1H), 2.18-2.07 (m, 2H), 1.95 (s, 3H)	100%*
818	3-(3-Chloro-4-((4-(5-((2-(3-chloro-2-methylphenoxy)-1,1,2,2-tetradeuteroethoxy) carbonyl)-2,3,4,5-tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1-yl)methyl)-5-fluorobenzamido)propanoic acid	N-N F O D	689.0	8.05-7.92 (m, 1H), 7.87-7.73 (m, 2H), 7.66-7.54 (m, 1H), 7.46-7.36 (m, 1H), 7.22-6.89 (m, 4H), 6.87-6.61 (m, 1H), 5.62-5.48 (m, 2H), 4.78-4.71 (m, 1H), 4.34-3.86 (m, 3H), 3.63 (t, J = 6.7 Hz, 2H), 2.61 (t, J = 6.7 Hz, 2H), 2.42-1.96 (m, 5H)	100%*
819	(S)-6-Amino-2-(3-chloro-4- ((4-(5-((2-(3-chloro-2- methylphenoxy)ethoxy) carbonyl)-2,3,4,5- tetrahydrobenzo[b][1,4] oxazepin-9-yl)-1H-pyrazol-1- yl)methyl)-5- fluorobenzamido)hexanoic acid	N-N F O $N+N$ $N+2$ O	742.2	8.12 (br. s., 1H), 7.86 (d, J = 5.3 Hz, 2H), 7.68 (dd, J = 9.8, 1.4 Hz, 1H), 7.47 (d, J = 6.8 Hz, 1H), 7.22-6.68 (m, 5H), 5.61 (s, 2H), 4.69-4.49 (m, 2H), 4.47-4.25 (m, 2H), 4.21-3.93 (m, 3H), 3.73 (br. s., 1H), 2.94 (t, J = 6.5 Hz, 2H), 2.37-1.81 (m, 7H), 1.79-1.44 (m, 4H)	7.9 min, 97.2% 9.4 min, 99.5%

705

Compounds exemplified in Table 22 were prepared using parallel assay synthesis following the general protocol set

forth below.

Amine was treated with a premixed solution of 3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydro-

706

quinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzoic acid, HATU, and DIEA in DMF, at room temperature overnight. The reaction was quenched with methanol and purified by preparative HPLC to give the corresponding amide product.

TABLE 22

		N-N N-N N			
			LCMS,	HPLC-3:	Purity
Example	Name	R	$[M + H]^+$	Rt (min)	(%)
820	(S)-4-Amino-2-(3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)-4-oxobutanoic acid	Procession CO ₂ H CO ₂ H NH ₂	638.1	1.72	100
821	3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	Porton NH CO ² H	595.3	2.07	100
822	3-(3-Chlorophenyl)-3-(3- ((4-(1-(4-(2,3- dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	Property N. CO ² H	705.1	1.73	99.0
823	N-((1H-Tetrazol-5-yl)methyl)-3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzamide	N=N HN N	605.1	1.76	98.7
824	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)pentanedioic acid	PROPERTY OF THE PROPERTY OF TH	6531	1.72	100

708

707

		N-N			
Example	Name	R	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
825	2-(N-Cyclohexyl-3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	SO ₃ H	713.3	2.12	99.5
826	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)- N-(4-sulfamoylphenethyl) benzamide	SO ₂ NH ₂	706.3	2.28	97.2
827	1-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoyl)piperidine-3- carboxylic acid	grand N CO2H	635.3	2.32	99.5
828	1-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoyl)piperidine-4- carboxamide	process North	634.3	2.17	99.7
829	2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)- N-methylbenzamido) ethanesulfonic acid	Porter N SO3H	645.1	1.55	99.3
830	4-(2,3- Dimethylphenoxy)-1-(5- (1-(3-(3-(hydroxymethyl) piperidine-1-carbonyl) benzyl)-1H-pyrazol-4-yl)- 3,4-dihydroquinolin- 1(2H)-yl)butan-1-one	grand N OH	621.1	1.94	99.0

		OR			
		N-N			
Example	Name	R	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
831	4-(2,3- Dimethylphenoxy)-1-(5- (1-(3-(4-hydroxy-4- phenylpiperidine-1- carbonyl)benzyl)-1H- pyrazol-4-yl)-3,4- dihydroquinolin-1(2H)- yl)butan-1-one	Porter NOH	683.2	2.14	99.3
832	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl) methyl)benzamido)-3,3- dimethylbutanoic acid	Property CO ² H	637.1	2.10	99.5
833	3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-2- fluoropropanoic acid	F CO ₂ H	613.3	2.04	99.6
834	3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-4- ethylhexanoic acid	Process No. CO ² H	665.4	2.27	100
835	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)- N-(3-methylisoxazol-5-yl) benzamide	o N	604.3	2.46	98.4
836	4-(2,3- Dimethylphenoxy)-1-(5- (1-(3-(4-(hydroxymethyl) piperidine-1-carbonyl) benzyl)-1H-pyrazol-4-yl)- 3,4-dihydroquinolin- 1(2H)-yl)butan-1-one	Por North	621.3	2.35	100

		N-N			
		o O			
Example	Name	R	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
837	1-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoyl)azetidine-3- carboxylic acid	Process N CO ² H	607.2	2.11	96.9
838	3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)- N-(2-hydroxybenzyl) benzamide	Proposed NH OH	629.3	2.49	98.9
839	4-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)cyclopent-2- enecarboxylic acid	Porter NH CO ² H	633.3	2.32	98.7
840	(R)-4-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-3- hydroxybutanoic acid	HO _{Mm.} CO ₂ H	625.3	2.06	96.3
841	4-((3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)methyl)-2,5- dimethylfuran-3- carboxylic acid	HO ₂ C N H	675.2	2.29	100
842	3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl)- N-methylbenzamido) propanoic acid	Property N CO ₂ H	609.3	2.11	100

Example Name

843

844

845

1H-pyrazol-1-yl)methyl) benzamido)-3methylbutanoic acid

847

TABLE 22-continued

	IABLE 22-continued			
	N-N			
9	Name R	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
	3-(3-((4-(1-(4-(2,3-Dimethylphenoxy)) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)-4,4,4-trifluorobutanoic acid	663.2	2.18	100
	3-(3-((4-(1-(4-(2,3-Dimethylphenoxy)) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)-4-phenylbutanoic acid	685.3	2.25	100
	3-((4-(1-(4-(2,3-Dimethylphenoxy)) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-N-(2-(N-phenylsulfamoyl) ethyl)benzamide	706.3	2.46	100
	3-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)-N-(3-hydroxybenzyl) benzamide	629.1	1.92	95.1
	(S)-2-(3-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)	623.2	2.03	100

		R			
		N-N			
Example	Name	R	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
848	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-3- phenylpropanoic acid	Array N. M. CO2H	671.2	2.10	99.3
849	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-4- (methylthio)butanoic acid	paraces Num.	655.1	2.01	100
850	(S)-6-Amino-2-(3-((4-(1-(4-(2,3-dimethylphenoxy)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzamido)hexanoic acid	Paragraf N. H. CO ² H	652.2	1.64	99.4
851	(2S,3S)-2-(3-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)-3-methylpentanoic acid	parages Num.	637.2	2.11	100
852	(R)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-4- methylpentanoic acid	Paragraf H	637.2	2.11	100
853	(R)-1-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoyl)pyrrolidine-2- carboxylic acid	Property N	621.1	1.92	98.9

		OR			
		N-N			
Example	Name	R	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
854	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)pentanoic acid	porter Num.	623.1	2.04	100
855	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)butanoic acid	PH CO ² H	609.1	1.96	99.3
856	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-3-(1H-indol- 3-yl)propanoic acid	good North	710.2	1.71	100
857	(S)-2-Cyclohexyl-2-(3- ((4-(1-(4-(2,3- dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)acetic acid	porter H	663.2	2.21	99.5
858	(R)-3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)butanoic acid	Process CO5H	609.1	1.89	96.9
859	1-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoyl)pyrrolidine-3- carboxylic acid	Porter N CO ² H	621.1	1.85	98.4

		R			
		N-N			
		N N N			
Example	Name	R	LCMS, [M + H] ⁺	HPLC-3: Rt (min)	Purity (%)
860	(S)-3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-5- methylhexanoic acid	Property N. M. CO ² H	651.2	2.11	98.9
861	1-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoyl)piperidine-4- carboxylic acid	proposed N CO2H	935.2	1.88	96.7
862	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-2- phenylacetic acid	Proceedings of the CO ² H	657.2	2.07	100
863	(R)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-3- phenylpropanoic acid	Process CO5H	971.1	2.10	100
864	(S)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)propanoic acid	recept CO ₂ H	595.1	1.89	98.8
865	(S)-3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)butanoic acid	proposed H CO2H	609.1	1.89	97.7
866	(S)-1-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoyl)pyrrolidine-2- carboxylic acid	propose N N N N N N N N N N N N N N N N N N N	621.2	1.92	98.4

		OR			
		N-N			
		0	LCMS	IIDI C 2.	Dunite
Example	Name	R	LCMS, $[M + H]^+$	HPLC-3: Rt (min)	Purity (%)
867	(S)-5-Amino-2-(3-((4-(1-(4-(2,3-dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)-5-oxopentanoic acid	porter NH2	652.1	1.72	95.9
868	3-(3-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido)-3-phenylpropanoic acid	Argara N. H. CO2H	671.2	1.69	100
869	(S)-4-(2,3-dimethylphenoxy)-1-(5-(1-(3-(3-hydroxypyrrolidine-1-carbonyl)benzyl)-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)butan-1-one	erer N I I I I I I I I I I I I I I I I I I	593.2	1.81	100
870	(1S,2R)-2-(3-((4-(1-(4-(2,3-Dimethylphenoxy) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl) benzamido) cyclopentanecarboxylic acid	PARCO ² H	635.2	1.62	100
871	2-((3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)methyl)-2- ethylbutanoic acid	CO ₂ H	651.2	2.10	100
872	N-(1-(1H-Tetrazol-5-yl) ethyl)-3-((4-(1-(4-(2,3- dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamide	N=N NH NH	619.2	1.59	93.2

		N-N N-N N-N			
Example	Name	R	LCMS, $[M + H]^+$	HPLC-3: Rt (min)	Purity (%)
873	1-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzoyl)-1,2,5,6- tetrahydropyridine-3- carboxylic acid	porter N CO2H	633.2	1.57	93.2
874	3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido) cyclohexanecarboxylic acid	Por CO ² H	649.3	2.06	100
875	4-(2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)ethyl)benzoic acid	Por CO2H	671.3	1.65	100
876	3-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-5- methylhexanoic acid	property H	651.3	1.74	100
877	(R)-2-(3-((4-(1-(4-(2,3- Dimethylphenoxy) butanoyl)-1,2,3,4- tetrahydroquinolin-5-yl)- 1H-pyrazol-1-yl)methyl) benzamido)-3,3- dimethylbutanoic acid	O OH	637.2	2.19	100

The compounds exemplified in Table 23 were prepared in a manner analogous to Example 326.

TABLE 23

[M + R H]⁺ H NMR (400 MHz, CDCl₃) δ

Me

Rt min, purity; HPLC-2: Rt min, purity

10.5 min,

98.6%

10.0 min,

99.1%

HPLC-1:

878 2-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)acetic acid

 $\begin{array}{l} 7.87 \ (\mathrm{d},\mathrm{J}=7.7\ \mathrm{Hz},\mathrm{1H}),\, 7.84 \ (\mathrm{s},\\ 1\mathrm{H}),\, 7.74 \ (\mathrm{s},\mathrm{1H}),\, 7.61 \ (\mathrm{s},\mathrm{1H}),\, 7.51-\\ 7.38 \ (\mathrm{m},\mathrm{2H}),\, 7.21-7.08 \ (\mathrm{m},\mathrm{2H}),\\ 7.02-6.94 \ (\mathrm{m},\mathrm{2H}),\, 6.73 \ (\mathrm{d},\mathrm{J}=7.4 \\ \mathrm{Hz},\mathrm{1H}),\, 6.63 \ (\mathrm{d},\mathrm{J}=7.4 \ \mathrm{Hz},\mathrm{1H}),\\ 5.51-5.39 \ (\mathrm{m},\mathrm{2H}),\, 5.24-4.77 \ (\mathrm{m},\mathrm{1H}),\, 4.24 \ (\mathrm{d},\mathrm{J}=5.2\ \mathrm{Hz},\mathrm{2H}),\, 3.96 \ (\mathrm{br.s.},\mathrm{1H}),\, 3.88 \ (\mathrm{br.s.},\mathrm{1H}),\, 2.85-\\ 2.69 \ (\mathrm{m},\mathrm{2H}),\, 2.61 \ (\mathrm{br.s.},\mathrm{1H}),\, 2.30-\\ 1.97 \ (\mathrm{m},\mathrm{8H}),\, 1.90 \ (\mathrm{br.s.},\mathrm{3H}),\, 1.81-\\ 1.61 \ (\mathrm{m},\mathrm{1H}),\, 0.95 \ (\mathrm{d},\mathrm{J}=5.5\ \mathrm{Hz},\\ 1\mathrm{H}),\, 0.58 \ (\mathrm{br.s.},\mathrm{1H}) \end{array}$

879 (R)-2-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido) succinic acid

Me 651.4 7.80 (t, J = 8.0 Hz, 2H), 7.72 (s, 1H), 7.63 (s, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.16 (br. s., 1H), 7.14-7.08 (m, 1H), 6.98 (t, J = 7.3 Hz, 2H), 6.72 (d, J = 7.2 Hz, 1H), 6.61 (d, J = 6.9 Hz, 1H), 5.57-5.36 (m, 2H), 5.08-5.01 (m, 1H), 3.95 (br. s., 1H), 3.86 (br. s., 1H), 3.16-3.05 (m, 1H), 3.04-2.94 (m, 1H), 2.84-2.68 (m, 2H), 2.62 (br. s., 1H), 2.24-2.06 (m, 6H), 2.01 (br. s., 1H), 1.89 (br. s., 3H), 1.70 (br. s., 1H), 0.95 (br. s., 1H), 0.56 (br. s., 1H)

7.5 min, 95.9% 7.5 min, 99.8%

880 (S)-2-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7btetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1yl)methyl)benzamido) succinic acid

2 651.4 7.81 (t, J = 6.9 Hz, 3H), 7.73 (s, 1H), 7.63 (s, 1H), 7.43-7.37 (m, 1H), 7.31-7.26 (m, 1H), 7.16 (br. s., 1H), 7.14-7.08 (m, 1H), 7.03-6.94 (m, 1H), 6.72 (d, J = 6.9 Hz, 1H), 6.61 (d, J = 6.9 Hz, 1H), 5.55-5.39 (m, 2H), 5.08-5.01 (m, 1H), 3.95 (br. s., 1H), 3.86 (br. s., 1H), 3.14-3.05 (m, 1H), 3.04-2.94 (m, 1H), 2.81-2.70 (m, 2H), 2.61 (br. s., 1H), 2.17-2.04 (m. 6H), 2.01 (s, 1H), 1.89 (br. s., 3H), 1.71 (br. s., 1H), 0.94 (br. s., 1H), 0.56 (br. s., 1H)

7.4 min, 95.5% 7.4 min, 100%

 HPLC-1: Rt min, purity; HPLC-2: Rt min, purity

881 Diethyl 2,2'-(3-((4-((1aR,7bS)-3-(4-(2,3dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzoylazanediyl)diacetate

 $\begin{array}{l} 7.72\text{-}7.67\ (m,1H),\ 7.55\text{-}7.50\ (m,\\ 1H),\ 7.43\text{-}7.37\ (m,3H),\ 7.36\text{-}7.30\ (m,1H),\ 7.17\ (d,J=7.4\ Hz,1H),\\ 7.10\ (t,J=7.8\ Hz,1H),\ 7.00\ (t,J=\\ 7.8\ Hz,1H),\ 6.95\ (br.s.,1H),\ 6.73\ (d,J=7.4\ Hz,1H),\ 6.64\ (d,J=7.7\ Hz,1H),\ 5.36\ (s,2H),\ 4.30\ (s,2H),\\ 4.23\ (q,J=7.2\ Hz,2H),\ 4.18\ (q,J=\\ 7.2\ Hz,2H),\ 4.09\ (s,2H),\ 3.98\ (d,J=\\ 4.1\ Hz,1H),\ 3.89\ (br.s.,1H),\ 2.88-\\ 2.68\ (m,2H),\ 2.58\ (br.s.,1H),\ 2.28-\\ 2.06\ (m,7H),\ 2.01\text{-}1.88\ (m,3H),\\ 1.71\ (d,J=5.0\ Hz,1H),\ 1.30\ (t,J=\\ 7.2\ Hz,3H),\ 1.24\ (t,J=7.2\ Hz,3H),\ 1.02\text{-}0.90\ (m,1H),\ 0.68\text{-}0.37\ (m,1H) \end{array}$

707.4

Me

13.7 min, 98.1% 12.7 min, 99.2%

882 2,2'-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoylazanediyl) diacetic acid

651.4 7.78 (s, 1H), 7.62 (br. s., 1H), 7.44-7.38 (m, 2H), 7.36 (br. s., 1H), 7.30 (br. s., 1H), 7.17 (br. s., 1H), 7.14 (br. s., 1H), 6.99 (br. s., 2H), 6.72 (d, J = 6.3 Hz, 1H), 6.62 (br. s., 1H), 5.44 (s, 2H), 4.29 (br. s., 2H), 4.08 (br. s., 2H), 3.95 (br. s., 1H), 3.86 (br. s., 1H), 2.77 (d, J = 5.2 Hz, 2H), 2.62 (br. s., 1H), 2.29-1.97 (m, 7H), 1.90 (br. s., 3H), 1.72 (br. s., 1H), 0.97 (br. s., 1H), 0.57 (br. s., 1H)

10.6 min, 99.1% 10.2 min, 100%

883 (S)-3-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)-4-methoxy-4-oxobutanoic acid

Me 665.4 7.83-7.71 (m, 3H), 7.58 (br. s., 1H), 7.49-7.40 (m, 2H), 7.38-7.30 (m, 1H), 7.21-7.16 (m, 1H), 7.15-7.08 (m, 1H), 7.04-6.94 (m, 2H), 6.73 (d, J = 7.2 Hz, 1H), 6.62 (d, J = 7.7 Hz, 1H), 5.45 (d, J = 3.3 Hz, 2H), 5.05 (d, J = 7.7 Hz, 1H), 3.96 (br. s., 1H), 3.87 (br. s., 1H), 3.79 (s, 3H), 3.22-3.12 (m, 1H), 3.04 (d, J = 16.2 Hz, 1H), 2.84-2.69 (m, 2H), 2.64 (br. s., 1H), 2.25-2.07 (m, 6H), 2.07-1.98 (m, 1H), 1.89 (br. s., 3H), 1.73 (br. s., 1H), 0.96 (br. s., 1H), 0.58 (br. s., 1H)

11.4 min, 99.2% 10.9 min, 98.4%

TABLE 23-continued

Me

Me

663.5

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity

884 1-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoyl)-4-hydroxypiperidine-4-carboxylic acid

 $\begin{array}{l} 8.39 \ (t,\,J=5.5\ Hz,\,1H),\,8.03 \ (s,\,1H),\\ 7.75 \ (s,\,1H),\,7.69 \ (d,\,J=7.2\ Hz,\,1H),\,7.60 \ (s,\,1H),\,7.40-7.30 \ (m,\,2H),\,7.15 \ (br.\,s.,\,1H),\,7.10-6.99 \ (m,\,2H),\,6.90 \ (t,\,J=7.8\ Hz,\,1H),\,6.62 \ (d,\,J=1.4\ Hz,\,2H),\,5.36 \ (d,\,J=1.4\ Hz,\,2H),\,3.85 \ (br.\,s.,\,1H),\,3.78-3.66 \ (m,\,2H),\,3.62 \ (tt,\,J=8.1,\,4.0\ Hz,\,1H),\,2.64 \ (br.\,s.,\,2H),\,2.11-1.98 \ (m,\,5H),\,1.97-1.82 \ (m,\,4H),\,1.79-1.62 \ (m,\,6H),\,1.61-1.52 \ (m,\,1H),\,1.48-1.34 \ (m,\,3H),\,1.30-1.23 \ (m,\,1H),\,0.90-0.76 \ (m,\,1H),\,0.33 \ (br.\,s.,\,1H) \end{array}$

7.5 min, 97.3% 7.3 min, 99.4%

885 (3R,5R)-7-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7btetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1yl)methyl)benzamido)-3,5dihydroxyheptanoic acid

695.5 8.10-8.02 (m, 3H), 7.64 (s, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.54-7.45 (m, 3H), 7.35-7.29 (m, 1H), 7.16 (td, J = 7.6, 1.1 Hz, 1H), 7.12-7.09 (m, 1H), 7.08-7.04 (m, 2H), 7.02 (d, J = 2.5 Hz, 1H), 6.43 (d, J = 2.8 Hz, 1H), 5.42 (s, 2H), 4.20 (br. s., 2H), 3.78-3.66 (m, 2H), 2.63 (t, J = 6.5 Hz, 2H), 2.45-2.39 (m, 2H), 2.26-2.15 (m, 2H), 1.89-1.80 (m, 2H)

8.9 min, 98.9% 8.7 min, 100%

886 2-Amino-3-(3-((4-((1aR,7bS)-3-(4-(2,3dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[e]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)propanoic acid

622.3 8.35 (br. s., 1H), 7.98 (s, 1H), 7.85 (s, 1H), 7.82-7.78 (m, 1H), 7.69 (d, J = 0.6 Hz, 1H), 7.50-7.48 (m, 1H), 7.24-7.19 (m, 1H), 7.18-7.09 (m, 3H), 6.98 (t, J = 7.8 Hz, 1H), 6.73 (dd, J = 7.8, 2.9 Hz, 1H), 5.45 (s, 2H), 4.59 (d, J = 11.6 Hz, 1H), 4.07 (dd, J = 6.6, 5.0 Hz, 1H), 4.02-3.91 (m, 3H), 3.85-3.70 (m, 2H), 3.05-2.94 (m, 1H), 2.76-2.67 (m, 2H), 2.19 (s, 3H), 2.17-2.09 (m, 2H), 2.08-2.00 (m, 2H), 1.99 (s, 3H), 1.86-1.75 (m, 1H), 1.01 (td, J = 8.3, 5.0 Hz, 1H), 0.54 (q, J = 4.8 Hz, 1H)

7.9 min, 98.1% 9.1 min, 98.1%

887 (R)-2-Amino-3-(3-((4-((1aR,7bS)-3-(4-(2,3dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)propanoic acid

622.3 8.35 (br. s., 1H), 7.98 (s, 1H), 7.85 (s, 1H), 7.82-7.78 (m, 1H), 7.69 (d, J = 0.6 Hz, 1H), 7.50-7.48 (m, 1H), 7.24-7.19 (m, 1H), 7.18-7.09 (m, 3H), 6.98 (t, J = 7.8 Hz, 1H), 6.73 (dd, J = 7.8, 2.9 Hz, 1H), 5.45 (s, 2H), 4.59 (d, J = 11.6 Hz, 1H), 4.07 (dd, J = 6.6, 5.0 Hz, 1H), 4.02-3.91 (m, 3H), 3.85-3.70 (m, 2H), 3.05-2.94 (m, 1H), 2.76-2.67 (m, 2H), 2.19 (s, 3H), 2.17-2.09 (m, 2H), 2.08-2.00 (m, 2H), 1.99 (s, 3H), 1.86-1.75 (m, 1H), 1.01 (td, J = 8.3, 5.0 Hz, 1H), 0.54 (q, J = 4.8 Hz, 1H)

7.9 min, 96.8% 9.1 min, 97.6%

LCMS, [M +—X—Y H]+ R ample Name

Rt min, purity; HPLC-2: Rt min, purity

HPLC-1:

(S)-2-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7btetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1yl)methyl)benzamido)-3-(methylsulfonamido) propanoic acid

Ex-

8.09 (s, 1H), 7.97-7.90 (m, 1H),7.85 (d, J = 6.9 Hz, 1H), 7.72 (s, 1H), 7.60 (s, 1H), 7.45-7.42 (m, 2H), 7.12 (dt, J = 15.5, 7.5 Hz, 2H), 7.02-6.93 (m, 2H), 6.73 (d, J = 7.4 Hz, 1H), 6.63 (d, J = 7.2 Hz, 1H),6.11 (t, J = 6.6 Hz, 1H), 5.49-5.39(m, 2H), 5.08-5.01 (m, 1H), 3.97 (br. s., 1H), 3.92-3.79 (m, 2H), 3.74-3.61 (m, 1H), 2.88 (s, 3H), 2.82-2.68 (m, 2H), 2.58 (br. s., 1H), 2.25-2.08 (m, 5H), 2.06-1.98 (m, 3H), 1.91 (br. s., 2H), 1.76-1.64 (m, 1H), 0.98-0.90 (m, 1H), 0.57 (br. s., 1H)

 $^{1}\text{H NMR}$ (400 MHz, CDCl3) δ

700.3

Me

Me

11.0 min, 98.4% 10.1 min, 98.4%

889 (S)-3-(Cyclopropanesulfonamido)-2-(3-((4-((1aR,7bS)-3-(4-(2,3-dimethylphonoxy) butanoyl)-1a,2,3,7btetrahydro-1H-cyclopropa [c] quinolin-7-yl)-1H-pyrazol-1yl)methyl)benzamido) propanoic acid

 $\begin{array}{ccc} \text{Me} & 726.3 & 8.09 \ (\text{s}, 1\text{H}), 7.93\text{-}7.88 \ (\text{m}, 2\text{H}), \\ & 7.72 \ (\text{s}, 1\text{H}), 7.57 \ (\text{s}, 1\text{H}), 7.44\text{-}7.38 \end{array}$ (m, 2H), 7.20-7.06 (m, 2H), 7.04-6.86 (m, 2H), 6.73 (d, J = 7.4 Hz, 1H), 6.63 (d, J = 7.2 Hz, 1H), 6.10 (t, J = 6.9 Hz, 1H), 5.49-5.34 (m, 2H), 5.06-5.00 (m, 1H), 3.97 (d, J = 4.7 Hz, 1H), 3.92-3.78 (m, 2H), 3.66 (ddd, J = 13.8, 6.6, 3.3 Hz, 1H), 2.832.68 (m, 2H), 2.57 (br. s., 1H), 2.34 (tt, J = 8.0, 4.8 Hz, 1H), 2.26-2.08 (m, 5H), 2.04-1.96 (m, 1H), 1.92 (br. s., 3H), 1.75-1.62 (m, 1H), 1.05-0.79 (m, 6H), 0.56 (br. s., 1H)

11.5 min, 98.5% 10.5 min, 98.8%

890 (S)-3-Amino-2-(3-((4-((1aR,7bS)-3-(4-(2,3dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)propanoic acid

8.38 (br. s., 1H), 8.10 (br. s., 2H), 7.83 (br. s., 1H), 7.74-7.57 (m, 3H), 7.25-7.14 (m, 2H), 7.14-7.01 (m, 2H), 6.95 (d, J = 6.9 Hz, 2H), 6.69 (br. s., 1H), 6.59 (br. s., 1H), 5.29 (br. s., 2H), 4.85 (br. s., 1H), 3.91 (br. s., 1H), 3.83 (br. s., 1H), 3.48 (br. s., 1H), 3.36 (br. s., 1H), 2.72 (br. s., 2H), 2.54 (br. s., 1H), 2.26-2.03 (m, 6H), 2.02-1.80 (m, 4H), 1.63 (br. s., 1H), 0.96-0.80 (m, 2H), 0.51 (br. s., 1H)

7.7 min, 98.3% 9.1 min, 99.2%

LCMS, [M +

ample Name —X—Y R HJ $^+$ H NMR (400 MHz, CDCl $_3$) δ

Me

Me

619.2

HPLC-1: Rt min, purity; HPLC-2: Rt min,

purity

891 3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)-N-((S)-2-oxotetrahydrofuran-3yl)benzamide

Ex-

 $\begin{array}{c} 7.77 \ (s, 1H), \ 7.76-7.72 \ (m, 1H), \\ 7.72-7.69 \ (m, 1H), \ 7.57-7.53 \ (m, 1H), \ 7.47-7.42 \ (m, 2H), \ 7.20-7.14 \\ (m, 1H), \ 7.13-7.08 \ (m, 1H), \ 7.03-6.97 \ (m, 1H), \ 6.96 \ (br. s, 1H), \ 6.76-6.67 \ (m, 2H), \ 6.63 \ (d, J=7.7 \ Hz, 1H), \ 5.40 \ (s, 2H), \ 5.00 \ (br. s, 1H), \ 4.74-4.67 \ (m, 1H), \ 4.56-4.50 \ (m, 1H), \ 4.38-4.31 \ (m, 1H), \ 3.97 \ (d, J=4.1 \ Hz, 1H), \ 3.89 \ (br. s, 1H), \ 3.02-2.92 \ (m, 1H), \ 2.82-2.70 \ (m, 2H), \ 2.58 \ (br. s, 1H), \ 2.31-2.22 \ (m, 1H), \ 2.21-2.06 \ (m, 6H), \ 1.92 \ (br. s, 3H), \ 1.71 \ (d, J=5.5 \ Hz, 1H), \ 0.97-0.89 \ (m, 1H), \ 0.58 \ (br. s, 1H), \ 0.97-0.89 \ (m, 1H), \ 0.58 \ (br. s, 1H) \end{array}$

12.1 min, 95.0% 10.9 min, 95.0%

892 (S)-2-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)-4-(methylthio)butanoic acid

667.3 7.89 (s, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.72 (s, 1H), 7.58 (s, 1H), 7.47-7.37 (m, 3H), 7.18-7.08 (m, 2H), 7.04-6.91 (m, 2H), 6.73 (d, J = 7.4 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 5.50-5.34 (m, 2H), 4.89 (td, J = 7.4, 5.1 Hz, 1H), 3.97 (br. s., 1H), 3.88 (br. s., 1H), 2.83-2.69 (m, 2H), 2.68-2.50 (m, 3H), 2.33-2.24 (m, 1H), 2.23-2.10 (m, 6H), 2.07 (s, 3H), 1.91 (br. s., 3H), 1.71 (d, J = 5.0 Hz, 1H), 1.44-1.36 (m, 1H), 0.99-0.89 (m, 1H), 0.57 (br. s., 1H)

12.4 min, 98.2% 11.1 min, 98.3%

893 (2S,4R)-1-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7btetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1yl)methyl)benzoyl)-4hydroxypyrrolidine-2carboxylic acid

649.3 7.71 (s, 1H), 7.58 (s, 1H), 7.51-7.47 (m, 2H), 7.42 (t, J = 7.8 Hz, 1H), 7.37-7.32 (m, 1H), 7.16 (d, J = 7.7 Hz, 1H), 7.13-7.07 (m, 1H), 7.03-6.92 (m, 2H), 6.73 (d, J = 7.4 Hz, 1H), 6.63 (d, J = 7.4 Hz, 1H), 5.40 (s, 2H), 4.88 (t, J = 8.3 Hz, 1H), 4.45 (br. s., 1H), 3.96 (br. s., 1H), 3.68 (br. s., 1H), 3.68-3.62 (m, 1H), 3.61-3.52 (m, 1H), 2.81-2.68 (m, 2H), 2.57 (br. s., 1H), 2.33-2.25 (m, 1H), 2.24-2.05 (m, 8H), 1.92 (br. s., 3H), 1.70 (br. s., 1H), 0.98-0.90 (m, 1H), 0.57 (br. s., 1H)

10.3 min, 99.5% 9.7 min, 99.1%

Me

637.2

HPLC-1: Rt min, purity; HPLC-2: Rt min, purity

894 (S)-2-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy) butanoyl)-1a,2,3,7btetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1yl)methyl)benzamido)-4hydroxybutanoic acid

8.03 (s, 1H), 7.99 (d, J = 5.0 Hz, 1H), 7.69 (s, 1H), 7.64 (d, J = 7.4 Hz, 1H), 7.60 (s, 1H), 7.42-7.33 (m, 2H), 7.15 (br. s., 1H), 7.10-7.00 (m, 2H), 6.90 (t, J = 7.8 Hz, 1H), 6.62 (dr. s., 1H), 5.38 (s, 2H), 4.76 (br. s., 1H), 3.85 (br. s., 2H), 3.73 (br. s., 1H), 3.50-3.44 (m, 1H), 3.44-3.37 (m, 1H), 2.65 (d, J = 14.3 Hz, 2H), 2.10-1.97 (m, 5H), 1.96-1.83 (m, 3H), 1.82-1.60 (m, 6H), 0.92-0.74 (m, 1H), 0.32 (br. s., 1H)

10.5 min, 99.6% 9.8 min, 99.8%

895 (S)-2-(3-((4-((1aR,7bS)-3-(4-(2,3-D imethylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)-4-(methylsulfonyl)butanoic acid

699.2 7.96 (s, 1H), 7.85 (d, J = 8.0 Hz,1H), 7.74 (s, 1H), 7.64 (s, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.48-7.43 (m,1H), 7.37 (d, J = 7.7 Hz, 1H), 7.20-7.09 (m, 2H), 7.03-6.95 (m, 2H), 6.73 (d, J = 7.4 Hz, 1H), 6.64 (d, J =7.7 Hz, 1H), 5.54-5.35 (m, 2H), 5.18-4.92 (m, 1H), 4.86 (td, J = 7.9, 5.1 Hz, 1H), 3.97 (br. s., 1H), 3.93-3.82 (m, 1H), 3.29-3.19 (m, 1H), 3.18-3.09 (m, 1H), 2.90 (s, 3H), 2.83-2.70 (m, 2H), 2.58 (br. s., 1H), 2.51-2.39 (m, 1H), 2.33-2.24 (m, 1H), 2.24-2.08 (m, 5H), 2.08-1.98 (m, 2H), 1.92 (br. s., 3H), 1.73 (br. s., 1H), 0.96 (d, J = 6.1 Hz, 1H), 0.59(br. s., 1H)

11.0 min, 99.6% 10.2 min, 99.5%

896 Diethyl 2,2'-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzoylazanediyl)diacetate

C1 727.5 7.71 (s, 1H), 7.54 (s, 1H), 7.44-7.37 (m, 3H), 7.36-7.31 (m, 1H), 7.22-7.17 (m, 1H), 7.12 (t, J = 7.7 Hz, 1H), 7.06-7.00 (m, 1H), 6.97-6.90 (m, 2H), 6.68 (d, J = 8.2 Hz, 1H), 5.38 (s, 2H), 4.30 (s, 2H), 4.28-4.21 (m, 2H), 4.21-4.14 (m, 2H), 4.10 (s, 2H), 4.01 (dt, J = 9.1, 4.8 Hz, 1H), 3.92-3.82 (m, 1H), 2.79-2.70 (m, 2H), 2.66-2.56 (m, 1H), 2.21-2.08 (m, 3H), 2.01 (br. s., 3H), 1.73-1.61 (m, 3H), 1.31 (t, J = 7.1 Hz, 3H), 1.27-1.21 (m, 3H), 0.87 (br. s., 1H), 0.47 (br. s., 1H)

12.3 min, 98.8% 11.2 min, 98.7%

C1

C1

699.5

897 (R)-Dimethyl 2-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)succinate

7.79 (s, 1H), 7.74 (dt, J = 7.0, 1.7 Hz, 1H), 7.72 (s, 1H), 7.56 (s, 1H), 7.49-7.41 (m, 2H), 7.25 (d, J = 8.2 Hz, 1H), 7.20 (d, J = 7.7 Hz, 1H), 7.15-7.09 (m, 1H), 7.06-6.99 (m, 1H), 6.98-6.90 (m, 2H), 6.67 (d, J = 8.2 Hz, 1H), 5.42 (s, 2H), 5.09-5.01 (m, 1H), 4.01 (dt, J = 9.2, 4.5 Hz, 1H), 3.93-3.84 (m, 1H), 3.80 (s, 3H), 3.70 (s, 3H), 3.15 (dd, J = 17.3, 4.1 Hz, 1H), 3.01-2.94 (m, 1H), 2.79-2.69 (m, 1H), 2.68-2.55 (m, 1H), 2.23-2.07 (m, 3H), 3.15 (db, s, 1H), 1.70 (br. s., 1H), 0.86 (br. s., 1H), 0.47 (br. s., 1H)

898 (S)-Dimethyl 2-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)succinate

699.5 7.80 (s, 1H), 7.74 (dt, J = 7.0, 1.7 Hz, 1H), 7.72 (s, 1H), 7.56 (s, 1H), 7.50-7.41 (m, 2H), 7.25 (d, J = 8.2 Hz, 1H), 7.20 (d, J = 7.1 Hz, 1H), 7.16-7.09 (m, 1H), 7.06-6.99 (m, 1H), 6.97-6.90 (m, 2H), 6.67 (d, J = 8.2 Hz, 1H), 5.42 (s, 2H), 5.09-5.02 (m, 1H), 4.04-3.96 (m, 1H), 3.93-3.85 (m, 1H), 3.80 (s, 3H), 3.70 (s, 3H), 3.19-3.11 (m, 1H), 3.02-2.94 (m, 1H), 2.79-2.69 (m, 1H), 2.62 (d, J = 7.1 Hz, 1H), 2.09 (br. s., 3H), 2.01 (br. s., 3H), 1.70 (br. s., 1H), 0.86 (br. s., 1H), 0.46 (br. s., 1H)

11.4 min, 99.4% 10.5 min, 99.7%

HPLC-1: Rt min,

11.4 min,

99.1%

10.5 min,

99.4%

899 (S)-Dimethyl 2-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1Hcyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)pentanedioate

713.5 7.82 (s, 1H), 7.76 (dt, J = 7.1, 1.6 Hz, 1H), 7.72 (s, 1H), 7.56 (s, 1H), 7.50 - 7.41 (m, 2H), 7.22-7.16 (m, 1H), 7.15-7.07 (m, 2H), 7.06-6.99 (m, 1H), 6.93 (d, J = 7.7 Hz, 2H), 6.67 (d, J = 8.2 Hz, 1H), 5.41 (s, 2H), 4.81 (td, J = 7.7, 4.9 Hz, 1H), 4.04-3.96 (m, 1H), 3.92-3.84 (m, 1H), 3.79 (s, 3H), 3.65 (s, 3H), 2.80-2.68 (m, 2H), 2.62 (dd, J = 15.1, 8.0 Hz, 1H), 2.58-2.38 (m, 3H), 2.33 (dtd, J = 14.3, 7.1, 4.9 Hz, 1H), 2.20-2.06 (m, 4H), 2.03-1.96 (m, 3H), 1.69 (br. s., 1H), 0.90-0.80 (m, 1H), 0.47 (br. s., 1H)

11.4 min, 99.7% 10.6 min, 99.7%

		N-N N-N N-N	₹ R			
Ex- ample Name	—X—Y		R	LCMS, [M + H] ⁺	^{1}H NMR (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
900 2,2'-(3-((4-((1aR, (3-Chloro-2-methoutanoyl)-1a,2,3, tetrahydro-1H-cy quinolin-7-yl)-1E yl)methyl)benzoy diacetic acid	nylphenoxy) 7b- clopropa[c] I-pyrazol-1-	HO ₂ C	CI CO ₂ H	671.3	7.76 (br. s., 1H), 7.66 (br. s., 1H), 7.48-7.31 (m, 3H), 7.23 (d, J = 1.6 Hz, 1H), 7.16 (br. s., 1H), 7.13-7.06 (m, 1H), 7.04-6.92 (m, 2H), 6.88 (d, J = 8.2 Hz, 1H), 6.63 (d, J = 7.7 Hz, 1H), 5.41 (br. s., 2H), 5.06-4.88 (m, 1H), 4.24 (br. s., 2H), 4.07 (br. s., 2H), 3.95 (br. s., 1H), 3.84 (br. s., 1H), 2.83-2.57 (m, 3H), 2.13 (br. s., 3H), 1.93 (br. s., 3H), 1.93 (br. s., 1H), 0.84 (br. s., 1H), 0.84 (br. s., 1H), 0.84 (br. s., 1H)	9.5 min, 96.8% 9.0 min, 96.7%
901 (R)-2-(3-((4-((1al (3-Chloro-2-meth butanoyl)-1a,2,3, tetrahydro-1H-cy quinolin-7-yl)-1E yl)methyl)benzan succinic acid	ylphenoxy) 7b- clopropa[c] I-pyrazol-1-	O NH CO ₂ I	СІ СО ₂ Н Н	671.3	7.88 (br. s., 1H), 7.84-7.68 (m, 3H), 7.64 (br. s., 1H), 7.39-7.29 (m, 2H), 7.19-7.07 (m, 2H), 7.04-6.93 (m, 2H), 6.89 (d, J = 7.7 Hz, 1H), 6.64 (d, J = 7.7 Hz, 1H), 5.42 (br. s., 3H), 5.00 (br. s., 2H), 3.96 (br. s., 1H), 3.84 (br. s., 1H), 3.10-2.87 (m, 2H), 2.80-2.58 (m, 3H), 2.14 (br. s., 2H), 1.93 (br. s., 3H), 1.65 (br. s., 1H), 0.82 (br. s., 1H), 0.41 (br. s., 1H)	9.6 min, 99.5% 9.0 min, 98.8%
902 (S)-2-(3-((4-((1af (3-Chloro-2-meth butanoyl)-1a,2,3, tetrahydro-1H-ey quinolin-7-yl)-1E yl)methyl)benzan succinic acid	ylphenoxy) 7b- clopropa[c] I-pyrazol-1-	O NH CO ₂ I	С1 СО ₂ Н Н	671.3	7.88 (br. s., 1H), 7.82-7.69 (m, 3H), 7.65 (br. s., 1H), 7.41-7.28 (m, 2H), 7.20-7.08 (m, 2H), 7.04-6.93 (m, 2H), 6.63 (d, J=7.7 Hz, 1H), 6.63 (d, J=7.7 Hz, 1H), 5.43 (br. s., 3H), 5.00 (br. s., 2H), 3.96 (br. s., 1H), 3.84 (br. s., 1H), 3.09-2.89 (m, 2H), 2.80-2.60 (m, 3H), 2.13 (br. s., 2H), 1.93 (br. s., 3H), 1.66 (br. s., 1H), 0.83 (br. s., 1H), 0.41 (br. s., 1H)	9.6 min, 99.1% 9.0 min, 98.6%
903 (S)-2-(3-((4-((1al (3-Chloro-2-meth butanoyl)-1a,2,3, tetrahydro-1H-cy quinolin-7-yl)-1F yl)methyl)benzan pentanedioic acid	ylphenoxy) 7b- clopropa[c] I-pyrazol-1-	O NH HO ₂ C	CI CO ₂ H	685.3	7.93-7.59 (m, 4H), 7.44-7.30 (m, 2H), 7.19-7.06 (m, 2H), 7.05-6.81 (m, 3H), 6.64 (d, J = 7.7 Hz, 1H), 5.40 (br. s., 2H), 4.70 (br. s., 1H), 3.98 (d, J = 8.8 Hz, 2H), 3.85 (br. s., 1H), 2.68 (d, J = 18.7 Hz, 3H), 2.45 (br. s., 2H), 2.33-2.05 (m, 4H), 1.94 (br. s., 3H), 1.65 (br. s., 1H), 0.82 (br. s., 1H), 0.41 (br. s., 1H)	9.6 min, 99.7% 9.1 min, 98.6%

The compounds exemplified in Table 24 were prepared in a manner analogous to Example 80.

TABLE 24

		N-N	Y }	~		
Ex- ample	Name	_Y	R	LCMS, [M + H] ⁺	$^{1}\text{H NMR (400 MHz, CDCl}_{3})}\delta$	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
907	(S)-2-(3-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy)) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)-4-hydroxybutanoic acid, Na salt	ZVAN HNIIII. CO2H	Ме	652.3	8.96 (br. s., 1H), 7.95 (s, 1H), 7.57 (s, 1H), 7.35 (d, J = 1.4 Hz, 1H), 7.23-7.13 (m, 2H), 7.12-6.99 (m, 3H), 6.90 (t, J = 7.7 Hz, 1H), 6.69 (d, J = 7.4 Hz, 1H), 6.63 (d, J = 7.7 Hz, 2H), 6.44 (d, J = 5.0 Hz, 1H), 5.22 (s, 2H), 3.85 (br. s., 1H), 3.73 (br. s., 1H), 3.54 (dt, J = 8.0, 4.1 Hz, 1H), 3.49-3.42 (m, 1H), 3.41-3.34 (m, 1H), 2.64 (br. s., 2H), 2.11-1.99 (m, 4H), 1.90 (d, J = 5.8 Hz, 3H), 1.74 (br. s., 3H), 1.70-1.63 (m, 3H), 1.62-1.53 (m, 1H), 0.91-0.77 (m, 1H), 0.33 (br. s., 1H)*	10.6 min, 98.6% 10.0 min, 98.6%
908	(4R)-1-(3-((4-((1aR,7bS)-3-(4-(2,3-Dimethylphenoxy)) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenylcarbamoyl-4-hydroxypyrrolidine-2-carboxylic acid	Average MN CO ₂ H HO	Me	664.3	7.89 (d, J = 4.7 Hz, 2H), 7.65 (d, J = 1.7 Hz, 2H), 7.43 (d, J = 1.7 Hz, 2H), 7.38-7.32 (m, 2H), 7.23-7.06 (m, 10H), 6.98 (t, J = 8.0 Hz, 2H), 6.83 (d, J = 7.4 Hz, 1H), 6.75 (6.9 (m, 4H), 5.31 (s, 2H), 5.30 (s, 2H), 4.59 (d, J = 12.9 Hz, 2H), 4.27-4.19 (m, 1H), 4.12 (t, J = 4.4 Hz, 1H), 4.05-3.89 (m, 6H), 3.49 (dd, J = 10.6, 3.4 Hz, 1H), 3.41 (dd, J = 11.3, 4.1 Hz, 1H), 3.27-3.18 (m, 2H), 2.98 (d, J = 12.1 Hz, 2H), 2.86 (br. s., 5H), 2.71 (dt, J = 15.8, 6.9 Hz, 2H), 2.24-2.12 (m, 11H), 2.07-2.01 (m, 3H), 2.00-1.96 (m, 6H), 1.86-1.75 (m, 2H), 1.03 (tt, J = 8.3, 4.0 Hz, 2H), 0.52 (q, J = 4.7 Hz, 2H)*	10.4 min, 10.6 min, 98.6% 9.8 min, 9.9 min, 98.4%
909	(R)-2-Amino-3-(3-(4-(4-(1aR,7bS)-3-(4-(2,3-dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)propanoic acid, TFA salt	Trobus HN CO ₂ H	Me	637.3	8.18 (br. s., 3H), 7.72 (br. s., 1H), 7.61 (br. s., 1H), 7.16-7.03 (m, 3H), 6.97 (br. s., 3H), 6.80-6.65 (m, 3H), 6.60 (br. s., 2H), 5.26 (br. s., 2H), 3.93 (br. s., 2H), 3.85 (br. s., 2H), 3.70 (br. s., 1H), 3.52 (br. s., 1H), 2.90 (br. s., 1H), 2.75 (br. s., 2H), 2.64-2.49 (m, 1H), 2.26-2.03 (m, 5H), 1.97 (br. s., 1H), 1.89 (br. s., 3H), 1.73-1.57 (m, 1H), 1.00-0.84 (m, 1H), 0.54 (br. s., 1H)	8.0 min, 97.0% 9.3 min, 98.1%

			N-N N-N	Y R			
Ex- ample	Name	—Y		R	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (400 MHz, CDCl3) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
910	(S)-3-Amino-2-(3-(3-((4-((1aR,7bS)-3-(4-(2,3-dimethylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)propanoic acid, TFA salt	Zorokovo,	O HN////////////////////////////////////	Ме	637.3		7.8 min, 98.3% 9.2 min, 96.3%
911	(3-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)methanesulfonic acid, Na salt	Torker,	HN SO ₃ H	Cl	664.2	8.78 (br. s., 1H), 8.02 (s, 1H), 7.66 (s, 1H), 7.32 (s, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.24-7.07 (m, 5H), 6.96 (d, J = 7.8 Hz, 1H), 6.88 (d, J = 8.1 Hz, 1H), 6.80 (d, J = 7.3 Hz, 1H), 6.37 (br. s., 1H), 5.32 (s, 2H), 4.07-3.96 (m, 2H), 3.84 (s., 3H), 2.79-2.65 (m, 2H), 2.10 (br. s., 1H), 2.05-1.89 (m, 4H), 1.75 (br. s., 1H), 0.89 (br. s., 1H), 0.36 (br. s., 1H)*	N/A 8.9 min, 97.8%
912	2-(3-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido)ethanesulfonic acid, Na salt	Solver HN	$_{ m HN}$ $_{ m SO_3H}$	Cl	678.3	7.81 (s, 1H), 7.67 (s, 1H), 7.34-7.14 (m, 5H), 7.10-7.02 (m, 2H), 6.90 (t, J = 6.6 Hz, 2H), 6.76 (d, J = 8.2 Hz, 1H), 5.36 (s, 2H), 4.03-3.96 (m, 1H), 3.88-3.79 (m, 1H), 3.66-3.57 (m, 2H), 3.01-2.95 (m, 2H), 2.78-2.69 (m, 2H), 2.16-2.05 (m, 2H), 1.87 (s, 3H), 1.72 (br. s., 1H), 0.80 (br. s., 1H), 0.38-0.28 (m, 1H)**	11.2 min, 96.6% 8.8 min, 94.8%
913	Ethyl 3-(3-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)propanoate	ZVYN N	HN CO ₂ Et	Cl	670.4	7.70 (s, 1H), 7.56 (s, 1H), 7.34 (br. s., 1H), 7.31-7.24 (m, 2H), 7.24-7.16 (m, 2H), 7.14-7.09 (m, 1H), 7.07-7.00 (m, 1H), 6.97-6.89 (m, 2H), 6.67 (d, J = 8.2 Hz, 1H), 6.61 (br. s., 1H), 5.39 (t, J = 6.0 Hz, 1H), 5.33 (s, 2H), 4.14 (q, J = 7.1 Hz, 2H), 4.06-3.96 (m, 1H), 3.90 (br. s., 1H), 3.52 (q, J = 5.9 Hz, 2H), 2.81-2.66 (m, 2H), 2.64-2.53 (m, 2H), 2.22-2.12 (m, 2H), 2.01 (br. s., 3H), 1.72-1.65 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H), 0.87 (br. s., 1H), 0.47 (br. s., 1H)	11.6 min, 98.0% 10.7 min, 98.0%

		N-N N-N	\mathbb{R}			
Ex- ample	Name	—Y	R	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
914	Ethyl 2-(3-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)acetate	Nowodown HN CO2Et	Cl	656.4	7.70 (s, 1H), 7.57 (s, 1H), 7.36 (br. s., 1H), 7.26-7.16 (m, 3H), 7.14-7.09 (m, 1H), 7.08-6.99 (m, 2H), 6.96-6.89 (m, 2H), 6.67 (d, J = 8.2 Hz, 1H), 5.35 (t, J = 5.2 Hz, 1H), 5.34-5.27 (m, 2H), 5.21 (t, J = 4.9 Hz, 2H), 4.25-4.17 (m, 2H), 4.03 (d, J = 5.5 Hz, 2H), 2.78-2.70 (m, 2H), 2.61 (dd, J = 15.1, 8.0 Hz, 1H), 2.21-2.13 (m, 2H), 2.01 (br. s., 3H), 1.31-1.25 (m, 3H), 0.87 (br. s., 1H), 0.47 (br. s., 1H)	11.5 min, 98.8% 10.6 min, 96.8%
915	Ethyl 4-(3-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)butanoate	PROPOSITION OF THE CO2Et	CI	684.5	7.70 (s, 1H), 7.55 (s, 1H), 7.39 (br. s., 1H), 7.26-7.16 (m, 2H), 7.15-6.98 (m, 2H), 6.96-6.83 (m, 3H), 6.67 (d, J = 7.7 Hz, 1H), 5.31 (s, 2H), 5.16 (br. s., 1H), 4.70 (br. s., 1H), 4.12 (m, 4H), 4.04-3.78 (m, 2H), 3.36-3.06 (m, 4H), 2.85-2.53 (m, 2H), 2.37 (td, J = 7.0, 4.7 Hz, 3H), 2.24-2.08 (m, 1H), 2.00 (br. s., 1H), 1.91-1.77 (m, 2H), 1.34-1.17 (m, 5H), 0.86 (br. s., 1H), 0.46 (br. s., 1H)	11.8 min, 95.0% 10.7 min, 95.3%
916	2-(3-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido) acetic acid	PN HN CO ₂ H	Cl	628.3	8.11-7.99 (m, 1H), 7.68 (s, 1H), 7.60 (s, 1H), 7.38-7.29 (m, 2H), 7.20-7.05 (m, 3H), 7.04-6.96 (m, 1H), 6.95-6.85 (m, 2H), 6.79 (br. s., 1H), 6.64 (d, J = 7.7 Hz, 1H), 5.24 (br. s., 2H), 4.08-3.54 (m, 4H), 2.84-2.65 (m, 4H), 2.14 (br. s., 2H), 2.05-1.87 (m, 3H), 1.63 (br. s., 1H), 0.81 (br. s., 1H), 0.41 (br. s., 1H)	N/A N/A
917	3-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido) propanoic acid	RANGO CO ₂ H	Cl	642.4	7.92 (br. s., 1H), 7.75 (s, 1H), 7.64 (s, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.24-7.07 (m, 2H), 7.06-6.84 (m, 3H), 6.66 (d, J = 7.7 Hz, 1H), 5.34 (s, 2H), 5.01 (br. s., 1H), 4.09-3.77 (m, 2H), 3.76-3.05 (m, 6H), 2.92-2.40 (m, 4H), 2.30-1.85 (m, 4H), 1.69 (br. s., 1H), 0.98-0.76 (m, 1H), 0.57-0.30 (m, 1H)	N/A N/A

		N-N	\(\frac{\frac{1}{y}}{y}\)			
		O		O LCMS,		HPLC-1: Rt min,
Ex- ample	Name	—Y	R	[M + H] ⁺	1 H NMR (400 MHz, CDCl ₃) δ	purity; HPLC-2: Rt min, purity
918	4-(3-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenyl)ureido) butanoic acid	Zorkov HN CO ² H	Cl	656.4	8.36 (br. s., 1H), 7.74 (s, 1H), 7.68 (s, 1H), 7.45-7.30 (m, 2H), 7.24-7.11 (m, 4H), 7.10- 6.88 (m, 3H), 6.67 (d, J = 8.2 Hz, 1H), 5.50-5.39 (s, 2H), 4.05-3.77 (m, 2H), 3.77-3.27 (m, 5H), 2.84-2.57 (m, 3H), 2.52-2.40 (m, 2H), 2.26-2.11 (m, 2H), 2.07-1.84 (m, 4H), 1.70 (br. s., 1H), 0.84 (br. s., 1H), 0.44 (br. s., 1H)	9.3 min, 91.6% 9.2 min, 90.8%
919	1-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy)) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)phenylcarbamoyl)-4-hydroxypiperidine-4-carboxylic acid	Provent HN OH CO ₂ H	Cl	698.4	7.71-7.60 (br., s, 1H), 7.59-7.46 (br., s, 1H), 7.43-7.20 (m, 1H), 7.17-6.96 (m, 4H), 6.97-6.69 (m, 4H), 5.57 (d, J = 7.1 Hz, 1H), 5.24 (br. s., 2H), 5.05-4.10 (m, 4H), 3.98-3.70 (m, 3H), 3.19 (br. s., 2H), 2.78-2.42 (m, 2H), 2.22-1.78 (m, 7H), 1.58 (br. s., 2H), 1.19 (d, J = 3.3 Hz, 1H), 0.76 (br. s., 1H), 0.35 (br. s., 1H)	9.9 min, 100% 9.0 min, 98.6%
920	Methyl 1-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenylcarbamoyl)-4-hydroxypiperidine-4-carboxylate	TON HN OH CO2Me	Cl	712.5	7.78 (s, 1H), 7.66-7.54 (m, 1H), 7.43-7.28 (m, 2H), 7.24-7.09 (m, 2H), 7.08-6.85 (m, 4H), 6.75-6.52 (m, 2H), 5.38 (s, 2H), 4.10-3.83 (m, 4H), 3.83-3.77 (s, 3H), 3.34 (td, J = 12.9, 2.7 Hz, 2H), 2.87-2.53 (m, 4H), 2.24-2.11 (m, 2H), 2.11-1.88 (m, 6H), 1.69 (d, J = 12.6 Hz, 3H), 0.88 (d, J = 4.4 Hz, 1H), 0.46 (br. s., 1H)	10.7 min, 98.2% 9.7 min, 98.4%
921	2,2'-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenylcarbamoylazanediyl) diacetic acid	Tooley CO5H	Cl	[M -	7.70-7.64 (m, 1H), 7.53 (s, 1H), 7.44-7.28 (m, 3H), 7.18-7.00 (m, 3H), 6.99-6.78 (m, 3H), 6.59 (d, J = 8.2 Hz, 2H), 5.38 (s, 2H), 4.18 (s, 2H), 4.12 (s, 2H), 3.97-3.74 (m, 3H), 2.72-2.50 (m, 3H), 2.16-2.03 (m, 2H), 2.01-1.86 (m, 3H), 1.70-1.53 (m, 1H), 1.33-1.16 (m, 1H), 0.90-0.69 (m, 1H), 0.37 (br. s., 1H)	10.5 min, 98.2% 9.5 min, 96.5%

			>			
		R	I			
Ex- ample	Name	о —Y	R	LCMS, [M + H] ⁺	^{1}H NMR (400 MHz, CDCl3) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
922	(S)-4-Carboxy-4-(3-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) phenyl)ureido)-N,N,N-trimethylbutan-1-aminium	Production of the state of the	Cl	727.3	7.75 (d, J = 4.4 Hz, 1H), 7.62 (s, 2H), 7.51 (dd, J = 13.7, 8.8 Hz, 1H), 7.25-6.96 (m, 5H), 6.93 (d, J = 7.7 Hz, 1H), 6.84-6.67 (m, 2H), 5.20 (br. s., 2H), 4.29 (br. s., 2H), 3.96 (br. s., 2H), 3.83 (br. s., 2H), 3.24 (br. s., 2H), 3.09 (br. s., 2H), 2.78 (br. s., 9H), 2.72-2.59 (m, 2H), 2.54 (br. s., 2H), 2.15-2.08 (m, 2H), 2.08-1.98 (m, 2H), 1.83-1.59 (m, 4H), 0.88 (br. s., 1H), 0.36 (br. s., 1H)	7.6 min, 99.8% 8.4 min, 99.2%
923	(3R,5S)-6-(3-(3-((4- ((1aR,7bS)-3-(4-(3-Chloro-2- methylphenoxy)butanoyl)- 1a,2,3,7b-tetrahydro-1H- cyclopropa[c]quinolin-7-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido)-3,5- dihydroxyhexanoic acid, Na salt	HO HO CO ₂ H	Cl	716.4	7.59 (br. s., 1H), 7.55-7.38 (m, 2H), 7.23-7.11 (m, 1H), 7.11-6.90 (m, 3H), 6.85 (br. s., 2H), 6.75-6.47 (m, 3H), 5.51-5.05 (m, 4H), 4.30-3.55 (m, 9H), 2.47-1.29 (m, 11H), 0.76 (br. s., 1H), 0.36 (br. s., 1H)	9.6 min, 100% 9.0 min, 95.7%
924	(3R,5R)-7-(3-(3-((4- ((1aR,7bS)-3-(4-(3-Chloro-2- methylphenoxy)butanoyl)- 1a,2,3,7b-tetrahydro-1H- cyclopropa[c]quinolin-7-yl)- 1H-pyrazol-1-yl)methyl) phenyl)ureido)-3,5- dihydroxyheptanoic acid, Na salt	HO HO CO ₂ H	Cl	752.3 [M + Na] ⁺	7.54 (br. s., Hz, 1H), 7.44 (br. s., 1H), 7.39-7.29 (m, 1H), 7.15-6.86 (m, 4H), 6.80 (br. s., 2H), 6.54 (br. s., 3H), 5.61-4.81 (m, 4H), 4.29-3.21 (m, 9H), 2.80-0.98 (m, 13H), 0.70 (s, 1H), 0.31 (s, 1H)	9.7 min, 95.4% 9.0 min, 97.5%
924A	1-((1aR,7bS)-7-(1-(3- Aminobenzyl)-1H-pyrazol-4- yl)-1a,2-dihydro-1H- cyclopropa[c]quinolin- 3(7bH)-yl)-4-(3-chloro-2- methylphenoxy)butan-1-one, TFA salt	Portor NH2	Cl	527.1	7.69 (s, 1H), 7.52 (s, 1H), 7.23-7.07 (m, 3H), 7.05-6.85 (m, 3H), 6.77-6.55 (m, 4H), 5.26 (s, 2H), 4.12-3.77 (m, 2H), 3.23 (br. s., 3H), 2.89-2.47 (m, 3H), 2.28-1.85 (m, 6H), 1.77-1.60 (m, 1H), 0.84 (d, J = 4.8 Hz, 1H), 0.47 (br. s., 1H)	3.3 min, 93.7%***
924B	Ethyl 2-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)acetate	NH O	Cl	641.2	7.82-7.67 (m, 2H), 7.54 (s, 1H), 7.50-7.38 (m, 2H), 7.22-7.07 (m, 2H), 7.06-6.86 (m, 3H), 6.67 (d, J = 7.8 Hz, 2H), 5.44-5.36 (m, 2H), 4.33-4.17 (m, 4H), 4.05-3.95 (m, 1H), 3.89 (br. s., 1H), 2.88-2.49 (m, 3H), 2.24-1.92 (m, 5H), 1.78-1.49 (m, 3H), 1.39-1.28 (m, 3H), 0.84 (br. s., 1H), 0.46 (br. s., 1H)	11.6 min, 99.5% 10.1 min, 99.5%

		R				
Ex- ample	Name	—Ү	R	LCMS, [M + H] ⁺	$^{1}\text{H NMR}$ (400 MHz, CDCl ₃) δ	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
924C	Ethyl 2-(3-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2-methylphenoxy)butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)oxetan-3-yl)acetate	NH NH	CI	697.2	7.79-7.64 (m, 3H), 7.56 (s, 1H), 7.50-7.40 (m, 2H), 7.23-7.07 (m, 2H), 7.07-6.85 (m, 4H), 6.67 (d, J = 7.8 Hz, 1H), 5.41 (s, 2H), 4.86 (d, J = 7.1 Hz, 2H), 4.11 (q, J = 7.2 Hz, 2H), 4.05-3.95 (m, 1H), 3.90 (d, J = 9.6 Hz, 1H), 3.29 (s, 2H), 2.88-2.50 (m, 3H), 2.28-1.89 (m, 7H), 1.69 (br. s., 1H), 1.23 (t, J = 7.1 Hz, 4H), 0.95-0.75 (m, 1H), 0.46 (br. s., 1H)	11.6 min, 96.0% 10.0 min, 95.0%
924D	1-((3-((4-((1aR,7bS)-3-(4-(3- Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b- tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1- yl)methyl)benzamido) methyl) cyclopropanecarboxylic acid	NH OH	Cl	653.2	7.99-7.88 (m, 1H), 7.77-7.55 (m, 2H), 7.53-7.27 (m, 3H), 7.16-7.00 (m, 2H), 6.98-6.76 (m, 3H), 6.59 (d, J = 7.8 Hz, 1H), 5.43-5.22 (m, 2H), 4.08-3.70 (m, 3H), 3.54 (br. s., 1H), 2.86-2.36 (m, 3H), 2.20-1.76 (m, 8H), 1.60 (br. s., 1H), 1.40-1.14 (m, 3H), 1.05 (br. s., 1H), 0.79 (d, J = 14.1 Hz, 2H), 0.39 (br. s., 1H)	12.0 min, 92.0% 11.2 min, 92.0%
924E	(S)-2-(3-((4-((1aR,7bS)-3-(4-(3-chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido)-4-hydroxybutanoic acid	NH HO ₂ C OH	Cl	657.1	7.99-7.60 (m, 2H), 7.59-7.32 (m, 3H), 7.09-6.67 (m, 6H), 6.65-6.46 (m, 1H), 5.41-5.18 (m, 2H), 5.10 (br. s., 1H), 4.70-4.20 (m, 1H), 4.04-3.66 (m, 2H), 3.52 (br. s., 1H), 2.78-2.34 (m, 3H), 2.12-1.73 (m, 10H), 1.65-1.12 (m, 2H), 0.89-0.57 (m, 1H), 0.31 (br. s., 1H)	9.5 min, 100% 8.5 min, 95.2%
924F	2-(3-(3-((4-((1aR,7bS)-3-(4-(3-Chloro-2-methylphenoxy) butanoyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c] quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzamido) oxetan-3-yl)acetic acid	NH OH	Cl	669.2	7.78 (d, J = 4.3 Hz, 3H), 7.68- 7.42 (m, 3H), 7.23-7.10 (m, 2H), 7.10-6.81 (m, 3H), 6.76- 6.54 (m, 1H), 5.44 (s, 2H), 4.70- 4.37 (m, 2H), 4.09-3.73 (m, 4H), 3.22-3.10 (m, 1H), 3.02- 2.36 (m, 8H), 2.25-1.91 (m, 5H), 1.71 (br. s., 1H), 0.84 (br. s., 1H), 0.43 (br. s., 1H)	6.0 min, 94% 5.5 min, 95%
* ¹ H NMI	R (400 MHz, DMSO-d ₆) δ.					

 $^{^{*1}\}text{H NMR}$ (400 MHz, DMSO-d₆) $\delta.$

^{**} ^{l}H NMR (400 MHz, MeOD) $\delta.$

40

50

55

60

65

3-((4-((1aR,7bS)-3-(2-((2,3-Dimethylphenoxy)methyl)cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl) methyl)benzoic acid

Step A. ((1aR,7bS)-7-Bromo-1a,2-dihydro-1H-cy-clopropa[c]quinolin-3(7bH)-yl)(2-((2,3-dimeth-ylphenoxy)methyl)cyclopropyl)methanone

The title compound was prepared using a procedure analogous to step G, Example 9 except that 4-(2,3-dimethylphenoxy)butanoic acid was replaced with trans-2-((2,3-dimethylphenoxy)methyl)cyclopropanecarboxylic acid. LCMS, [M+H]⁺=427.9.

Step B. ((1aR,7bS)-7-Bromo-1a,2-dihydro-1H-cy-clopropa[c]quinolin-3(7bH)-yl)(2-((2,3-dimeth-ylphenoxy)methyl)cyclopropyl)methanone

756

((1aR,7bS)-7-Bromo-1a,2-dihydro-1H-cyclopropa[c] quinolin-3(7bH)-yl)(2-((2,3-dimethylphenoxy)methyl)cyclopropyl)methanone was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford ((1aR,7bS)-7-bromo-1a,2-dihydro-1H-cyclopropa[c]quinolin-3(7bH)-yl) (2-((2,3-dimethylphenoxy)methyl)cyclopropyl)methanone (enantiomer 1) as the faster moving diastereomer on column and ((1aR,7bS)-7-bromo-1a,2-dihydro-1H-cyclopropa[c] quinolin-3(7bH)-yl)(2-((2,3-dimethylphenoxy)methyl)cyclopropyl)methanone (enantiomer 2) as the slower moving diastereomer on column. LCMS, [M+H]+=427.9.

Example 925

Example 925 was prepared using a procedure analogous to 20 Example 9 except that 1-(7-bromo-1a,2-dihydro-1H-cyclopropa[c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one (enantiomer 1) was replaced with to afford example 925: 3-((4-((1aR,7bS)-3-(2-((2,3-dimethylphenoxy)methyl) cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic LCMS, $[M+H]^+=548.1$. ¹H NMR (400 MHz, CDCl₃) δ 8.13-8.08 (m, 1H), 8.03 (s, 1H), 7.86 (s, 1H), 7.64 (s, 1H), 7.56-7.50 (m, 2H), 7.42-7.37 (m, 1H), 7.12 (d, J=7.7 Hz, 1H), 7.08-6.97 (m, 2H), 6.81 (d, J=7.7 Hz, 1H), 6.66 (d, J=7.7 Hz, 1H), 5.58-5.45 (m, 2H), 5.04 (br. s., 1H), 4.23 (d, J=6.6 Hz, 1H), 3.63-3.55 (m, 1H), 2.82 (br. s., 1H), 2.29 (s, 3H), 2.20 (s, 3H), 2.17-2.11 (m, 1H), 2.06-1.95 (m, 2H), 1.85-1.76 (m, 1H), 1.55 (dt, J=8.8, 4.4 Hz, 1H), 1.14-1.06 (m, 1H), 0.90-0.78 (m, 2H). HPLC-1: Rt=12.6 min, purity=96.8%; HPLC-2: Rt=11.4 min, purity=98.6%.

Example 926

3-((4-((1aR,7bS)-3-(2-((2,3-Dimethylphenoxy)methyl)cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl) methyl)benzoic acid

30

35

40

45

50

Example 926 was prepared using a procedure analogous to Example 9 except that 1-(7-bromo-1a,2-dihydro-1H-cyclopropa[c]quinolin-3(7bH)-yl)-4-(2,3-dimethylphenoxy)butan-1-one was replaced with ((1aR,7bS)-7-bromo-1a,2-dihydro-1H-cyclopropa[c]quinolin-3(7bH)-yl)(2-((2.3dimethylphenoxy)methyl)cyclopropyl)methanone (enantiomer 2) was replaced with to afford example 926: 3-((4-((1aR,7bS)-3-(2-((2,3-dimethylphenoxy)methyl)cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa [c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic LCMS, $[M+H]^+=548.1$. ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.07 (m, 1H), 8.06 (s, 1H), 7.84 (s, 1H), 7.64 (s, 1H), 7.57-7.47 (m, 2H), 7.22-7.12 (m, 3H), 6.96 (t, J=8.0 Hz, 1H), 6.72 (d, J=7.7 Hz, 1H), 6.54 (d, J=8.2 Hz, 1H), 5.56-5.43 (m, 2H), 5.12-4.90 (m, 1H), 4.03 (d, J=4.9 Hz, 1H), 3.64-3.55 (m, 1H), 2.80 (br. s., 1H), 2.21 (s, 3H), 2.15 (d, J=6.0 Hz, 2H), 2.07-1.96 (m, 4H), 1.83-1.73 (m, 1H), 1.39 (dt, J=8.8, 4.4 Hz, 1H), 1.06 (td, J=8.2, 4.9 Hz, 2H), 0.84 (br. s., 1H). HPLC-1: Rt=12.1 min, purity=98.5%; HPLC-2: Rt=11.0 min,

758

 $\begin{array}{l} {\rm Hz,1H),7.13\,(d,J=7.7\,Hz,1H),7.10\text{-}7.04\,(m,1H),7.03\text{-}6.96}\\ (m,2H),6.69\,(d,J=8.2\,Hz,1H),5.56\text{-}5.45\,(m,2H),5.04\,(br.s.,1H),4.24\,(d,J=6.0\,Hz,1H),3.65\text{-}3.56\,(m,1H),2.83\,(br.s.,1H),2.33\,(s,3H),2.21\text{-}2.12\,(m,1H),2.06\text{-}1.93\,(m,2H),1.85\text{-}1.76\,(m,1H),1.59\text{-}1.51\,(m,1H),1.15\text{-}1.05\,(m,1H),0.89\text{-}0.76\,(m,2H).\\ {\rm HPLC-1:}\ Rt=13.1\ min,\ purity=98.9\%;\\ {\rm HPLC-2:}\ Rt=11.7\ min,\ purity=100\%. \end{array}$

Example 928

3-((4-((1aR,7bS)-3-(2-((3-Chloro-2-methylphenoxy) methyl)cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl) methyl)benzoic acid

Example 927

purity=99.4%.

3-((4-((1aR,7bS)-3-(2-((3-Chloro-2-methylphenoxy) methyl)cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl) methyl)benzoic acid

Example 927 was prepared using a procedure analogous to Example 925 except that 2,3-dimethylphenol was replaced with 3-chloro-2-methylphenol. LCMS, [M+H]⁺=568.0. 1 H $_{65}$ NMR (400 MHz, CDCl $_{3}$) δ 8.12-8.07 (m, 1H), 8.03 (s, 1H), 7.84 (s, 1H), 7.64 (s, 1H), 7.58-7.48 (m, 2H), 7.34 (d, J=7.7

Example 928 was prepared using a procedure analogous to Example 926 except that 2,3-dimethylphenol was replaced with 3-chloro-2-methylphenol. LCMS, [M+H]⁺=568.0. ¹H NMR (400 MHz, CDCl₃) & 8.11-8.07 (m, 1H), 8.06 (s, 1H), 7.85 (s, 1H), 7.66 (s, 1H), 7.57-7.47 (m, 2H), 7.23-7.11 (m, 3H), 7.01-6.87 (m, 2H), 6.58 (d, J=7.7 Hz, 1H), 5.56-5.43 (m, 2H), 5.01 (br. s., 1H), 4.08 (dd, J=9.6, 4.7 Hz, 1H), 3.63-3.52 (m, 1H), 2.79 (br. s., 1H), 2.22-2.06 (m, 5H), 2.06-1.97 (m, 1H), 1.83-1.73 (m, 1H), 1.41 (dt, J=8.7, 4.2 Hz, 1H), 1.05 (td, J=8.2, 5.5 Hz, 2H), 0.75 (d, J=4.4 Hz, 1H). HPLC-1: Rt=12.4 min, purity=99.3%; HPLC-2: Rt=11.3 min, purity=99.9%.

The compounds exemplified in Table 25 were prepared in a manner analogous to Example 327.

TABLE 25

		N-N N-N			T R	
Ex- ample	Name	—Ү	R	LCMS, [M + H] ⁺	$^{1}\text{H NMR } (400 \text{ MHz}, \text{CDCl}_{3}) \delta$	HPLC-1: Rt min, purity; HPLC-2: Rt min, purity
929	(3-((4-((1aR,7bS)-3-(2-((2,3- Dimethylphenoxy)methyl) cyclopropanecarbonyl)- 1a,2,3,7b-tetrahydro-1H- cyclopropa[c]quinolin-7-yl)- 1H-pyrazol-1-yl)methyl) benzamido)methanesulfonic acid	NH SO ₃ H	Me	641.0	$\begin{array}{l} 8.14 \; (br. s., 1H), 7.98-7.82 \; (m, 3H), 7.52-\\ 7.46 \; (m, 2H), 7.34-7.16 \; (m, 3H), 6.88 \; (t, J=\\ 7.4 \; Hz, 1H), 6.66 \; (d, J=7.7 \; Hz, 1H), 6.57 \; (d, J=8.2 \; Hz, 1H), 5.60-5.51 \; (m, 2H), 4.53 \; (s, 2H), 4.10 \; (dd, J=10.4, 4.9 \; Hz, 1H), 3.60-\\ 3.45 \; (m, 1H), 2.75 \; (br. s., 1H), 2.28-2.12 \; (m, 3H), 2.06 \; (dd, J=8.2, 4.4 \; Hz, 1H), 1.94 \; (br. s., 3H), 1.84 \; (d, J=5.5 \; Hz, 1H), 1.34-1.23 \; (m, 1H), 1.15-1.03 \; (m, 2H), 0.68 \; (d, J=4.4 \; Hz, 1H) \end{array}$	N/A 8.9 min, 99.1%
930	2-(3-((4-((1aR,7bS)-3-(2-((2,3-Dimethylphenoxy) methyl) cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	NH SO ₃ H	Me	655.1	8.18 (br. s., 1 H), 7.98 (s, 1 H), 7.80 (br. s., 2 H), 7.49 (d, J = 3.3 Hz, 2 H), 7.37-7.16 (m, 3 H), 6.87 (d, J = 7.1 Hz, 1 H), 6.65 (d, J = 7.1 Hz, 1 H), 6.58 (br. s., 1 H), 5.56 (s, 2 H), 4.10 (dd, J = 10.4, 4.4 Hz, 1 H), 3.79 (br. s., 2 H), 3.50 (br. s., 1 H), 3.08 (br. s., 2 H), 2.74 (br. s., 1 H), 2.27-2.03 (m, 5 H), 2.01-1.78 (m, 5 H), 1.29 (br. s., 1 H), 1.08 (br. s., 2 H), 0.69 (br. s., 1 H)	10.4 min, 95.7% 8.9 min, 98.7%
931	(3-((4-((1aR,7bS)-3-(2-((3- Chloro-2-methylphenoxy) methyl) cyclopropanecarbonyl)- 1a,2,3,7b-tetrahydro-1H- cyclopropa[c]quinolin-7-yl)- 1H-pyrazol-1-yl)methyl) benzamido)methanesulfonic acid	NH SO ₃ H	Cl	661.0	6.79 (s, 1H), 6.65-6.55 (m, 2H), 6.30-6.17 (m, 2H), 6.06-5.87 (m, 3H), 5.77-5.66 (m, 1H), 5.59 (d, J = 7.7 Hz, 1H), 5.43 (d, J = 7.7 Hz, 1H), 4.28-4.18 (m, 2H), 3.31-3.21 (m, 2H), 2.97-2.84 (m, 2H), 2.32-2.20 (m, 2H), 1.43 (br. s., 2H), 0.93 (br. s., 2H), 0.86-0.74 (m, 5H), 0.69 (d, J = 4.4 Hz, 2H), 0.54 (d, J = 5.5 Hz, 2H), 0.09-0.01 (m, 2H), -0.14-0.29 (m, 2H), -0.68 (d, J = 4.4 Hz, 2H)	9.9 min, 90.8% 9.1 min, 90.9%
932	2-(3-((4-((1aR,7bS)-3-(2-((3-Chloro-2-methylphenoxy) methyl) cyclopropanecarbonyl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl) benzamido)ethanesulfonic acid	NH SO ₃ H	Cl	675.0	$\begin{array}{l} 8.19 \; (s,1H),8.00 \; (s,1H),7.80 \; (br.s.,2H),\\ 7.54-7.46 \; (m,2H),7.35-7.17 \; (m,3H),7.03-6.93 \; (m,1H),6.86 \; (d,J=8.2\;Hz,1H),6.70 \; (d,J=8.2\;Hz,1H),5.64-5.50 \; (m,2H),4.18 \; (dd,J=10.7,5.2\;Hz,1H),3.80 \; (br.s.,2H),3.54 \; (br.s.,1H),3.18-2.99 \; (m,2H),2.74 \; (br.s.,1H),2.19 \; (br.s.,1H),2.13-1.90 \; (m,4H),1.84 \; (d,J=6.0\;Hz,1H),1.30 \; (dd,J=8.8,4.4\;Hz,1H),1.14-1.01 \; (m,2H),0.61 \; (d,J=4.4\;Hz,1H) \end{array}$	11.6 min, 98.5% 9.0 min, 100%

15

35

45

Example 933

3-((4-(1-(4-(tert-Butoxycarbonyl(2,3-dimethylphenyl)amino)butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Step A. 4((2,3-Dimethylphenyl)amino)-4-oxobutanoic acid

To a partial suspension of dihydrofuran-2,5-dione (1.0 g, 10.0 mmol) in DCM (40 mL) was added a solution 2,3-dimethylaniline (1.21 g, 10.0 mmol) in DCM (40 mL). The $\,^{40}$ reaction was stirred at room temperature for 3 h and filtered. The solid was washed with CH $_2$ Cl $_2$ to afford the title compound (1.89 g, 85% yield). LCMS, [M+H] $^+$ =222.4.

Step B. Methyl 4-(2,3-dimethylphenylamino)-4-oxobutanoate

To a solution of 4-((2,3-dimethylphenyl)amino)-4-oxobutanoic acid (0.5 g, 2.26 mmol) in DCM (9 mL) and MeOH (2 mL) at room temperature was added 2.0 M diazomethyl) trimethylsilane (1.36 mL, 2.71 mmol) dropwise. The reaction was stirred at room temperature for 30 min and quenched with a solution of 20% AcOH in DCM). The mixture was concentrated and purified by flash chromatography (0-100% ethyl

762

acetate:hexanes) to afford the title compound as a white solid (0.52 g, 98% yield). LCMS, [M+H]⁺=236.4.

Step C. Methyl 4-((2,3-dimethylphenyl)amino)butanoate

To a partial suspension of methyl 4-(2,3-dimethylphenylamino)-4-oxobutanoate (0.20 g, 0.85 mmol) in THF (8.5 mL) at 0° C. was added 1 M borane tetrahydrofuran complex (2.55 mL, 2.55 mmol) over 2 min. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was cautiously quenched with 50% saturated ammonium chloride, and then excess 50% saturated ammonium chloride and DCM were added. The resulting mixture was stirred 25 vigorously for 15 min. The organic layer was separated, dried over sodium sulfate, filtered, and concentrated. The residue was purified by preparative HPLC (PHENOMENEX® Axia Luna column, 5µ, C18, 30×75 mm; 15 min gradient from 100% A: 0% B to 0% A:100% B and 3 min 100% B (A=90% 30 H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+ 0.1% TFA); detection at 220 nm) to afford the title compound (85 mg, 45% yield). LCMS, [M+H]⁺=222.1.

Step D. Methyl 4-((tert-butoxycarbonyl)(2,3-dimethylphenyl)amino)butanoate

To a solution of methyl 4-((2,3-dimethylphenyl)amino) butanoate (84 mg, 0.38 mmol) in THF (1.9 mL) was added 50% aq. sodium bicarbonate, followed by a 1 M solution of di-tert-butyl dicarbonate (0.60 mL, 0.6 mmol) in THF. The reaction mixture was partitioned between DCM and water. The organic layer was separated, dried over sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (0-100% ethyl acetate:hexanes) to afford the title compound as colorless viscous oil (112 mg, 91%). 55 LCMS, [M+Na]*=344.0.

Example 933

Example 933 was prepared using a procedure analogous to
60 Example 95 except that ethyl 4-(2,3-dimethylphenoxy)butanoate was replaced with methyl 4-((tert-butoxycarbonyl)(2,
3-dimethylphenyl)amino)butanoate. LCMS, [M+H]⁺=623.2.

¹H NMR (500 MHz, CDCl₃) & 8.04 (br. s., 1H), 7.61 (br. s.,
1H), 7.51-7.30 (m, 3H), 7.18-7.05 (m, 3H), 7.00 (br. s., 3H),
65 6.83 (br. s., 1H), 5.35 (br. s., 2H), 3.72-3.59 (m, 2H), 3.31 (br.
8., 1H), 2.71-2.57 (m, 2H), 2.47 (d, J=7.4 Hz, 2H), 2.27-2.17
(m, 3H), 2.02 (s, 3H), 1.94-1.73 (m, 4H), 1.51-1.38 (m, 2H),

20

25

45

50

Example 934

3-((4-(1-(4-(2,3-Dimethylphenylamino)butanoyl)-1, 2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzoic acid, TFA salt

To a solution of Example 933 (0.02 g, 0.032 mmol) in DCM (0.32 mL) was added TFA (0.32 mL). The reaction was stirred at room temperature for 30 min and concentrated. The residue was purified by preparative HPLC (PHENOM- 30 ENEX® Axia Luna column, 5μ, C18, 30×75 mm; 15 min gradient from 100% A: 0% B to 0% A:100% B and 3 min 100% B (A=90% H₂O/10% MeCN+0.1% TFA); (B=90% MeCN/10% H₂O+0.1% TFA); detection at 220 nm) to afford Example 934 as a white solid (15 mg, 70% yield). LCMS, 35 $[M+H]^{+}=523.1.$ ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J=7.7 Hz, 1H), 8.00 (s, 1H), 7.68 (s, 1H), 7.58-7.50 (m, 2H), 7.51-7.42 (m, 2H), 7.34 (d, J=7.4 Hz, 1H), 7.24-7.13 (m, 170H), 7.05 (br. s., 112H), 5.44 (s, 2H), 3.80 (br. s., 2H), 3.46 (br. s., 2H), 2.81 (br. s., 2H), 2.72 (t, J=6.5 Hz, 2H), 2.34 (s, 3H), 2.31 (s, 3H), 2.21-2.05 (m, 2H), 1.99-1.82 (m, 2H). HPLC-1: Rt=6.8 min, purity=99.7%; HPLC-2: Rt=8.3 min, purity=100%.

Example 935

3-((4-(1-(4-((2,3-Dimethylphenyl)(methyl)amino) butanoyl)-1,2,3,4-tetrahydroquinolin-5-yl)-1H-pyrazol-1-yl)methyl)benzoic acid, TFA salt

764

Example 935 was prepared using a procedure analogous to Example 933 except that 2,3-dimethylaniline was replaced with N,2,3-trimethylaniline. LCMS, [M+H]⁺=537.2. ¹H NMR (500 MHz, CDCl₃) & 8.12-8.01 (m, 2H), 7.70-7.62 (m, 5 1H), 7.56-7.42 (m, 3H), 7.14 (br. s., 2H), 7.07-6.96 (m, 1H), 6.89 (d, J=7.4 Hz, 1H), 6.84 (d, J=5.8 Hz, 1H), 5.43 (s, 2H), 3.75 (t, J=6.3 Hz, 2H), 2.86 (br. s., 2H), 2.67 (t, J=6.5 Hz, 2H), 2.61-2.48 (m, 6H), 2.20 (br. s., 3H), 2.14-2.01 (m, 3H), 1.94-1.81 (m, 5H). HPLC-1: Rt=6.6 min, purity=99.1%; HPLC-2: 10 Rt=8.6 min, purity=99.3%.

Example 938

4-Chloro-3-((4-((1aR,7bS)-3-(((2-trans-(3-chloro-2-methylphenyl)cyclopropyl)methoxy)carbonyl)-1a,2, 3,7b-tetrahydro-1H-cyclopropa[c]quinolin-7-yl)-1H-pyrazol-1-yl)methyl)benzoic acid

Step A. (E)-Methyl 3-(3-chloro-2-methylphenyl)acrylate

A mixture of (2-methoxy-2-oxoethyl)triphenylphosphonium bromide (10.0 g, 24.08 mmol) in 100 mL DCM, 50 mL water and NaOH (10 N) (4.82 ml, 48.2 mmol) was vigorously shaken in a separatory funnel. The organic layer was separated and the aqueous phase was extracted with DCM. The combined organic layers were dried (MgSO₄) and concentrated to give methyl 2-(triphenylphosphoranylidene)acetate (7.5 g, 93% yield) as a white solid. A solution of 3-chloro-2-methylbenzaldehyde (0.7 g, 4.53 mmol) and 2-(triphenylphosphoranylidene)acetate (1.817 g, 5.43 mmol) in MeOH (22.6 ml) was stirred at room temperature for 2 h. The mixture was concentrated and purified by flash chromatography (0-30% ethyl acetate:hexanes) to afford the title compound (0.23 g, 24% yield) as a clear colorless oil. ¹H NMR

10

15

20

40

45

Step B. trans-Methyl 2-(3-chloro-2-methylphenyl)cyclopropanecarboxylate

To a solution of trimethylsulfoxonium iodide (0.157 g, 0.712 mmol) in 1 mL DMSO was added NaH (60% in mineral oil) (0.032 g, 0.807 mmol) portion-wise. The mixture was 25 stirred at room temperature for 30 min, and then a solution (E)-methyl 3-(3-chloro-2-methylphenyl)acrylate (0.1 g, 0.475 mmol) in 1 mL DMSO was added in one portion. The reaction was stirred at room temperature for 16 h. The mixture was partitioned between EtOAc and water. The organic layer $^{-30}$ was washed with water and brine, dried (MgSO₄) and concentrated. The crude material was purified by flash chromatography (0-50% ethyl acetate:hexanes) to afford the title compound (0.042 g, 39% yield) as a clear colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.24 (d, J=7.8 Hz, 1H), 7.06 (t, J=7.8 Hz, 1H), 6.95 (d, J=7.7 Hz, 1H), 3.79-3.75 (m, 3H), 2.55 (ddd, J=9.1, 6.7, 4.5 Hz, 1H), 2.45 (s, 3H), 1.81 (dt, J=8.4, 4.9 Hz, 1H), 1.64-1.57 (m, 1H), 1.30 (ddd, J=8.4, 6.7, 4.4 Hz, 1H).

Step C. trans-(2-(3-Chloro-2-methylphenyl)cyclopropyl)methanol

To a solution of trans-methyl 2-(3-chloro-2-methylphenyl) cyclopropanecarboxylate (0.042, 0.187 mmol) in THF (2.0 mL) was added 2.0 M lithium borohydride (0.467 ml, 0.935 60 mmol) dropwise at room temperature. The reaction was stirred at room temperature for 3 d. The mixture was partitioned between EtOAc and 1 N HCl. The organic layer separated, and the aqueous phase was extracted with EtOAc. The combined organic layer was dried (MgSO₄) and concentrated 65 to afford the title compound (23 mg, 63% yield) as paleyellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, J=8.0 Hz,

766

1H), 7.04 (t, J=7.7 Hz, 1H), 6.96 (d, J=8.0 Hz, 1H), 3.86-3.65 (m, 2H), 2.53-2.45 (m, 3H), 1.90-1.82 (m, 1H), 1.39 (d, J=5.2 Hz, 1H), 0.97-0.90 (m, 2H).

Step D. (1aR,7bS)-(2-trans-(3-Chloro-2-methylphenyl)cyclopropyl)methyl 7-bromo-1a,2-dihydro-1Hcyclopropa[c]quinoline-3(7bH)-carboxylate

To a solution of trans-(2-(3-chloro-2-methylphenyl)cyclopropyl)methanol (0.023 g, 0.117 mmol) in 0.5 mL THF was added NaH (0.012 g, 0.292 mmol) in one portion. The reaction was stirred at room temperature for 30 min and then a solution of (1aR,7bS)-4-nitrophenyl 7-bromo-1a,2-dihydro-1H-cyclopropa[c]quinoline-3(7bH)-carboxylate (0.046 g, 0.117 mmol) in 0.5 mL THF was added and the reaction was stirred at room temperature for 16 h. The mixture was partitioned between EtOAc and saturated NaHCO3. The organic layer was washed with water and brine, dried (MgSO₄) and concentrated. The crude material was purified by flash chromatography (0-30% ethyl acetate:hexanes) to afford the title compound (41 mg, 78% yield) as pale-yellow oil. LCMS, $[M+Na]^{+}=469.8.$

Example 938

Example 938 was prepared using a procedure analogous to Example 368 except that 2-(3-chloro-2-methylphenoxy) 50 ethyl 8-bromo-2H-benzo[b][1,4]thiazine-4(3H)-carboxylate was replaced with (1 aR,7b5)-(2-trans-(3-chloro-2-methylphenyl)-cyclopropyl)methyl 7-bromo-1a,2-dihydro-1Hcyclopropa[c]quinoline-3(7bH)-carboxylate. $[M+H]^{+}=602.1.$ ¹H NMR (500 MHz, CDCl₃) δ 8.13 (s, 1H), 8.03 (dd, J=8.3, 2.2 Hz, 1H), 7.85 (dd, J=3.0, 0.6 Hz, 1H), 7.76 (d, J=5.0 Hz, 1H), 7.53 (d, J=8.3 Hz, 1H), 7.33-7.28 (m, 1H), 7.23-7.20 (m, 1H), 7.12 (d, J=3.9 Hz, 2H), 7.02 (td, J=8.0, 3.3 Hz, 1H), 6.92 (t, J=8.0 Hz, 1H), 5.55 (s, 2H), 4.56 (d, J=13.8 Hz, 1H), 4.42-4.32 (m, 1H), 4.15-4.04 (m, 1H), 3.09 (br. s., 1H), 2.41 (br. s., 3H), 2.18-2.12 (m, 1H), 1.92 (br. s., 1H), 1.78 (d, J=6.6 Hz, 1H), 1.49-1.40 (m, 1H), 1.08-1.02 (m, 1H), 1.00-0.95 (m, 2H), 0.81 (d, J=5.0 Hz, 1H). HPLC-1: Rt=11.1 min, purity=91.7%; HPLC-2: Rt=11.1 min, purity=95.6%.

It is noted that the proceeding Examples, while illustrative of the present invention, may not be in sequential order and some example numbers may be missing.

cAMP Assay

768 TABLE 26-continued

The in vitro modulation of recombinant human TGR5 was
determined as follows.

MODULATION

A human TGR5 expression construct of human TGR5 was integrated into the genome of a CHOK1 cell line (Invitrogen). Once a stable CHOK1 cell line was generated, the cells were incubated for 5-10 minutes in culture medium consisting of F-12 (Invitrogen#11765-047) supplemented with 10% fetal bovine serum.

On the day of the cAMP accumulation assay, cells stably expressing the chimeric human/mouse TGR5 construct were 15 centrifuged at 1000 rpm for 5 minutes. The medium was aspirated and the cells were resuspended in 5 mL of assay buffer (phosphate-buffered saline with Ca²⁺ and Mg²⁺, Invitrogen#14040). The cells were counted using 1:2 dilution and then adjusted to 0.4-0.5×10⁶ cells/mL in assay buffer, if necessary. Isobutylmethylxanthine (IBMX, Sigma#I5879) was added via a 1:5000 dilution to make a 0.1 mM final concentration and then 10 µL of the media were transferred to each well of a 384 well poly-D-lysine coated solid white plate (BD #35-6661) pre-dotted with 100 nL of with the desired concentration of compound added from a concentrated stock dissolved in dimethyl sulfoxide (DMSO) to give a final concentration of 1% DMSO in the assay. The plates were covered and incubated for 30 minutes at RT. cAMP accumulation was measured using the CisBio homogeneous time resolved fluorescence (HTRF) assay kit (#62AM2PEC) following the manufacturer's protocol. Briefly, 5 µl each of the cAMP-HTRF fluorescence detection reagents were added to each well, and the samples were incubated for at least one hour at room temperature. Fluorescence was excited at 320 nm and measured at 665 and 620 nm using the Envision instrument (Perkin Elmer), the fluorescence ratio of 665/620 was calculated and converted to nanomolar concentrations of cAMP in each well by interpolation from a cAMP standard curve. The concentration-response curves and EC_{50} values were calculated with a four parameter logistic curve fit equation utilizing Excel/XLfit software (Microsoft and IDBS). The EC₅₀ value was calculated as the concentration of agonist which increased the cAMP concentration to a value halfway between the baseline and the maximum.

Compounds of the present invention were tested in the cAMP assay described immediately above and the results shown in Table 26 below were obtained. The data is believed to be representative of the ability of the compounds of the present invention to modulate recombinant human TGR5.

TABLE 26			
	Example	$TGR5 EC_{50} (nM)$	
	1	3538	55
	15	5905	
	28	2859	
	29	596	
	32	586	
	32A	3396	
	32G	636	60
	36	2913	60
	43	611	
	46	1916	
	69B	50	
	69C	58	
	69E	45	
	69F	54	65
	69G	51	

	17 1151/1	20 continued	
•	Example	TGR5 EC ₅₀ (nM)	
•	69H	52	
	69J	5000	
	81 82	670 646	
	83	107	
	110G	3140	
,	110H 110J	6555 3305	
)	110K	5000	
	110T	609	
	112 123	145 1266	
	123	5000	
5	138	3458	
	138A	24	
	142 146R	647 49	
	146Y	2859	
	148	3306	
)	168F 168J	590 643	
	168N	4375	
	171	56	
	176 177	47 48	
	179	45	
5	182	589	
	197	2155	
	222 231	55 47	
	238	59	
	240	49	
)	242 244	49 46	
	248	56	
	249	660	
	250 251	29 644	
5	257	682	
,	268	5019	
	270 273	608 646	
	275	608	
	282	664	
)	283	3185 3953	
	288 289	2808	
	297	687	
	302	593	
	316 319	638 3817	
5	324	3394	
	334	1265	
	336 339	173 2576	
	350	31	
	352	196	
)	354 358	40 43	
	359	1653	
	367	186	
	375 392	188 189	
	418	185	
,	430	197	
	434	183 171	
	436 447	171 1588	
	448	183	
)	466	3926 3964	
	467 471	2964 2169	
	472	1843	
	475	2595	
	481 493	1534 4152	
5	500	195	
	505	1720	

1730

TABLE 26-continued

Ez	xample	$TGR5~EC_{50}~(nM)$	
50)6	1605	
50	07	2106	
52		176	
52		1501	
52		184	
53		192	
55		2377	
56		49 48	
56 56		35	
57		23	
57		49	
57		48	
57		31	
57	78	45	
58	31	38	
58		43	
59		30	
59		42	
59		173	
60		42	
61		46 175	
61 62		175 1384	
62		188	
62		195	
63		177	
66		36	
66		1342	
67	72	43	
68		49	
69		45	
69		188	
69		28	
69		41	
70		46	
70 71		46 188	
72		1304	
73		188	
76		1520	
78		200	
78		173	
79	92	185	
80		1329	
80		1343	
81		2001	
82		1354	
83		176	
83		173 106	
84 85		196 1357	
86 86		1357 193	
87		42	
88		1337	
88		184	
89		26	
89		198	
91		32	
91	16	37	
	24A	38	
	24B	27	
93		1612	
03	34	191	

In addition, compounds of the present invention, particularly Examples 1, 69A, 69M, 86, 138A, 168A, 170, 177N, 177P, 215, 231 and 237, were evaluated for their effectiveness as inhibitors of diacylglycerol acyltransferase (DGAT) receptor activity. The compounds were tested in the assay set forth below for inhibition of DGAT1 activity. With one exception (Example 170), the tested compounds exhibited no or minimal activity (IC $_{50}$ >10 μ M) against the DGAT1 enzyme. Based on these results, it is believed that the compounds of the 5 present invention, particularly Examples 1, 69A, 69M, 86, 138A, 168A, 177N, 177P, 215, 231 and 237, are not effective

770

in inhibiting DGAT receptor activity and therefore would not be effective as inhibitors or modulators of DGAT receptor activity.

Diacylglycerol Acyltransferase (DGAT) Assay

DGAT1 enzyme was assayed using membranes isolated from Sf9 cells expressing the recombinant human DGAT1 cDNA with 2-monooleovlglycerol and [³H]-oleovl-CoA as substrates as described by Seethala et al. (Anal Biochem., 383(2):144-150 (Dec. 15, 2008)). Briefly, the assays were conducted in 384-well plates in a total volume of 30 µl at 25° C. In each assay, 200 ng of recombinant human DGAT1 membrane was incubated with 10 µM of 2-monooleoylglycerol and 15 μM of [³H]-oleoyl-CoA in 100 mM potassium phosphate (pH 7.4) for 20 min with various concentrations of compounds delivered in DMSO. The assay was terminated by the addition of 20 µl of Stopping Solution (7.5 mg/ml Yittrium Oxide Polylysine beads, 3.3 mg/ml Fraction V BSA and 200 μM Mercuric chloride in 50 mM HEPES, pH 7.4). The signal 20 was measured 1 h after quenching the reaction using LEAD-SEEKERSM for 5 minutes. To calculate the degree of inhibition, the zero level of enzyme activity (blank) was defined by the above assay procedure using membrane form Sf9 cell uninfected with baculovirus (Naive) and the 100% level of DGAT1 enzyme activity was defined by human mutant DGAT1 assay with the vehicle DMSO. The IC₅₀s of inhibitors were determined by logistic 4 parameter equation in XL-fit.

UTILITIES AND COMBINATIONS

A. Utilities

The compounds of the present invention possess activity as modulators of the TGR5 receptor, and, therefore, may be used in the treatment of diseases associated with TGR5 receptor activity. Via the modulation of TGR5 receptor, the compounds of the present invention may preferably be employed to increase insulin production or increase GLP-1 secretion or both

Accordingly, the compounds of the present invention can be administered to mammals, preferably humans, for the treatment of a variety of conditions and disorders, including, but not limited to, treating, preventing, or slowing the pro-45 gression of diabetes and related conditions, microvascular complications associated with diabetes, macrovascular complications associated with diabetes, cardiovascular diseases. Metabolic Syndrome and its component conditions, inflammatory diseases and other maladies. Consequently, it is 50 believed that the compounds of the present invention may be used in preventing, inhibiting, or treating diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, wound healing, atherosclerosis and its sequelae (acute coronary syndrome, myocardial infarction, angina pectoris, peripheral vascular disease, intermittent claudication, myocardial ischemia, stroke, heart failure), Metabolic Syndrome, hypertension, obesity, dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, vascular restenosis, peripheral arterial disease, lipid disorders, bone disease (including osteoporosis), PCOS, and treatment of side-effects related to diabetes, lipodystrophy and osteoporosis from corticosteroid treatment.

Metabolic Syndrome or "Syndrome X" is described in Ford et al., J. Am. Med. Assoc., 287:356-359 (2002) and Arbeeny et al., Curr. Med. Chem.-Imm., Endoc. & Metab. Agents, 1:1-24 (2001).

B. Combinations

The present invention includes within its scope pharmaceutical compositions comprising, as an active ingredient, a therapeutically effective amount of at least one of the compounds of Formula I, Ia, Ib, Ic, Id, Ie, If, Ig, Ih or Ij, preferably, a compound selected from one of the examples, preferably, Examples 29, 32, 32G, 43, 69B, 69C, 69E, 69F, 69G, 69H, 81, 82, 83, 110T, 112, 138A, 142, 146R, 168F, 168J, 171, 176, 177, 179, 182, 222, 231, 238, 240, 242, 244, 248, 249, 250, 10 251, 257, 270, 273, 275, 282, 297, 302, 316, 336, 350, 352, 354, 358, 367, 375, 392, 418, 430, 434, 436, 448, 500, 521, 527, 534, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 597, 600, 614, 617, 626, 628, 635, 662, 672, 685, 690, 693, 698, 699, 702, 703, 719, 730, 784, 786, 792, 830, 15 836, 848, 864, 878, 887, 891, 896, 914, 916, 924A, 924B and 934, more preferably, Examples 69B, 69C, 69E, 69G, 69H, 69F, 83, 138A, 146R, 171, 176, 177, 179, 222, 231, 238, 240, 242, 244, 248, 250, 350, 354, 358, 564, 565, 566, 574, 575, 576, 577, 578, 581, 583, 592, 593, 600, 614, 662, 672, 685, 20 690, 698, 699, 702, 703, 878, 891, 914, 916, 924A and 924B, most preferably, Examples 83, 138A, 250, 350, 566, 574, 577, 581, 592, 662, 698, 891, 914, 916, 924A and 924B, alone or in combination with a pharmaceutical carrier or diluent. Optionally, compounds of the present invention can be used 25 alone, in combination with other compounds of the invention, or in combination with one or more other therapeutic agent(s), e.g., an antidiabetic agent or other pharmaceutically active material.

The compounds of the present invention may be employed in combination with one or more other suitable therapeutic agents useful in the treatment of the aforementioned disorders including: anti-diabetic agents, anti-hyperglycemic agents, anti-neuropathic agents, anti-neuropathic agents, anti-neuropathic agents, anti-neuropathic agents, anti-schemic agents, anti-thypertensive agents, anti-obesity agents, anti-dyslipidemic agents, anti-dyslipidemic agents, anti-dyslipidemic agents, anti-hypertriglyceridemic agents, anti-hypercholesterolemic agents, anti-restenotic agents, anti-hypercholesterolemic agents, anti-restenotic agents, anti-pancreatic agents, lipid lowering agents, appetite suppressants, treatments for heart failure, treatments for peripheral arterial disease and anti-inflammatory agents.

Examples of suitable anti-diabetic agents for use in combination with the compounds of the present invention include 45 insulin and insulin analogs (e.g., LysPro insulin, inhaled formulations comprising insulin); glucagon-like peptides; sulfonylureas and analogs (e.g., chlorpropamide, glibenclamide, tolbutamide, tolazamide, acetohexamide, glipizide, glyburide, glimepiride, repaglinide, meglitinide); biguanides 50 (e.g., metformin, phenformin, buformin); alpha2-antagonists and imidazolines (e.g., midaglizole, isaglidole, deriglidole, idazoxan, efaroxan, fluparoxan); other insulin secretagogues (e.g., linogliride, insulinotropin, exendin-4, N,N-dimethyl-N'-[2-(4-morpholinyl)phenyl]guanidine (E)-2-butenedioate 55 salt (BTS-675820), (-)-N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (A-4166)); thiazolidinediones and PPAR-gamma agonists (e.g., ciglitazone, pioglitazone, troglitazone, rosiglitazone); PPAR-alpha agonists e.g., fenofibrate, gemfibrozil); PPAR alpha/gamma dual agonists 60 (e.g., muraglitazar, peliglitazar, aleglitazar); SGLT2 inhibitors (e.g., 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone-2'-O-(6-O-methoxycarbonyl)-β-d-glucopyranoside (T-1095 Tanabe Seiyaku), phlorizin, TS-033 (Taisho), dapagliflozin (BMS), sergiflozin (Kissei), AVE 65 2268 (Sanofi-Aventis)), canagliflozin; 11-beta-hydroxysteriod dehydrogenase type I inhibitors (e.g., AMG221,

772

INCB13739); dipeptidyl peptidase-IV (DPP4) inhibitors (e.g., saxagliptin, sitagliptin, vildagliptin, alogliptin and denagliptin); glucagon-like peptide-1 (GLP-1) receptor agonists (e.g., Exenatide (Byetta), NN2211 (Liraglutide, Novo Nordisk), AVE0010 (Sanofi-Aventis), R1583 (Roche/Ipsen), SUN E7001 (Daiichi/Santory), GSK-716155 (GSK/Human Genome Sciences) and Exendin-4 (PC-DACTM); aldose reductase inhibitors (e.g., those disclosed in WO 99/26659); RXR agonists (e.g., reglitazar (JTT-501), 5-[[6-[(2-fluorophenyl)methoxy]-2-naphthalenyl]methyl]-2,4-thiazolidinedione (MCC-555), 5-[[3-(5,6,7,8-tetrahydro-3,5,5,8,8pentamethyl-2-naphthalenyl)-4-(trifluoromethoxy)-phenyl] methylene]-2,4-thiazolidinedione (MX-6054), DRF2593, (±)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2farglitazar. methoxy-N-[[(4-trifluoromethyl)phenyl]-methyl]benzamide (KRP-297), 6-[1-(5,6,7,8-tetrahydro-3,5,5,8,8-pentamethyl-2-naphthalenyl)cyclopropyl]-3-pyridinecarboxylic (LG100268)); fatty acid oxidation inhibitors (e.g., clomoxir, etomoxir; α-glucosidase inhibitors: precose, acarbose, miglitol, emiglitate, voglibose, 2,6-dideoxy-2,6-imino-7-O-β-Dglucopyranosyl-D-glycero-L-gulo-heptitol (MDL-25,637), camiglibose); beta-agonists (e.g., methyl ester[4-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl] phenoxy]-acetic acid (BRL 35135), 2-[4-[(2S)-2-[[(2S)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid (BRL 37344), 4-[(3R)-3-[bis](2R)-2-hydroxy-2phenylethyl]amino]butyl]-benzamide (Ro 16-8714), 2-[4-[2-[[(2S)-2-hydroxy-3-phenoxypropyl]amino]ethoxy] phenoxy]-N-(2-methoxyethyl)-acetamide (ICI 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl] amino[propyl]-3-benzodioxole-2,2-dicarboxylic acid, disodium salt (CL 316,243), TAK-667, AZ40140); phosphodiesterase inhibitors, both cAMP and cGMP type (e.g., sildenafil, 9-((1S,2R)-2-fluoro-1-methylpropyl)-2-methoxy-6-(1-piperazinyl)purine hydrochloride (L-686398), L-386, 398); amylin agonists (e.g., pramlintide); lipoxygenase inhibitors (e.g., masoprocal); somatostatin analogs (e.g., lanreotide, seglitide, octreotide); glucagon antagonists (e.g., BAY 276-9955); insulin signaling agonists, insulin mimetics, PTP1B inhibitors (e.g., 2-[2-(1,1-dimethyl-2-propenyl)-1Hindol-3-yl]-3,6-dihydroxy-5-[7-(3-methyl-2-butenyl)-1Hindol-3-yl]-2,5-cyclohexadiene-1,4-dione (L-783281), TER17411, TER17529); gluconeogenesis inhibitors (e.g., GP3034); somatostatin analogs and antagonists; antilipolytic agents (e.g., nicotinic acid, acipimox, N-cyclohexyl-2'-Omethyl-adenosine (WAG 994)); glucose transport stimulating agents (e.g., 4-chloro-α-[(4-methylphenyl)sulfonyl]-benzeneheptanoic acid (BM-130795)); glucose synthase kinase inhibitors (e.g., lithium chloride, CT98014, CT98023); galanin receptor agonists; Chemokine receptor antagonist CCR2/5 (e.g., NCB3284, MK-0812, INCB8696, maraviroc (Pfizer) and vicriviroc); thyroid receptor agonists (e.g., KB-2115 (KaroBio)); glucokinase activators (e.g., RO-27-4375, RO-28-1675 (Roche), 6-[[3-[(1S)-2-methoxy-1-methylethoxy]-5-[(1S)-1-methyl-2-phenylethoxy]benzoyl] amino]-3-pyridinecarboxylic acid (GKA-50 AstraZeneca)); GPR 40 modulators (e.g., (S)-4-(dimethylamino)-3-(4-((4methyl-2-p-tolylthiazol-5-yl)methoxy)phenyl)-4-oxobutanoic acid, 6-chloro-2-(4-chlorobenzylthio)-1-(4-(methoxymethoxy)phenyl)-1H-benzo[d]imidazole, TAK-875. CNX011, and P1736) and GPR-119 modulators (e.g., PSN821 (OSI Pharmaceuticals)).

Examples of suitable lipid lowering agents and anti-atherosclerotic agents for use in combination with the compounds of the present invention include one or more MTP/ApoB secretion inhibitors (e.g., dirlopatide, N-(2,2,2-trifluoroethyl)-9-[4-[4-[[4'-(trifluoromethyl)]1,1'-

biphenyl]-2-yl]carbonyl-|amino]-1-piperidinyl|butyl]-9Hfluorene-9-carboxamide, methanesulfonate, CP-741952 (Pfizer), SLx-4090 (Surface Logix)); HMG CoA reductase inhibitors (e.g., atorvastatin, rosuvastatin, simvastatin, pravastatin, lovastatin, fluvastatin); squalene synthetase inhibi- 5 tors, PPAR alpha agonists and fibric acid derivatives (e.g., fenofibrate, gemfibrozil); ACAT inhibitors; lipoxygenase inhibitors; cholesterol absorption inhibitors (e.g., ezetimibe); thyroid receptor agonists (e.g., as set forth above); Ileal Na+/ bile acid co-transporter inhibitors (e.g., compounds as dis- 10 closed in Drugs of the Future, 24:425-430 (1999); upregulators of LDL receptor activity (e.g., (3R)-3-[(13R)-13hydroxy-10-oxotetradecyl]-5,7-dimethoxy-1(3H)isobenzofuranone (Taisho Pharmaceutical Co. Ltd.) and (3α, $4\alpha,5\alpha$)-4-(2-propenyl)-cholestan-3-ol (Eli Lilly); bile acid 15 sequestrants (e.g., WELCHOL®, COLESTID®, LoCholest and QUESTRAN®; and fibric acid derivatives, such as Atromid, LOPID® and Tricot); cholesterol ester transfer protein inhibitors (e.g., torcetrapib and (2R)-3-{[3-(4-chloro-3ethyl-phenoxy)-phenyl]-[[3-(1,1,2,2-tetrafluoroethoxy)phe-20 nyl]methyl]amino}-1,1,1-trifluoro-2-propanol); acid and derivatives thereof (e.g., niacin, acipimox); PCSK9 inhibitors; LXR agonists (e.g., those disclosed in U.S. Patent Application Publication Nos. 2003/01814206, 2005/ 0080111, and 2005/0245515); lipoxygenase inhibitors (e.g., 25 such as benzimidazole derivatives, as disclosed in WO 97/12615, 15-LO inhibitors, as disclosed in WO 97/12613, isothiazolones, as disclosed in WO 96/38144, and 15-LO inhibitors, as disclosed by Sendobry et al., "Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 30 15-lipoxygenase inhibitor lacking significant antioxidant properties", Brit. J. Pharmacology, 120:1199-1206 (1997), and Cornicelli et al., "15-Lipoxygenase and its Inhibition: A Novel Therapeutic Target for Vascular Disease", Current Pharmaceutical Design, 5:11-20 (1999)).

Preferred hypolipidemic agents are pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin, cerivastatin, atavastatin, and rosuvastatin.

Examples of suitable anti-hypertensive agents for use in combination with the compounds of the present invention 40 include beta adrenergic blockers, calcium channel blockers (L-type and T-type; e.g., diltiazem, verapamil, nifedipine, amlodipine and mybefradil), diuretics (e.g., chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorothiazide, trichloromethi- 45 azide, polythiazide, benzthiazide, ethacrynic acid tricrynafen, chlorthalidone, furosemide, musolimine, bumetanide, triamtrenene, amiloride, spironolactone), renin inhibitors (e.g., aliskiren), ACE inhibitors (e.g., captopril, zofenopril, fosinopril, enalapril, ceranopril, cilazopril, dela- 50 pril, pentopril, quinapril, ramipril, lisinopril), AT-1 receptor antagonists (e.g., losartan, irbesartan, valsartan), ET receptor antagonists (e.g., sitaxsentan, atrsentan, and compounds disclosed in U.S. Pat. Nos. 5,612,359 and 6,043,265), Dual ET/AII antagonist (e.g., compounds disclosed in WO 55 00/01389), neutral endopeptidase (NEP) inhibitors, vasopeptidase inhibitors (dual NEP-ACE inhibitors) (e.g., omapatrilat and gemopatrilat), nitrates, central alpha agonists (e.g., clonidine), alpha1 blockers (e.g., prazosine), arterial vasodilators (e.g., minoxidil), sympatolytics (e.g., resperine), renin 60 inhibitors (e.g., Aliskiren (Novartis)).

Examples of suitable anti-obesity agents for use in combination with the compounds of the present invention include a cannabinoid receptor 1 antagonist or inverse agonist (e.g., rimonabant, (4S)-3-(4-chlorophenyl)-N-[(4-chlorophenyl) 65 sulfonyl]-4,5-dihydro-N'-methyl-4-phenyl-1H-pyrazole-1-carboximidamide (SLV 319), CP-945598 (Pfizer), Surina-

774

(SR-147778, Sanofi-Aventis), N-[(1S,2S)-3-(4chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2methyl-2-{[5-(trifluoromethyl)pyridin-2-yl] oxy\propanamide (Merck) and those discussed in Hertzog, D. L., Expert Opin. Ther. Patents, 14:1435-1452 (2004)); a beta 3 adrenergic agonist (e.g., rafabegron (AJ9677, Takeda/ Dainippon), N-[4-[2-[[(2S)-3-[(6-amino-3-pyridinyl)oxy]-2-hydroxypropyl]amino]ethyl]phenyl]-4-(1-methylethyl)benzenesulfonamide (L750355, Merck), or CP331648 (Pfizer), or other known beta 3 agonists, as disclosed in U.S. Pat. Nos. 5,541,204, 5,770,615, 5,491,134, 5,776,983, and 5,488,064, with rafabegron, N-[4-[2-[[(2S)-3-[(6-amino-3pyridinyl)oxy]-2-hydroxypropyl]amino]ethyl]phenyl]-4-(1methylethyl)-benzenesulfonamide, and CP331648 being preferred); a lipase inhibitor (e.g., orlistat or cetilistat, with orlistat being preferred); a serotonin and norepinephrine reuptake inhibitor (e.g., sibutramine, Abbott and tesofensine, Neurosearch) with sibutramine being preferred; a dopamine reuptake inhibitor (e.g., buproprion, GSK); or 5-HT_{2C} agonist, (e.g., lorcaserin hydrochloride (Arena), WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole], with lorcaserin hydrochloride being preferred); 5-HT6 receptor antagonists (Suven, Biovitrum, Epix), anti-epileptics topiramate (Johnson & Johnson) and zonisamide, a ciliary neurotrophic factor agonist (e.g., AXOKINE® (Regeneron); brain-derived neurotrophic factor (BDNF), orexin antagonists, histamine receptor-3 (H3) modulators, melanin-concentrating hormone receptor (MCHR) antagonists (e.g., GSK-856464 (Glaxo-SmithKline), T-0910792 (Amgen)); diacylglycerol acyltransferase (DGAT) inhibitors (e.g., BAY-74-4113 (Bayer), PF-04620110, and LCQ908); acetyl-CoA carboxylase (ACC) inhibitors (e.g., N-(4-(4-(4-isopropoxyphenoxy)phenyl)but-3-yn-2-yl)acetamide (A-80040, Abbott), (R)-anthra-35 cen-9-yl(3-(morpholine-4-carbonyl)-1,4'-bipiperidin-1'-yl) methanone (CP-640186, Pfizer)), SCD-1 inhibitors as described by Jiang et al., Diabetes, 53 (2004), (abs 653-p); amylin receptor agonists (e.g., compounds disclosed in WO 2005/025504); thyroid receptor agonists (e.g., as set forth above); growth hormone secretagogue receptor (GHSR) antagonists (e.g., A-778193 (Abbott), leptin and leptin mimetics (e.g., OB-3 (Aegis/Albany Medical College), leptin analogs A-100 and A-200 (Amgen), CBT-001452 (Cambridge Biotechnology), ML-22952 (Millennium)), PYY receptor agonist (e.g., AC-162352 (Amylin), PYY-3-36 (Emishere), PYY(3-36)NH2 (Unigene)), NPY-Y4 agonists (7TM Pharma WO 2005/089786(A2,A3)-1), NPY-5 antagonists

inhibitors (as set forth above), and/or an anorectic agent.

The anorectic agent which may be optionally employed in combination with compounds of the present invention include dexamphetamine, phentermine, phenylpropanolamine, or mazindol, with dexamphetamine being preferred.

(e.g., NPYSRA-972 (AstraZeneca), GW-594884A (Glaxo-SmithKline), J-104870 (Banyu)); MTP/apoB secretion

Other compounds that can be used in combination with the compounds of the present invention include CCK receptor agonists (e.g., SR-27895B); galanin receptor antagonists; MCR-4 antagonists (e.g., N-acetyl-L-norleucyl-L-glutaminyl-L-histidyl-D-phenylalanyl-L-arginyl-D-tryptophyl-gly-cinamide, (HP-228); urocortin mimetics, CRF antagonists, and CRF binding proteins (e.g., mifepristone (RU-486), urocortin)

Further, the compounds of the present invention may be used in combination with HIV protease inhibitors, including but not limited to REYATAZ® and KALETRA®.

Examples of suitable memory enhancing agents, anti-dementia agents, or cognition promoting agents for use in com-

bination with the compounds of the present invention include, but are not limited to ARICEPT®, razadyne, donepezil, rivastigmine, galantamine, memantine, tacrine, metrifonate, muscarine, xanomelline, deprenyl and physostigmine.

Examples of suitable anti-inflammatory agents for use in combination with the compounds of the present invention include, but are not limited to, NSAIDS, prednisone, acetaminophen, aspirin, codeine, fentanyl, ibuprofen, indomethacin, ketorolac, morphine, naproxen, phenacetin, piroxicam, sufentanyl, sunlindac, interferon alpha, prednisolone, methylprednisolone, dexamethazone, flucatisone, betamethasone, hydrocortisone, beclomethasone, REMICADE®, ORENCIA®, and ENBREL®.

The aforementioned patents and patent applications are $_{15}$ incorporated herein by reference.

The above other therapeutic agents, when employed in combination with the compounds of the present invention may be used, for example, in those amounts indicated in the *Physicians' Desk Reference*, as in the patents set out above, or 20 as otherwise determined by one of ordinary skill in the art. Dosage and Formulation

The compounds of this disclosure can be administered in such oral dosage forms as tablets, capsules (each of which includes sustained release or timed release formulations), 25 pills, powders, granules, elixirs, tinctures, suspensions, syrups, and emulsions. They may also be administered in intravenous (bolus or infusion), intraperitoneal, subcutaneous, or intramuscular form, all using dosage forms well known to those of ordinary skill in the pharmaceutical arts. They can be 30 administered alone, but generally will be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

The dosage regimen for the compounds of the present invention will, of course, vary depending upon known factors, 35 such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition, and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; the route of 40 administration, the renal and hepatic function of the patient, and the effect desired. A physician or veterinarian can determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the disorder.

By way of general guidance, the daily oral dosage of each 45 active ingredient, when used for the indicated effects, will range between about 0.001 to 1000 mg/kg of body weight, or between about 0.01 to 100 mg/kg of body weight per day, or alternatively, between about 1.0 to 20 mg/kg/day. Compounds of this invention may be administered in a single daily 50 dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily. In one embodiment, the daily oral dosage of the active ingredient is between 3 and 600 mg either administered once daily or in divided doses administered twice daily. Alternatively, the active ingredient 55 may be administered in doses of 10-20 mg administered twice daily or 40 to 100 mg administered once daily. Alternatively, the active ingredient may be administered a dose of 12.5 mg twice a day or 75 mg once a day. Alternatively, the active ingredient may be administered in doses of 3, 10, 30, 100, 60 300, and 600 mg administered either once or twice a day.

Compounds of this invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using transdermal skin patches. When administered in the form of a transdermal delivery system, the 65 dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

776

The compounds are typically administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as pharmaceutical carriers) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices

For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral administration in liquid form, the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like. Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.

The compounds of the present invention can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine, or phosphatidylcholines.

Compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethylaspartamidephenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the compounds of the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block copolymers of hydrogels.

Dosage forms (pharmaceutical compositions) suitable for administration may contain from about 1 milligram to about 100 milligrams of active ingredient per dosage unit. In these pharmaceutical compositions the active ingredient will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition.

Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.

Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as

propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration may contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfate, 5 sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in *Remington's Pharmaceutical Sciences*, Mack Publishing Company, a standard reference text in this field.

Representative useful pharmaceutical dosage-forms for administration of the compounds of this invention can be 15 illustrated as follows:

Capsules

A large number of unit capsules can be prepared by filling standard two-piece hard gelatin capsules each with 100 milligrams of powdered active ingredient, 150 milligrams of 20 lactose, 50 milligrams of cellulose, and 6 milligrams magnesium stearate.

Soft Gelatin Capsules

A mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil or olive oil may be prepared and 25 injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 milligrams of the active ingredient. The capsules should be washed and dried.

Tablets

Tablets may be prepared by conventional procedures so that the dosage unit is 100 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of starch and 98.8 milligrams of lactose. 35 Appropriate coatings may be applied to increase palatability or delay absorption.

Dispersion

A spray dried dispersion can be prepared for oral administration by methods know to one skilled in the art. Injectable

A parenteral composition suitable for administration by injection may be prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. The solution should be made isotonic with sodium 45 chloride and sterilized.

Suspension

An aqueous suspension can be prepared for oral administration so that each 5 mL contain 100 mg of finely divided active ingredient, 200 mg of sodium carboxymethyl cellulose, 5 mg of sodium benzoate, 1.0 g of sorbitol solution, U.S.P., and 0.025 mL of vanillin.

Where two or more of the foregoing second therapeutic agents are administered with the compound of the examples, generally the amount of each component in a typical daily 55 dosage and typical dosage form may be reduced relative to the usual dosage of the agent when administered alone, in view of the additive or synergistic effect of the therapeutic agents when administered in combination.

Particularly when provided as a single dosage unit, the 60 potential exists for a chemical interaction between the combined active ingredients. For this reason, when the compound of the examples and a second therapeutic agent are combined in a single dosage unit they are formulated such that although the active ingredients are combined in a single dosage unit, 65 the physical contact between the active ingredients is minimized (that is, reduced). For example, one active ingredient

778

may be enteric coated. By enteric coating one of the active ingredients, it is possible not only to minimize the contact between the combined active ingredients, but also, it is possible to control the release of one of these components in the gastrointestinal tract such that one of these components is not released in the stomach but rather is released in the intestines. One of the active ingredients may also be coated with a material which effects a sustained-release throughout the gastrointestinal tract and also serves to minimize physical contact between the combined active ingredients. Furthermore, the sustained-released component can be additionally enteric coated such that the release of this component occurs only in the intestine. Still another approach would involve the formulation of a combination product in which the one component is coated with a sustained and/or enteric release polymer, and the other component is also coated with a polymer such as a low viscosity grade of hydroxypropyl methylcellulose (HPMC) or other appropriate materials as known in the art, in order to further separate the active components. The polymer coating serves to form an additional barrier to interaction with the other component.

These as well as other ways of minimizing contact between the components of combination products of the present invention, whether administered in a single dosage form or administered in separate forms but at the same time by the same manner, will be readily apparent to those skilled in the art, once armed with the present disclosure.

Additionally, certain compounds disclosed herein may be useful as metabolites of other compounds. Therefore, in one embodiment, compounds may be useful either as a substantially pure compound, which may also then be incorporated into a pharmaceutical composition, or may be useful as metabolite which is generated after administration of the prodrug of that compound. In one embodiment, a compound may be useful as a metabolite by being useful for treating disorders as described herein.

What is claimed is:

40

1. A compound of formula I

$$\begin{array}{c} Y \\ X \\ A \\ R_{6a} \\ R_{6b} \\ \end{array} \qquad \begin{array}{c} Q \\ R_{3} \\ R_{5a} \\ R_{5a} \\ \end{array} \qquad \begin{array}{c} R_{5b} \\ R_{5c} \\ \end{array} \qquad \begin{array}{c} R_{5c} \\ R_{5d} \\ \end{array}$$

enantiomer, diastereomer, tautomer, prodrug or salt thereof wherein:

m is 1;

Q is $CR_{2a}R_2$;

T is (C₁-C₅)-alkyl, (C₂-C₆)-alkenyl, (C₅₋₁₀)-aryl or (C₅₋₁₀)-heteroaryl, all of which may be optionally substituted with one or more substituents selected from hydrogen, ²H, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl or halo(C₁-C₆)-alkyl and wherein a

carbon atom of the alkyl chain may be replaced with a heteroatom selected from N, O, and S;

U is a bond, S, NR_{7a}, O or a (C₃-C₆)-cycloalkyl;

V is a bond, —CH₂—, O or a (C₃-C₆)-cycloalkyl;

Ring A is a 5- to 6-membered aryl or heteroaryl, wherein the aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, oxo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - C_{12})-cycloalkyl and halo(C_1 - C_6)-alkyl and the heteroaryl 10 contains 1-4 heteroatoms selected from N, O, and S;

X is a bond, (C_1-C_6) -alkyloxy, (C_3-C_6) -cycloalkyl, (C_3-C_6) -cycloalkyl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl, (C_{5-10}) -aryloxy, (C_{5-10}) -aryl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl-oxy- (C_1-C_6) -alkyl, (C_5-10) -aryl- (C_1-C_6) -alkyloxy or heteroaryl- (C_1-C_6) -alkyl, wherein the heteroaryl contains 4- to 10-members and 1-4 heteroatoms selected from N, O, and S and any alkyl, aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, CN, —COOH, —NR₂₈R₂₉, —OH, (C_3-C_{12}) -cycloalkyl, (C_3-C_{12}) -cycloalkyloxy and halo (C_1-C_6) -alkyl;

W is hydrogen, —OH, cyano, heteroaryl, which may be optionally substituted with one or more R_{20} 's, heterocycle, which may be optionally substituted with one or more R_{20} 's, —N(R_{18}) R_{19} ,

wherein the amino, hydroxy or acidic moiety may attach at any position of R_{18} ;

R₂ is hydrogen, —OH, oxo, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl or halo(C₁-C₆)-alkyl;

 R_{2a} is hydrogen, —OH, oxo, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl or halo (C_1-C_6) -alkyl;

or R_2 and $R_{2\alpha}$ can optionally be linked to form a linking group containing 1-2 carbon atoms;

 R_3 is hydrogen, $(C_1$ - C_6)-alkyl, $(C_3$ - C_{12})-cycloalkyl or halo $(C_1$ - C_6)-alkyl;

or R_2 and R_3 can optionally be linked to form a linking group containing 1-5 carbon atoms to form a (C_3-C_7) -cycloalkyl ring, a halo (C_3-C_7) -cycloalkyl ring or an aryl ring;

R₄, at each occurrence, is independently hydrogen, —OH, halogen, halo(C₁-C₆)-alkyl or (C₁-C₈)alkyl;

 R_{4a} , at each occurrence, is independently is hydrogen, —OH, halogen, halo(C_1 - C_6)-alkyl or (C_1 - C_8)alkyl;

or R₃ and R₄ can optionally be linked with the carbons to which they are attached to form a linking group containing 1-5 carbon atoms to form a (C₃-C₇)-cycloalkyl ring, a halo(C₃-C₇)-cycloalkyl ring or an aryl ring;

or R_4 and \tilde{R}_{4a} can optionally be linked to form a linking group containing 1-4 carbon atoms;

 R_{5a} is hydrogen, halogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, CN, $(C_3\text{-}C_6)\text{-}\text{cycloalkyl}$ or halo($C_1\text{-}C_6)\text{-}\text{alkyl};$

 R_{5b} is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - $C_6)$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

R_{5c} is hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₆)-cycloalkyl or halo(C₁-C₆)-alkyl;

 R_{5d} is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - $C_6)$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

R_{5e} is hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₆)-cycloalkyl or halo(C₁-C₆)-alkyl;

or two of R_{5a}, R_{5b}, R_{5c}, R_{5d} or R_{5e} may be taken together with the atoms to which both are attached form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{6a} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{6b} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{6c}^{ob} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{7a} is hydrogen, C_1 - C_6 alkyl or — $CO_2(C_1$ - $C_6)$ -alkyl; n is 0-6;

 R_{16} is H or —CN;

 R_{18} , at each occurrence, is independently $(C_1\text{-}C_8)$ alkyl, $(C_3\text{-}C_{12})\text{-cycloalkyl}$, a fused $(C_3\text{-}C_{18})\text{-cycloalkyl}$, $(C_1\text{-}C_8)$ alkyl- $(C_3\text{-}C_{12})\text{-cycloalkyl-}(C_1\text{-}C_8)$ alkyl- $(C_3\text{-}C_{12})\text{-cycloalkyl-}(C_1\text{-}C_8)$ alkyl, $(C_5\text{-}C_{10})\text{-aryl}$, $(C_5\text{-}C_{10})\text{-aryl}$, a heteroaryl, a heteroaryl, all heterocyclo, all of which may be optionally substituted with one or more R_{20} 's and wherein the heteroaryl and heterocyclo contain 4- to 10-members and contain 1-4 heteroatoms selected from N, O, and S;

R₁₉, at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl, (C₆₋₁₀)aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl,

heteroaryl and heterocyclo may be optionally substituted with one or more R₂₀'s;

or R₁₈ and R₁₉ are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from 5 N, O, and S and be optionally substituted with one or more R₂₀'s;

R₂₀, at each occurrence, is selected from halo, —OH, (C₁- C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_6)$ -alkynyl, (C_3-C_6) -al C₁₂)-cycloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, 10 -COOH, $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_6)$ C_{12})-aryl, $-CO_2(C_1-C_6)$ -alkyl, $-CONR_{28}R_{29}$, $-NR_{28}C(=O)NR_{28}R_{29}$, $-NR_{28}R_{29}$ $(=NR_{29})NR_{28}R_{29}, -SR_{28}, -S(=O)(=NR_{28})R_{29},$ -S(--OH)R₂₉, $-S(=O)_2R_{29}$, $-S(=O)R_{29}$ $-NR_{29}CO_2(\overline{C}_1-C_6)$ -alkyl, -NR₂₈SO₂R₁₉, $--O(C=O)NR_{28}R_{29};$ $-O(C = O) - (C_1 - C_6)$ -alkyl, $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ C_6)-alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, (C_1-C_6) -alkyl- $CO_2(C_1-C_6)$ -alkyl, —O—P(=O) 20 $--O--CR_{28}R_{29}--P(=-O)(OH)(OR_{29}),$ $-P(=O)(OH)(OR_{29}), (C_{6-10})aryl, (C_{6-10})aryl(C_1-C_6)$ alkyl, (C₆₋₁₀)aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 25 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C₁- C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) alkyloxy, cyano, nitro, —COOH, —CO(C₁-C₆)-alkyl, $-NR_{28}R_{29}$, $-CO_2(C_1-C_6)$ -alkyl, $-CONR_{28}R_{29}$, $-O(C=O)-(C_1-C_6)$ -alkyl, $-N(R_{28})R_{29}R_{29}$, $-O(C=O)NR_{28}R_{29};$ $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C$ $\begin{array}{c} \text{C}_6\text{)-alkylCONR}_{28}R_{29}, & \text{--}(\text{C}_1\text{-}\text{C}_6\text{)-alkyl-CO}_2(\text{C}_1\text{-}\text{C}_6\text{)-alkyl-CO}_2(\text{C}_1\text{-}\text{C}_6\text{)-alkyl,} & \text{--}O\text{---}P(\text{--}O)(\text{OH})(\text{OR}_{29}), & \text{--}O\text{---}\text{CR}_{28}R_{29}\text{---}P(\text{---}O)(\text{OH})(\text{OR}_{29}), & \text{--}O\text{---}(\text{---}O)(\text{OH})(\text{OR}_{29}), & \text{--}O\text{---}(\text{---}O)(\text{OH})(\text{OH})(\text{OR}_{29}), & \text{--}O\text{---}(\text{---}O)(\text{OH})(\text{OH})(\text{OR}_{29}), & \text{--}O\text{---}(\text{---}O)(\text{OH})(\text{OH})(\text{OR}_{29}), & \text{--}O\text{---}(\text{---}O)(\text{OH})(\text{OH})(\text{OH})(\text{OH})(\text{OH})(\text{OH})(\text{OH})(\text{OH})(\text{OH})(\text{O$ $(=O)(OH)(OR_{29}), -P(=O)(OH)(OR_{29}), -S(=O)_2$ OH, (C₆₋₁₀)aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4-40 to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C₁-C₆)alkyl, and halo(C_1 - C_6)alkyloxy;

R₂₂, at each occurrence, is independently hydrogen, —OH, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl, (C_{6-10}) aryl, a 4- to 45 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N. O. and S: or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substi- 50 tuted with one or more substituents selected from hydrogen, —OH, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN,

(C₃-C₁₂)-cycloalkyl and halo(C₁-C₆)-alkyl;

R_{22a}, at each occurrence, is independently hydrogen, -OH, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl, (C_{6-10}) aryl, 55 a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be 60 optionally substituted with one or more substituents selected from hydrogen, —OH, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - $C_{12})$ -cycloalkyl and halo $(C_1$ - C_6)-alkyl;

 R_{28} and R_{29} , at each occurrence, are independently hydrogen, (C₃-C₁₂)-cycloalkyl, or (C₁-C₈)alkyl, wherein the cycloalkyl and alkyl may be optionally substituted with

one or more substituents selected from the group consisting of: halo, —OH, (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C1-C6)-alkyloxy, cyano, nitro, -COOH, $-CO(C_1-C_6)$ -alkyl, $-CO_2(C_1-C_6)$ -alkyl, —(C₁-C₆)-alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkylCONR₃₈R₃₉, $-(C_1-C_6)$ -alkyl- CO_2 —O—P(=O)(OH)(OR₃₉), $(C_1$ - $C_6)$ -alkyl, $-O-CR_{38}R_{39}-P(=O)(OH)(OR_{39}), -P(=O)(OH)$ (OR_{39}) , $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

or R_{28} and R_{29} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

R₃₈ and R₃₉, at each occurrence, are independently hydrogen or (C₁-C₈)alkyl;

or R₃₈ and R₃₉ are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S.

2. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim 1, wherein:

W is heteroaryl, which may be optionally substituted with one or more R₂₀'s,

3. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim 1, wherein:

W is heteroaryl, which may be optionally substituted with one or more R_{20} 's,

$$\begin{array}{c} -\text{continued} \\ -N - C - N - R_{18} - C - OH, \\ -N - C$$

4. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim **1**, wherein:

W is 30 35 40

- 5. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim 1, wherein A is a 5- to 6-membered aryl.
- **6**. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim **1**, wherein A is a 5- to 6-membered heteroaryl, wherein the heteroaryl contains 1-4 heteroatoms selected from N, O, and S.
- 7. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim 1, wherein:

m is 1;

60

Q is $CR_{2a}R_2$;

T is a (C_1-C_5) -alkyl, which may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, CN, (C_3-C_{12}) -cycloalkyl or halo (C_1-C_6) -alkyl and wherein a carbon atom of the alkyl chain may be replaced with a heteroatom selected from N, O, and S;

U is a bond or O;

V is a bond, — CH_2 —, O, or a (C_3 - C_6)-cycloalkyl;

Ring A is a 5- to 6-membered aryl or heteroaryl, wherein the aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, oxo, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-

20

25

35

40

-ОН, ₆₀

cycloalkyl and halo(C₁-C₆)-alkyl and the heteroaryl contains 1-4 heteroatoms selected from N, O, and S;

X is a bond, (C_1-C_6) -alkyloxy, (C_3-C_6) -cycloalkyl, (C_3-C_6) -cycloalkyl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl, (C_{5-10}) -aryl-loxy, (C_{5-10}) -aryl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl-oxy- (C_1-C_6) -alkyl, (C_5-10) -aryl- (C_1-C_6) -alkyloxy or heteroaryl- (C_1-C_6) -alkyl, wherein the heteroaryl contains 4- to 10-members and 1-4 heteroatoms selected from N, O, and S and any alkyl, aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, CN, (C_3-C_{12}) -cycloalkyl, (C_3-C_{12}) -cycloalkyloxy and halo (C_1-C_6) -alkyl;

Y is
$$-(CR_{22}R_{22a})_n - W$$
;

W is heteroaryl, which may be optionally substituted with one or more R_{20} 's, heterocyclo, which may be optionally substituted with one or more R_{20} 's, $-N(R_{18})R_{19}$,

 $\rm R_2$ is hydrogen, (C1-C6)-alkyl, (C3-C12)-cycloalkyl or halo 20 (C1-C6)-alkyl;

 ${\rm R}_{2a}$ is hydrogen, (C1-C6)-alkyl, (C3-C12)-cycloalkyl or halo(C1-C6)-alkyl;

or R_2 and R_{2a} can optionally be linked to form a linking group containing 1-2 carbon atoms;

 R_3 is hydrogen, (C1-C6)-alkyl, (C3-C12)-cycloalkyl or halo (C1-C6)-alkyl;

or R_2 and R_3 can optionally be linked to form a linking group containing 1-2 carbon atoms to form a (C_3-C_4) -cycloalkyl ring, a halo (C_3-C_4) -cycloalkyl ring or an aryl ring;

 R_4 , at each occurrence, is independently hydrogen or (C_1 - C_8)alkyl;

 R_{4a} , at each occurrence, is independently is hydrogen or $_{35}$ (C_1 - C_8)alkyl;

or R_4 and R_{4a} can optionally be linked to form a linking group containing 1-2 carbon atoms;

 R_{5a} is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - $C_6)$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

 R_{5b} is hydrogen, halogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, CN, $(C_3\text{-}C_6)\text{-cycloalkyl}$ or halo($C_1\text{-}C_6)\text{-alkyl};$

R_{5c} is hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₆)-cycloalkyl or halo(C₁-C₆)-alkyl;

 R_{5d} is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, 45 (C_3 - C_6)-cycloalkyl or halo(C_1 - C_6)-alkyl;

R_{5e} is hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₆)-cycloalkyl or halo(C₁-C₆)-alkyl;

or two of R_{5a}, R_{5b}, R_{5c}, R_{5d} or R_{5e} may be taken together with the atoms to which both are attached form a 3- to 50 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{6a} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{6h} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{6c} is hydrogen, halogen or C_1 - C_6 alkyl; n is 0-4;

 R_{16} is H or —CN;

 $R_{18},$ at each occurrence, is independently $(C_1\text{-}C_8)$ alkyl, $(C_3\text{-}C_{12})\text{-cycloalkyl},$ $(C_1\text{-}C_8)$ alkyl- $(C_3\text{-}C_{12})\text{-cycloalkyl},$ $(C_1\text{-}C_8)$ alkyl- $(C_3\text{-}C_{12})\text{-cycloalkyl-}(C_1\text{-}C_8)$ alkyl, a heteroaryl, a heteroaryl, a heteroaryl ($C_1\text{-}C_8$) alkyl or a heterocyclo, all of which may be optionally substituted with one or more R_{20} 's and wherein the heteroaryl and heterocyclo contain 4- to 10-members and contain 1-4 heteroatoms selected from N, O, and S;

 R_{19} , at each occurrence, is independently hydrogen, (C_1 - C_6)-alkyl, (C_3 - C_{12})-cycloalkyl, (C_{6-10})aryl, a 4- to

10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more R_{20} 's;

or R₁₈ and R₁₉ are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S and be optionally substituted with one or more R₂₀'s;

R₂₀, at each occurrence, is selected from halo, —OH, (C₁- C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_6)$ -alkynyl, (C_3-C_6) -al C₁₂)-cycloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, -COOH, —SO₃H, —CO(C₁-C₆)-alkyl, —CO(C₆- C_{12})-aryl, $-CO_2(C_1-C_6)$ -alkyl, -CONR₂₈R₂₉, $-NR_{28}R_{29}$, $-NR_{28}C(=O)NR_{28}R_{29}$, $(=NR_{29})NR_{28}R_{29}, -SR_{28}, -S(=O)(=NR_{28})R_{29},$ $-S(-OH)R_{29}$, $-S(=O)R_{29}$, $-NR_{29}CO_2(C_1-C_6)$ - $-O(C=O)-(C_1-C_6)$ -alkyl, $NR_{28}R_{29}$, — (C_1-C_6) -alkylCOOH, — (C_1-C_6) -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6) \text{alkylCONR}_{28} \text{R}_{29}, \ \ \overline{-} (\text{C}_1\text{-C}_6)\text{-alkyl-CO}_2(\text{C}_1\text{-C}_6)\text{-alkyl},$ $-O-P(=O)(OH)(OR_{29}), -O-CR_{28}R_{29}-P(=O)$ $--P(=-O)(OH)(OR_{29}),$ $(OH)(OR_{29}),$ (C_{6-10}) aryl, (C_{6-10}) aryl (C_1-C_6) -alkyl, (C_{6-10}) aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and 5; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, -OH, (C1-C6)-alkyl, (C2- $\rm C_6$)-alkenyl, (C $_2$ -C $_6$)-alkynyl, (C $_1$ -C $_6$)-alkyloxy, cyano, nitro, —COOH, —CO(C $_1$ -C $_6$)-alkyl, —CO $_2$ (C $_1$ -C $_6$)alkyl, $-\text{CONR}_{28}\text{R}_{29}$, $-\text{NR}_{28}\text{R}_{29}$, $-\text{O}(C=O)-(C_1-C_6)$ -alkyl, $-\text{O}(C=O)\text{NR}_{28}\text{R}_{29}$, $-(C_1-C_6)$ -alkyl-COOH, $-(C_1-C_6)$ -alkylOOH, $-(C_1-C_6)$ -alkylONH₂) COOH, $-(C_1-C_6)$ -alkyl $CONR_{28}R_{29}$, $-(C_1-C_6)$ -alkyl- $-O-P(=O)(OH)(OR_{29})$ $CO_2(C_1-C_6)$ -alkyl, $--O-CR_{28}R_{29}--P(=-O)(OH)(OR_{29}), --P(=-O)(OH)$ (OR_{29}) , $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

R₂₂, at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl, (C₆₋₁₀)aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more substituents selected from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl and halo(C₁-C₆)-alkyl;

R_{22a}, at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl, (C₆₋₁₀)aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S, wherein the alkyl, cycloalkyl, aryl, heteroaryl and heterocyclo may be optionally substituted with one or more substituents selected from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl and halo(C₁-C₆)-alkyl;

 R_{28} and R_{29} , at each occurrence, are independently hydrogen or $(\overline{C}_1$ - $\overline{C}_8)$ alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkyl, (C_3-C_6) -al C_6)-alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) -alkyloxy, cyano, 5 nitro, —COOH, — $CO(C_1-C_6)$ -alkyl, — $CO_2(C_1-C_6)$ alkyl, — $CONR_{38}R_{39}$, — $NR_{38}R_{39}$, —O(C=O)— (C_1-C_2) C_6)-alkyl, $-O(C=O)NR_{38}R_{39}$, $-(C_1-C_6)$ -alkyl-COOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂) COOH, $-(C_1-C_6)$ -alkylCONR₃₈R₃₉, $-(C_1-C_6)$ -alkyl- 10 —O—P(=O)(OH)(OR₃₉), $CO_2(C_1-C_6)$ -alkyl, $-O-CR_{38}R_{39}-P(=O)(OH)(OR_{39}), -P(=O)(OH)$ (OR_{39}) , $--S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered hetero- 15 cyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

or R_{28} and R_{29} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from 20 N, O, and S;

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or (C_1 - C_8)alkyl;

or R_{38} and R_{39} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S.

8. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim **1**, wherein:

m is 1;

Q is $CR_{2a}R_2$;

T is (C_1-C_4) -alkyl, which may be optionally substituted with one or more substituents selected from hydrogen, 2 H, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - $C_{12})$ -cycloalkyl or halo $(C_1$ - $C_6)$ -alkyl;

U is a bond or O;

V is a bond or O:

Ring A is a 5- to 6-membered aryl or heteroaryl, wherein 40 the aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, oxo, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, and halo (C₁-C₆)-alkyl and the heteroaryl contains 1-4 heteroatoms selected from N, O, and S;

X is a bond, (C_1-C_6) -alkyloxy, (C_3-C_6) -cycloalkyl, (C_3-C_6) -cycloalkyl- (C_1-C_6) -alkyl, (C_{5-10}) -aryl, $(C_{5-10}$ -aryloxy or (C_{5-10}) -aryl- (C_1-C_6) -alkyl, wherein any alkyl and aryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, CN, (C_3-C_{12}) -cycloalkyl, (C_3-C_{12}) -cycloalkyloxy and halo (C_1-C_6) -alkyl;

Y is $-(CR_{22}R_{22a})_n$ —W;

W is heteroaryl, which may be optionally substituted with one or more R_{20} 's,

20

45

 R_2 is hydrogen, (C_1-C_6) -alkyl, (C_3-C_{12}) -cycloalkyl or halo (C_1-C_6) -alkyl;

 $\rm R_{2a}$ is hydrogen, (C1-C6)-alkyl, (C3-C12)-cycloalkyl or halo(C1-C6)-alkyl;

 R_3 is hydrogen or (C_1-C_6) -alkyl;

or R_2 and R_3 can optionally be linked to form a linking group containing 1-5 carbon atoms to form a (C_3-C_7) -cycloalkyl ring, a halo (C_3-C_7) -cycloalkyl ring or an aryl ring;

 R_4 , at each occurrence, is independently hydrogen or (C_1 - 25 C_8)alkyl;

 R_{4a} , at each occurrence, is independently is hydrogen or $(C_1$ - C_8)alkyl;

or R_4 and R_{4a} can optionally be linked to form a linking group containing 1-2 carbon atoms;

 R_{5a} is hydrogen, halogen, C_1 - C_6 alkyl or halo(C_1 - C_6)-alkyl;

 R_{5b} is hydrogen, halogen, C_1 - C_6 alkyl or halo(C_1 - C_6)-alkyl;

 R_{5c} is hydrogen, halogen, C_1 - C_6 alkyl or halo(C_1 - C_6)- 35 alkyl;

 R_{5d} is hydrogen, halogen, C_1 - C_6 alkyl or halo(C_1 - C_6)-alkyl;

 R_{5e} is hydrogen, halogen, C_1 - C_6 alkyl or halo(C_1 - C_6)-alkyl;

or two of R_{5a} , R_{5b} , R_{5c} , R_{5d} or R_{5e} may be taken together with the atoms to which both are attached form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{6a} is hydrogen or C_1 - C_6 alkyl;

 R_{6b} is hydrogen or C_1 - C_6 alkyl;

 R_{6c} is hydrogen or C_1 - C_6 alkyl;

n is 0-2;

 R_{18} , at each occurrence, is independently (C_1 - C_8)alkyl, (C_3 - C_{12})-cycloalkyl, (C_{5-10})-aryl, a heteroaryl or a heteroaryl(C_1 - C_8)alkyl, all of which may be optionally substituted with one or more R_{20} 's and wherein the heteroaryl contains 4- to 10-members and contains 1-4 heteroatoms selected from N, O, and S;

R₁₉, at each occurrence, is independently hydrogen, (C₁- 55 C₆)-alkyl, (C₃-C₁₂)-cycloalkyl, (C₆₋₁₀)aryl or a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S;

or R_{18} and R_{19} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which 60 may optionally contain 1-4 heteroatoms selected from N, O, and S and be optionally substituted with one or more R_{20} 's;

R₂₀, at each occurrence, is selected from halo, —OH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, —(C₃-65C₁₂)-cycloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, —COOH, —SO₃H, —CO(C₁-C₆)-alkyl, —CO(C₆-

 $--CO_2(C_1-C_6)$ -alkyl, C_{12})-aryl, -CONR₂₈R₂₉, $-NR_{28}R_{29}$, $-NR_{28}C(=O)NR_{28}R_{29}$, $-NR_{28}C(NR_{29})$ $NR_{28}R_{29}$, $--SR_{28}$, $--S(=-O)(=-NR_{28})R_{29}$, --S(=-OH) $-S(=O)R_{29}$, $-NR_{29}CO_2(C_1-C_6)$ -alkyl, $-NR_{28}SO_2R_{19}$, $-O(C=O)NR_{28}R_{29}; -(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ C_6)-alkylOH, $-(C_1-C_6)$ -alkyl(NH₂)COOH, $-(C_1-C_6)$ C_6)-alkyl $CONR_{28}R_{29}$, $--(C_1-C_6)$ -alkyl $-CO_2(C_1-C_6)$ alkyl, —O—P(=O)(OH)(OR₂₉), —O—CR₂₈R₂₉—P (C_{6-10}) ary $l(C_1-C_6)$ -alkyl, (C_{6-10}) aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkyl, (C_3-C_6) -alkyl C_6)-alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) -alkyloxy, cyano, nitro, —COOH, — $CO(C_1-C_6)$ -alkyl, — $CO_2(C_1-C_6)$ alkyl, — $CONR_{28}R_{29}$, — $NR_{28}R_{29}$, —O(C=O)— $(C_1$ - C_6)-alkyl, $-O(C=O)NR_{28}R_{29}$; $-(C_1-C_6)$ -alkyl-COOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂) COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, $-O-P(=O)(OH)(OR_{29})$, -O- $CR_{28}R_{29}$ — $P(=O)(OH)(OR_{29}), -P(=O)(OH)(OR_{29}),$ $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; $halo(C_1-C_6)alkyl$, and $halo(C_1-C_6)alkyloxy$;

R₂₂, at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl, (C₆₋₁₀)aryl, or a 4- to 10-membered heteroaryl, which contains 14 heteroatoms selected from N, O, and S; wherein the alkyl, cycloalkyl, aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl and halo(C₁-C₆)-alkyl;

R_{22a}, at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl, (C₃-C₁₂)-cycloalkyl, (C₆₋₁₀)aryl, or a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; wherein the alkyl, cycloalkyl, aryl and heteroaryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl and halo(C₁-C₆)-alkyl;

R₂₈ and R₂₉, at each occurrence, are independently hydrogen or (C_1-C_8) alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkyl, (C_3-C_6) -alkyl C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkyloxy, cyano, nitro, —COOH, — $CO(C_1-C_6)$ -alkyl, — $CO_2(C_1-C_6)$ alkyl, — $CONR_{38}R_{39}$, — $NR_{38}R_{39}$, —O(C=O)— (C_1-C_6) -alkyl, — $O(C=O)NR_{38}R_{39}$; — (C_1-C_6) -alkyl-COOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂) COOH, $-(C_1-C_6)$ -alkylCONR₃₈R₃₉, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, $--O-P(=O)(OH)(OR_{39}),$ $-O-CR_{38}R_{39}-P(=O)(OH)(OR_{39}), -P(=O)(OH)$ (OR_{39}) , $--S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

or R₂₈ and R₂₉ are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, O, and S;

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or (C_1-C_8) alkyl;

or R_{38} and R_{39} are taken together with the nitrogen to which both are attached to form a 3- to 8-membered ring, which may optionally contain 1-4 heteroatoms selected from N, N, and N.

9. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim **1**, wherein:

m is 1;

Q is CHR₂;

T is a (C_1-C_4) -alkyl;

U is O;

V is a bond;

A is a 5- to 6-membered aryl or heteroaryl, wherein the heteroaryl contains 1-4 heteroatoms selected from N, O, and S:

X is a bond, (C₅₋₁₀)-aryl, or (C₅₋₁₀)-aryl-(C₁-C₆)-alkyl, wherein any aryl may be optionally substituted with one ²⁵ or more substituents selected from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, CN, (C₃-C₁₂)-cycloalkyl, (C₃-C₁₂)-cycloalkyloxy and halo(C₁-C₆)-alkyl;

Y is
$$-(CR_{22}R_{22a})_n - W$$
;

W is

$$0 \quad \begin{array}{c} O \\ \parallel \\ C - N - R_{18} - N(R_{28})R_{29}R_{29}, \quad \text{or} \quad -O - R_{18} - \begin{array}{c} O \\ \parallel \\ S - OH; \\ \parallel \\ O \end{array}$$

R₂ and R₃ are hydrogen;

or R₂ and R₃ can optionally be linked to form a linking group containing 1-3 carbon atoms to form a (C₃-C₅)-cycloalkyl ring, a halo(C₃-C₅)-cycloalkyl ring or an aryl ring;

 R_4 and R_{4a} are hydrogen;

 R_{5a} is hydrogen, halogen or C_1 - C_6 alkyl;

R_{5b} is hydrogen, halogen or C₁-C₆ alkyl;

 R_{5c} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{5d} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{5e} is hydrogen, halogen or C_1 - C_6 alkyl;

 R_{6a} , R_{6b} and R_{6c} are hydrogen;

n is 0-2;

 R_{18} , at each occurrence, is independently (C_1 - C_8)alkyl or (C_3 - C_{12})-cycloalkyl, both of which may be optionally substituted with one or more R_{20} 's;

 R_{19} , at each occurrence, is independently hydrogen or (C_1 - C_6)-alkyl;

 R_{20} , at each occurrence, is selected from halo, —OH, (C_1 - C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, $-(C_3-C_6)$ -alkynyl, (C_3-C_6) -al C₁₂)-cycloalkyl, (C₁-C₆)-alkyloxy, cyano, oxo, nitro, COOH, $-SO_3H$, $-CO(C_1-C_6)$ -alkyl, $-CO(C_6-C_6)$ $-\text{CO}_2(\text{C}_1\text{-C}_6)$ -alkyl, $-\text{CONR}_{28}\text{R}_{29}$, C_{12})-aryl, $-NR_{28}R_{29}, -NR_{28}C(=O)NR_{28}R_{29}, -NR_{28}C(NR_{29})$ $NR_{28}R_{29}, -SR_{28}, -S(=O)(=NR_{28})R_{29}, -S(=OH)$ $-S(=-O)R_{29}$, $-NR_{29}CO_2(C_1-C_6)$ -alkyl, $-O(C=O)-(C_1-C_6)$ -alkyl, $-O(C=O)NR_{28}R_{29};$ $-(C_1-C_6)$ -alkylCOOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ C₆)-alkyl(NH₂)COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $(C_1 - C_6)$ -alkyl- $CO_2(C_1 - C_6)$ -alkyl, -O-P(=O) $-P(=O)(OH)(OR_{29}), (C_{6-10})$ aryl, (C_{6-10}) aryl (C_1-C_6) alkyl, (C₆₋₁₀)aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S; or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C₁- C_6)-alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) alkyloxy, cyano, nitro, —COOH, —CO(C₁-C₆)-alkyl, $-CO_2(C_1-C_6)$ -alkyl, $-CONR_{28}R_{29}$, $-NR_{28}R_{29}$, $-O(C = O) - (C_1 - C_6)$ -alkyl, $-O(C=O)NR_{28}R_{29};$

 $\begin{array}{lll} -(C_1\text{-}C_6)\text{-alkylCOOH}, & -(C_1\text{-}C_6)\text{-alkylOH}, & -(C_1\text{-}C_6)\text{-alkyl(NH}_2)\text{COOH}, & -(C_1\text{-}C_6)\text{-alkylCONR}_{28}R_{29}, \\ -(C_1\text{-}C_6)\text{-alkyl-CO}_2(C_1\text{-}C_6)\text{-alkyl}, & -O-P(=O)\\ (OH)(OR_{29}), & -O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}), \\ -P(=O)(OH)(OR_{29}), & -S(=O)_2\text{OH}, (C_{6-10})\text{aryl}, \text{a 4-to 10-membered heteroaryl}, \text{which contains 1-4 heteroatoms selected from N, O, and S, a 4-to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1\text{-}C_6)\text{alkyl}, and halo(C_1\text{-}C_6)\\ & \text{alkyloxy;} \end{array}$

 R_{22} , at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl or (C₆₋₁₀)aryl;

 R_{22a} , at each occurrence, is independently hydrogen, (C₁-C₆)-alkyl or (C₆₋₁₀)aryl;

R₂₈ and R₂₉, at each occurrence, are independently hydrogen or (C_1-C_8) alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkyl, (C_3-C_6) -alkyl C_6)-alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) -alkyloxy, cyano, 20 nitro, —COOH, — $CO(C_1-C_6)$ -alkyl, — $CO_2(C_1-C_6)$ alkyl, $-CONR_{38}R_{39}$, $-NR_{38}R_{39}$, $-O(C=O)-(C_1-C_1-C_2)$ C_6)-alkyl, $-O(C=O)NR_{38}R_{39}$; $-(C_1-C_6)$ -alkyl-COOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂) COOH, $-(C_1-C_6)$ -alkylCONR₃₈R₃₉, $-(C_1-C_6)$ -alkyl- ²⁵ $CO_2(C_1-C_6)$ -alkyl, $--O-P(=-O)(OH)(OR_{39}),$ $--O-CR_{38}R_{39}--P(=-O)(OH)(OR_{39}), --P(=-O)(OH)$ (OR₃₉), —S(=O)₂OH, (C₆₋₁₀)aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo(C_1 - C_6)alkyl, and halo(C_1 - C_6)alkyloxy;

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or (C_1 - C_8)alkyl.

10. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim 1, wherein:

m is 1;

Q is CHR₂;

T is a $(C_1 - C_4)$ -alkyl;

U is O;

V is a bond;

Ring A is phenyl, pyrazolyl, tetrazolyl, thiophenyl or pyridinyl;

X is a bond or (C_{5-10}) -aryl- $(C_1$ - $C_6)$ -alkyl, wherein the aryl may be optionally substituted with one or more substituents selected from hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, CN, $(C_3$ - $C_{12})$ -cycloalkyl, $(C_3$ - $C_{12})$ -cycloalkyloxy and halo $(C_1$ - $C_6)$ -alkyl;

Y is $-(CR_{22}R_{22a})_n - W;$

Wis

$$R_2$$
, R_3 , R_4 and R_{4a} are hydrogen;
 R_{5a} is hydrogen, Cl, F or methyl;
 R_{5b} is hydrogen, Cl, F or methyl;
 R_{5c} is hydrogen, Cl, F or methyl;
 R_{5d} is hydrogen, Cl, F or methyl;
 R_{5e} is hydrogen, Cl, F or methyl;
 R_{6a} , R_{6b} and R_{6c} are hydrogen;
n is 0-2;

 R_{18} , at each occurrence, is independently (C_1 - C_8)alkyl, which may be optionally substituted with one or more R_{20} 's;

R₁₉, at each occurrence, is independently hydrogen or (C₁-C₆)-alkyl;

 $\begin{array}{l} R_{20}, \text{ at each occurrence, is selected from halo,} & - OH, (C_1-C_6)\text{-alkyl,} \quad (C_2-C_6)\text{-alkenyl,} \quad (C_2-C_6)\text{-alkynyl,} \quad - (C_3-C_1)\text{-cycloalkyl,} \quad (C_1-C_6)\text{-alkyloxy, cyano, oxo, nitro,} \\ & - COOH, \quad - SO_3H, \quad - CO(C_1-C_6)\text{-alkyl,} \quad - CO(C_6-C_1)\text{-aryl,} \quad - CO_2(C_1-C_6)\text{-alkyl,} \quad - CONR_{28}R_{29}, \\ & - NR_{28}R_{29}, \quad - NR_{28}C(=O)NR_{28}R_{29}, \quad - NR_{28}C\\ & (= NR_{29})NR_{28}R_{29}, \quad - SR_{28}, \quad - S(=O)(=NR_{28})R_{29}, \\ & - S(-OH)R_{29}, \quad - S(=O)R_{29}, \quad - NR_{29}CO_2(C_1-C_6)\text{-alkyl,} \quad - O(C=O)\\ & NR_{28}R_{29}; \quad - (C_1-C_6)\text{-alkyl}COOH, \quad - (C_1-C_6)\text{-alkyl}OH, \end{array}$

cyclo, which contains 1-4 heteroatoms selected from N, O, and S; halo($\rm C_1$ - $\rm C_6$)alkyl, and halo($\rm C_1$ - $\rm C_6$)alkyloxy; and

802

 R_{38} and R_{39} , at each occurrence, are independently hydrogen or (C_1-C_8) alkyl.

- 11. The compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim 1, wherein the compound is selected from one of the examples.
- 12. A pharmaceutical composition comprised of a therapeutically effective amount of at least one compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim 1, and a pharmaceutically acceptable carrier.
- 13. The pharmaceutical composition of claim 12, further comprising a therapeutically effective amount of one or more other therapeutically active agents.
- 14. A method for treating the progression or onset of diseases or disorders associated with the activity of the TGR5 receptor comprising administering to a mammalian patient in need of prevention, inhibition, or treatment a therapeutically effective amount of at least one compound, enantiomer, diastereomer, tautomer, prodrug or salt thereof, of claim 1, and optionally an additional therapeutic agent wherein:
 - (a) the diseases or disorders are selected from the group consisting of diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed wound healing, atherosclerosis and its sequelae, abnormal heart function, myocardial ischemia, stroke, Metabolic Syndrome, hypertension, obesity, dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, vascular restenosis and pancreatitis; and
 - (b) the additional therapeutic agent is selected from the group consisting of anti-diabetic agents, anti-hyperglycemic agents, anti-hyperinsulinemic agents, anti-retinopathic agents, anti-neuropathic agents, anti-ischemic agents, anti-hypertensive agents, anti-obesity agents, anti-dyslipidemic agents, anti-dyslipidemic agents, anti-hyperlipidemic agents, anti-hypertriglyceridemic agents, anti-hypercholesterolemic agents, anti-restenotic agents, anti-pancreatic agents, lipid lowering agents, appetite suppressants, treatments for heart failure, and treatments for peripheral arterial disease and anti-inflammatory agents.

sk sk sk sk sk

-(C₁-C₆)-alkyl(NH₂)COOH, $-(C_1-C_6)$ $alkylCONR_{28}R_{29}, \ \ \underline{-}(C_1-C_6)-alkyl-CO_2(C_1-C_6)-alkyl,$ $-O-P(=O)(OH)(OR_{29}), -O-CR_{28}R_{29}-P(=O)$ $(OH)(OR_{29}), -P(=O)(OH)(OR_{29}),$ (C₆₋₁₀)aryl, (C_{6-10}) aryl (C_1-C_6) -alkyl, (C_{6-10}) aryloxy, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N. O. and S: or a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, O, and S; wherein any alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclo may be optionally substituted with one or more substituents selected from the group consisting of halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) alkenyl, (C2-C6)-alkynyl, (C1-C6)-alkyloxy, cyano, nitro, —COOH, —CO(C_1 - C_6)-alkyl, — $CO_2(C_1$ - C_6)alkyl, — $CONR_{28}R_{29}$, — $NR_{28}R_{29}$, —O(C=O)— $(C_1$ - $--O(C=O)NR_{28}R_{29}; --(C_1-C_6)-alkyl-$ COOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂) COOH, $-(C_1-C_6)$ -alkylCONR₂₈R₂₉, $-(C_1-C_6)$ -alkyl- $CO_2(C_1-C_6)$ -alkyl, $-O-P(=O)(OH)(OR_{29}), 20$ $-O-CR_{28}R_{29}-P(=O)(OH)(OR_{29}), -P(=O)(OH)$ (OR_{29}) , $-S(=O)_2OH$, (C_{6-10}) aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered heterocyclo, which contains 1-4 heteroatoms selected from N, 25 O, and S; halo(C₁-C₆)alkyl, and halo(C₁-C₆)alkyloxy;

 R_{22} , at each occurrence, is independently hydrogen or (C_1 - C_6)-alkyl;

 R_{22a} , at each occurrence, is independently hydrogen or $(C_1\text{-}C_6)$ -alkyl;

R₂₈ and R₂₉, at each occurrence, are independently hydrogen or (C_1-C_8) alkyl, wherein the alkyl may be optionally substituted with one or more substituents selected from the group consisting of: halo, —OH, (C_1-C_6) -alkyl, (C_2-C_6) -alkyl, (C_3-C_6) -alkyl C_6)-alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) -alkyloxy, cyano, ³⁵ nitro, —COOH, — $CO(C_1-C_6)$ -alkyl, — $CO_2(C_1-C_6)$ alkyl, — $CONR_{38}R_{39}$, — $NR_{38}R_{39}$, —O(C = O)— $(C_1$ - $-O(C=O)NR_{38}R_{39};$ $-(C_1-C_6)$ -alkyl- C_6)-alkyl, COOH, $-(C_1-C_6)$ -alkylOH, $-(C_1-C_6)$ -alkyl(NH₂) COOH, $-(C_1-C_6)$ -alkylCONR₃₈R₃₉, $-(C_1-C_6)$ -alkyl- ⁴⁰ $-O-P(=O)(OH)(OR_{39}),$ $CO_2(C_1-C_6)$ -alkyl, $-O-CR_{38}R_{39}-P(=O)(OH)(OR_{39}), -P(=O)(OH)$ (OR₃₉), —S(=O)₂OH, (C₆₋₁₀)aryl, a 4- to 10-membered heteroaryl, which contains 1-4 heteroatoms selected from N, O, and S, a 4- to 10-membered hetero-